期刊文献+
共找到281,473篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进Otsu算法的金属器件镀锌表面缺陷识别方法 被引量:2
1
作者 马栎 冯占荣 《电镀与精饰》 北大核心 2025年第2期46-53,共8页
镀锌表面纹理、颜色以及亮度变化的复杂度往往较高,且不同的光照条件会对金属表面的反射和阴影产生显著影响,当前固定的阈值选择方式难以适应这种复杂多变的识别环境,影响当前人工智能领域中表面缺陷的识别效果,故提出了基于改进Otsu算... 镀锌表面纹理、颜色以及亮度变化的复杂度往往较高,且不同的光照条件会对金属表面的反射和阴影产生显著影响,当前固定的阈值选择方式难以适应这种复杂多变的识别环境,影响当前人工智能领域中表面缺陷的识别效果,故提出了基于改进Otsu算法的金属器件镀锌表面缺陷识别方法。首先,针对金属器件镀锌表面图像,根据结构张量提取图像的轮廓信息,利用Itti模型提取图像颜色和亮度信息,并分别生成各通道显著图。经规范化处理后,通过线性组合构成视觉显著图,用于初步判断图像中是否存在表面缺陷;然后,在常规的Otsu算法中,引入二阶振荡粒子群优化算法多次调整灰度阈值,利用最优的灰度阈值分割出缺陷区域;最后,利用加权马氏距离表示协方差距离,突出缺陷边缘像素特征,使缺陷兴趣区域更加显著,再采用连通区域标记的方式准确识别表面缺陷。实验结果表明,在金属器件镀锌表面缺陷人工智能识别中,该方法可以准确检索到缺陷区域,识别结果的敏感度和特异性较高。由此可以说明,该方法具有良好的应用效果。 展开更多
关键词 otsu算法 金属器件 镀锌表面 缺陷识别 二阶振荡粒子群优化算法 最优灰度阈值 GABOR小波变换
在线阅读 下载PDF
混沌映射麻雀搜索优化OTSU的图像分割算法
2
作者 余由俊 谢峰 +1 位作者 王成 张大伟 《光学仪器》 2025年第4期25-32,共8页
针对皮肤镜图像病灶分割存在耗时长且过于主观等问题,提出一个改进的麻雀优化算法(improve sparrow search algorithm,ISSA)来优化OTSU阈值分割。算法通过模拟麻雀觅食和反捕食行为的麻雀搜索算法,将图像的类间方差作为适应度函数,在种... 针对皮肤镜图像病灶分割存在耗时长且过于主观等问题,提出一个改进的麻雀优化算法(improve sparrow search algorithm,ISSA)来优化OTSU阈值分割。算法通过模拟麻雀觅食和反捕食行为的麻雀搜索算法,将图像的类间方差作为适应度函数,在种群初始化引入分段线性混沌映射(piecewise linear chaotic map,PWLCM),提高了算法的搜索空间和寻优性能,帮助算法及时跳出局部最优。将本文提出的算法与常用的粒子群优化算法(particle swarm optimizer,PSO)、灰熊优化算法(grey wolf optimizer,GWO)和麻雀搜索算法(sparrow search algorithm,SSA)进行对比,采用皮肤镜图像进行双阈值OTSU分割实验,结果表明,所提出的ISSA不仅在寻优方面有所增强,迭代的次数相比于PSO、GWO和SSA算法也分别减少了92.2%、68.2%和41.7%,运行时间减少了66.4%、43.4%和21.1%,证明了该算法的可行性。 展开更多
关键词 图像分割 麻雀搜索算法 otsu算法 PWLCM混沌映射 皮肤镜图像
在线阅读 下载PDF
Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images
3
作者 Shuang Kang Yinchao He +1 位作者 Wenwen Li Sen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第10期933-949,共17页
To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morpho... To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method. 展开更多
关键词 Morphological enhancement improved otsu algorithm infrared image grayscale inversion adaptive iterative thresholding
在线阅读 下载PDF
基于改进Otsu算法的原油蒸馏塔金属腐蚀小目标检测仿真 被引量:1
4
作者 李英波 刘凤花 李娜 《金属功能材料》 2025年第1期87-91,共5页
受到光照条件以及背景复杂度等多种因素的影响,金属腐蚀区域与背景区域混合,待检测区域较大,导致腐蚀检测质量不佳,信噪比较高,对此,提出基于改进Otsu算法的原油蒸馏塔金属腐蚀小目标检测方法。采用二维函数,对图像亮度进行描述,结合双... 受到光照条件以及背景复杂度等多种因素的影响,金属腐蚀区域与背景区域混合,待检测区域较大,导致腐蚀检测质量不佳,信噪比较高,对此,提出基于改进Otsu算法的原油蒸馏塔金属腐蚀小目标检测方法。采用二维函数,对图像亮度进行描述,结合双边滤波算法提取出光照分量,引入伽马因子以及亮度均值,对光照分量进行校正。在原有分割标准的基础上,加入颜色特征与以及纹理特征参数,结合类间方差构建出分割阈值,从而实现金属腐蚀区域与背景区域的分离处理。将金属区域分割结果划分为不同的子单元,结合疑似腐蚀检验系数对每个子单元进行判断,通过迭代,更新腐蚀区域聚类中心,结合光照分量,输出腐蚀区域检测结果。仿真结果表明,该方法应用后,金属腐蚀图像处理信噪比更高,可以在每个单元下识别出重度腐蚀区域,并具备更为精准的检测效果。 展开更多
