期刊文献+
共找到283,948篇文章
< 1 2 250 >
每页显示 20 50 100
基于改进Otsu算法的轴承图像阈值分割方法
1
作者 赵宇航 吴超华 +2 位作者 王鑫 张晟琦 史晓亮 《机电工程》 北大核心 2026年第1期34-44,共11页
针对轴承装配后质检时,工业相机采集到的图像存在混合噪声和背光源过曝,导致图像分割精度不高、影响后续处理的问题,提出了一种基于多特征感知与贝叶斯优化的改进大津算法(Otsu)的轴承图像阈值分割方法。首先,在图像感知层面,读取、计... 针对轴承装配后质检时,工业相机采集到的图像存在混合噪声和背光源过曝,导致图像分割精度不高、影响后续处理的问题,提出了一种基于多特征感知与贝叶斯优化的改进大津算法(Otsu)的轴承图像阈值分割方法。首先,在图像感知层面,读取、计算了图像的灰度值、梯度幅值、局部二值模型并完成了储存,对三特征数据分别进行了归一化处理,加权融合了三特征数据,得到了轴承图像的加权融合图;然后,在计算效率层面,引入了贝叶斯优化与分块动态规划方法,替代了Otsu的穷举法;最后,结合感知方法与加速方法,得到了一种基于多特征感知与贝叶斯优化的改进Otsu算法(MFB-Otsu),并与其他阈值分割算法进行了性能对比实验。研究结果表明:与Otsu算法、自适应分割算法对比,MFB-Otsu算法在保留了轴承图像全局亮度分布的基础上,强化了外轮廓边缘,抑制了边缘噪声,输出图像边缘平滑,背景与前景彻底分离;在实测边缘提取中,边缘信息保留完整,噪点干扰率相较于Otsu降低了55%;在客观图像评价指标方面,该算法的分割准确率、交并比、F1值分别达到0.997、0.989、0.994,优于Otsu算法和自适应分割算法;在计算效率层面,相较于Otsu提高了12.9%。改进Otsu算法在轴承尺寸检测中表现出良好的通用性与稳定性,具有一定的工程应用价值。 展开更多
关键词 轴承装配 图像处理 图像分割 大津算法 多特征感知和贝叶斯优化 otsu加速方法 三维度特征加权 分块动态优化
在线阅读 下载PDF
基于改进PSO-OTSU的图像分割算法研究
2
作者 吕途 陈一言 +1 位作者 段豪 韩伟 《技术与市场》 2026年第1期13-17,共5页
为解决传统阈值分割方法(最大类间方差法)在图像阈值分割中存在空间和时间复杂度高、实时性差的问题,提出了一种改进惯性权重的粒子群优化(particle swarm optimization,PSO)算法与传统最大类间方差法(OTSU)相结合的图像阈值分割算法。... 为解决传统阈值分割方法(最大类间方差法)在图像阈值分割中存在空间和时间复杂度高、实时性差的问题,提出了一种改进惯性权重的粒子群优化(particle swarm optimization,PSO)算法与传统最大类间方差法(OTSU)相结合的图像阈值分割算法。为了证明提出的方法对图像分割的效果相较于传统OTSU更优,通过MATLAB软件平台搭建仿真模型,将该算法和传统算法对同一组图片进行单阈值和二阈值阈值分割,将二者的分割结果(运行时间、峰值信噪比、平均结构相似性指数)进行对比。结果表明:该方法相较于传统阈值分割方法阈值分割的运行时间更短、峰值信噪比(peak signal-to-noise ratio,PSNR)更大和平均结构相似性指数(mean structural similarity index,MSSIM)值更接近于1。可见,此本文提出的算法相较于传统算法能够更快更优地对图像进行分割,有效解决了传统方法空间和时间复杂度高、实时性差的问题。 展开更多
关键词 最大类间方差法(otsu) 改进惯性权重 粒子群优化(PSO)算法 峰值信噪比(PSNR) 平均结构相似性指数(MSSIM)
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
3
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
4
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
5
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
6