关键词 蒸馏塔 金属腐蚀图像 检测方法 OSTU算法 聚类中心 分割阈值
原文传递
基于改进麻雀搜索算法的二维Otsu多阈值分割 被引量:1
5
作者 黄聪 《岳阳职业技术学院学报》 2025年第1期78-82,共5页
本文针对现有二维Otsu多阈值分割方法存在的分割精度较低、分割速率较慢等问题,提出了一种基于改进麻雀搜索算法的二维Otsu多阈值分割方法。在初始化阶段,引入Logistic混沌映射增强种群的多样性;在局部搜索阶段,分别应用莱维飞行策略、... 本文针对现有二维Otsu多阈值分割方法存在的分割精度较低、分割速率较慢等问题,提出了一种基于改进麻雀搜索算法的二维Otsu多阈值分割方法。在初始化阶段,引入Logistic混沌映射增强种群的多样性;在局部搜索阶段,分别应用莱维飞行策略、柯西变异策略更新麻雀种群中发现者和加入者的位置,以解决种群陷入局部最优的问题;最后,通过改进麻雀搜索算法求解二维Otsu算法的分割阈值。在BSDS500分割数据集上与5种群体智能优化算法优化的二维Otsu算法进行全面比较,在结构相似性和计算效率2个量化指标上的综合实验结果表明:该方法在分割精度和计算效率方面明显优于相比较的其他5种方法。 展开更多
关键词 图像分割 二维otsu算法 多阈值 改进麻雀搜索算法
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
6
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
7
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
基于双通道麻雀改进OTSU的FOD分割方法
8
作者 费春国 陈世洪 《计算机科学》 北大核心 2025年第S1期476-482,共7页
在基于图像处理分割机场跑道异物(FOD)的方法中,基于深度学习的方法不能准确感知未经训练的异物。对此,提出基于双通道麻雀改进大津法(OTSU)的分割方法(DS-OTSU)来分割感知异物。该分割方法将麻雀搜索算法与OTSU相结合,在麻雀搜索算法... 在基于图像处理分割机场跑道异物(FOD)的方法中,基于深度学习的方法不能准确感知未经训练的异物。对此,提出基于双通道麻雀改进大津法(OTSU)的分割方法(DS-OTSU)来分割感知异物。该分割方法将麻雀搜索算法与OTSU相结合,在麻雀搜索算法中加入佳点集优化初始种群,同时在双通道中分别加入正反两个方向的扰动,从而改变麻雀搜索算法目标函数的计算方法,通过加入双重动态的萤火虫扰动改变种群更新方式,将双通道的运行结果进行对比融合,将原本只能单阈值分割图像的OTSU优化为可以分割阈值段的方法,滤除图像背景部分,最终得到FOD的分割结果。实验分析表明,所提方法在分割精度和收敛速度上均优于其他方法。 展开更多
关键词 阈值分割 otsu 机场跑道异物 麻雀搜索算法 萤火虫扰动
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
9
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于OTSU CCA的杂波图检测器设计
10
作者 黄勇 魏子钦 《集成电路与嵌入式系统》 2025年第1期56-60,共5页
对于常规的雷达目标杂波图检测技术来说,每一个方位距离单元的背景功率水平估计是通过该分辨单元内连续扫描周期样本的递归更新来得到的,然而,当该分辨单元的连续扫描周期样本中存在大量干扰目标样本时,这种估计方法失效。对此,本文将... 对于常规的雷达目标杂波图检测技术来说,每一个方位距离单元的背景功率水平估计是通过该分辨单元内连续扫描周期样本的递归更新来得到的,然而,当该分辨单元的连续扫描周期样本中存在大量干扰目标样本时,这种估计方法失效。对此,本文将空域恒虚警中的样本筛选技术借鉴到时域恒虚警中,设计了一种基于OTSU CCA的杂波图检测器,通过剔除连续扫描周期样本中可能存在的干扰目标样本来提高背景功率水平估计的准确性,进而提升杂波图的检测性能。 展开更多
关键词 杂波图 时域CFAR otsu CCA
在线阅读 下载PDF
一种基于OTSU的修正CCA-CFAR检测器
11
作者 黄勇 魏子钦 秦天慈 《火力与指挥控制》 北大核心 2025年第7期50-54,共5页
CCA-CFAR检测器是一种适用于多目标环境的自适应CFAR检测器,但是当干扰目标数量较多时,该检测器的干扰目标删除方法失效。对此,提出了一种基于OTSU的修正CCA-CFAR检测器。该检测器利用OTSU算法去除大部分干扰目标,之后再利用CCA算法进... CCA-CFAR检测器是一种适用于多目标环境的自适应CFAR检测器,但是当干扰目标数量较多时,该检测器的干扰目标删除方法失效。对此,提出了一种基于OTSU的修正CCA-CFAR检测器。该检测器利用OTSU算法去除大部分干扰目标,之后再利用CCA算法进一步去除可能存在的剩余干扰目标。仿真分析表明,修正后的CCA-CFAR检测器在干扰目标数量较多的情况下仍能获得较好的检测性能。 展开更多
关键词 CCA-CFAR otsu 自适应CFAR 多目标环境 雷达目标检测
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
12
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
一种基于OTSU自适应阈值分割的含噪图像边缘检测算法
13
作者 王静静 王洪君 《电子制作》 2025年第11期42-45,共4页
针对实际应用中传统边缘检测算法对含噪图像边缘检测效果不佳的问题,本文提出了一种基于OTSU自适应阈值的含噪图像边缘检测算法。该算法对滤波方式和阈值的选取做了考量,将传统的Canny算法中使用的高斯滤波替换成改进的中值滤波,其次,... 针对实际应用中传统边缘检测算法对含噪图像边缘检测效果不佳的问题,本文提出了一种基于OTSU自适应阈值的含噪图像边缘检测算法。该算法对滤波方式和阈值的选取做了考量,将传统的Canny算法中使用的高斯滤波替换成改进的中值滤波,其次,使用了最大类间方差OTSU自适应选取分割阈值,先通过改进的中值滤波算法去除一部分颗粒噪声并最大限度保留边缘,再用DoG算子提取图像的边缘信息,最后用计算出的自适应阈值分割边缘图像得到最终的二值化边缘检测图像。实验结果表明,相比于传统算法,本算法对含噪图像的边缘检测准确率较高,且具有良好的抗噪性能。 展开更多
关键词 otsu 自适应阈值 含噪图像 边缘检测
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
14
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于OTSU最大类间方差法的纤维图像分割算法
15
作者 孙玉民 钟正欣 +1 位作者 朱嘉恺 马竞赛 《软件》 2025年第9期110-112,共3页
本文详细阐述了基于OTSU最大类间方差法的纤维图像分割技术,并对其在实际应用中的性能进行了评估。OTSU算法作为一种自适应阈值分割方法,通过寻找最优阈值,能够自动将纤维图像中的前景与背景分离,有效减少了人工干预的需求。算法的核心... 本文详细阐述了基于OTSU最大类间方差法的纤维图像分割技术,并对其在实际应用中的性能进行了评估。OTSU算法作为一种自适应阈值分割方法,通过寻找最优阈值,能够自动将纤维图像中的前景与背景分离,有效减少了人工干预的需求。算法的核心在于最大化类间方差,从而实现图像分割的最佳效果。结合形态学操作,该算法在处理纤维图像中的空洞、噪点以及细节保留方面表现出色,提高了图像分割的质量。实验结果表明,该算法不仅适用于羊毛、羊绒等常见纤维材质的图像分割,在多种复杂纤维图像处理中也展现出了良好的稳定性和适应性。本研究为纤维图像分析领域的进一步发展提供了有益的参考和可靠的技术支持。 展开更多
关键词 otsu算法 纤维图像分割 自适应阈值 形态学操作 图像处理
在线阅读 下载PDF
基于Otsu算法的火烧迹地快速提取研究
16
作者 郑增方 《绿色科技》 2025年第8期181-185,共5页
森林火灾严重威胁生命财产安全,准确提取火烧迹地对灾后生态环境评估与恢复具有重要意义。以2021年四川省冕宁县的典型森林火灾为研究对象,基于google earth engine(GEE)云平台获取火灾前后的Sentinel-2卫星数据,采用归一化烧毁指数(dN... 森林火灾严重威胁生命财产安全,准确提取火烧迹地对灾后生态环境评估与恢复具有重要意义。以2021年四川省冕宁县的典型森林火灾为研究对象,基于google earth engine(GEE)云平台获取火灾前后的Sentinel-2卫星数据,采用归一化烧毁指数(dNBR)结合Otsu算法快速提取火烧迹地,并利用数学形态学原理优化识别结果,以进一步提升识别精度并评估该方法的适用性。结果表明,基于Otsu算法的火烧迹地识别总体精度为0.93,Kappa系数为0.85;优化后识别总体精度提高至0.94,Kappa系数升至0.88。优化后提取的过火面积与目视解译结果的误差仅为-5.74 hm^(2)。Otsu算法能够有效识别研究区的火烧迹地范围,且提取结果与目视解译高度吻合,优化处理后识别精度进一步提高。本研究可为火烧迹地的遥感提取提供一种合理且高效的方法。 展开更多
关键词 火烧迹地 大津算法 形态学优化 哨兵2号 dNBR
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
17
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
18
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Optimal performance design of bat algorithm:An adaptive multi-stage structure
19
作者 Helong Yu Jiuman Song +4 位作者 Chengcheng Chen Ali Asghar Heidari Yuntao Ma Huiling Chen Yudong Zhang 《CAAI Transactions on Intelligence Technology》 2025年第3期755-814,共60页
The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally opti... The bat algorithm(BA)is a metaheuristic algorithm for global optimisation that simulates the echolocation behaviour of bats with varying pulse rates of emission and loudness,which can be used to find the globally optimal solutions for various optimisation problems.Knowing the recent criticises of the originality of equations,the principle of BA is concise and easy to implement,and its mathematical structure can be seen as a hybrid particle swarm with simulated annealing.In this research,the authors focus on the performance optimisation of BA as a solver rather than discussing its originality issues.In terms of operation effect,BA has an acceptable convergence speed.However,due to the low proportion of time used to explore the search space,it is easy to converge prematurely and fall into the local optima.The authors propose an adaptive multi-stage bat algorithm(AMSBA).By tuning the algorithm's focus at three different stages of the search process,AMSBA can achieve a better balance between exploration and exploitation and improve its exploration ability by enhancing its performance in escaping local optima as well as maintaining a certain convergence speed.Therefore,AMSBA can achieve solutions with better quality.A convergence analysis was conducted to demonstrate the global convergence of AMSBA.The authors also perform simulation experiments on 30 benchmark functions from IEEE CEC 2017 as the objective functions and compare AMSBA with some original and improved swarm-based algorithms.The results verify the effectiveness and superiority of AMSBA.AMSBA is also compared with eight representative optimisation algorithms on 10 benchmark functions derived from IEEE CEC 2020,while this experiment is carried out on five different dimensions of the objective functions respectively.A balance and diversity analysis was performed on AMSBA to demonstrate its improvement over the original BA in terms of balance.AMSBA was also applied to the multi-threshold image segmentation of Citrus Macular disease,which is a bacterial infection that causes lesions on citrus trees.The segmentation results were analysed by comparing each comparative algorithm's peak signal-to-noise ratio,structural similarity index and feature similarity index.The results show that the proposed BA-based algorithm has apparent advantages,and it can effectively segment the disease spots from citrus leaves when the segmentation threshold is at a low level.Based on a comprehensive study,the authors think the proposed optimiser has mitigated the main drawbacks of the BA,and it can be utilised as an effective optimisation tool. 展开更多
关键词 bat-inspired algorithm Citrus Macular disease global optimization multi-threshold image segmentation otsu algorithm
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部