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
7
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
基于改进Otsu和模糊增强算法的电力设备红外图像增强
8
作者 万一凡 王昕 《控制工程》 北大核心 2026年第1期185-192,共8页
为了解决电力设备红外图像的对比度低、信噪比低、边缘不清晰等问题,提出了一种新的非下采样剪切波变换(non-subsampled shearlet transform,NSST)域增强算法。该算法利用NSST将电力设备红外图像分解为低频子带和高频子带后分别进行处... 为了解决电力设备红外图像的对比度低、信噪比低、边缘不清晰等问题,提出了一种新的非下采样剪切波变换(non-subsampled shearlet transform,NSST)域增强算法。该算法利用NSST将电力设备红外图像分解为低频子带和高频子带后分别进行处理。对于低频子带,采用改进的蝴蝶优化算法优化Otsu算法,利用优化后的Otsu算法对低频子带进行分割,实现了设备与背景的精准分离,并对设备部分进行线性增强,对背景部分进行灰度平衡,使得二者的灰度差值变大,对比度增强;对于高频子带,利用自适应阈值划分噪声与弱边缘,并将噪声置零,再利用改进的模糊增强算法增强边缘。最后,通过融合和NSST的逆变换,获得增强后的电力设备红外图像。仿真结果表明,与目前常用的红外图像增强算法相比,所提算法能够有效地提高电力设备红外图像的增强效果,并抑制噪声。 展开更多
关键词 红外图像 NSST 改进蝴蝶优化算法 模糊增强 图像增强
原文传递
基于改进Otsu算法的金属器件镀锌表面缺陷识别方法 被引量:2
9
作者 马栎 冯占荣 《电镀与精饰》 北大核心 2025年第2期46-53,共8页
镀锌表面纹理、颜色以及亮度变化的复杂度往往较高,且不同的光照条件会对金属表面的反射和阴影产生显著影响,当前固定的阈值选择方式难以适应这种复杂多变的识别环境,影响当前人工智能领域中表面缺陷的识别效果,故提出了基于改进Otsu算... 镀锌表面纹理、颜色以及亮度变化的复杂度往往较高,且不同的光照条件会对金属表面的反射和阴影产生显著影响,当前固定的阈值选择方式难以适应这种复杂多变的识别环境,影响当前人工智能领域中表面缺陷的识别效果,故提出了基于改进Otsu算法的金属器件镀锌表面缺陷识别方法。首先,针对金属器件镀锌表面图像,根据结构张量提取图像的轮廓信息,利用Itti模型提取图像颜色和亮度信息,并分别生成各通道显著图。经规范化处理后,通过线性组合构成视觉显著图,用于初步判断图像中是否存在表面缺陷;然后,在常规的Otsu算法中,引入二阶振荡粒子群优化算法多次调整灰度阈值,利用最优的灰度阈值分割出缺陷区域;最后,利用加权马氏距离表示协方差距离,突出缺陷边缘像素特征,使缺陷兴趣区域更加显著,再采用连通区域标记的方式准确识别表面缺陷。实验结果表明,在金属器件镀锌表面缺陷人工智能识别中,该方法可以准确检索到缺陷区域,识别结果的敏感度和特异性较高。由此可以说明,该方法具有良好的应用效果。 展开更多
关键词 otsu算法 金属器件 镀锌表面 缺陷识别 二阶振荡粒子群优化算法 最优灰度阈值 GABOR小波变换
在线阅读 下载PDF
基于改进Otsu和双直方图均衡化的红外图像增强算法
10
作者 张弢 陶荣蕊 任帅 《红外技术》 北大核心 2025年第12期1548-1558,共11页
由于红外图像增强算法中存在欠增强、过增强、边缘细节增强效果差等缺陷,为在改善红外图像视觉效果、突出图像细节信息的同时避免上述缺陷,本文提出Otsu算法和双区域直方图均衡结合的红外图像的增强算法。首先基于教与学搜索策略和精英... 由于红外图像增强算法中存在欠增强、过增强、边缘细节增强效果差等缺陷,为在改善红外图像视觉效果、突出图像细节信息的同时避免上述缺陷,本文提出Otsu算法和双区域直方图均衡结合的红外图像的增强算法。首先基于教与学搜索策略和精英反向学习策略改进布谷鸟算法,以搜索到图像最优分割阈值。然后基于Otsu算法将红外图像分割为前景区域和背景区域。最后分别对前景区域进行局部直方图均衡化增强,对背景区域使用限制对比度直方图均衡化增强,并将两区域拼接得到增强图像。本文基于FLIR红外数据集进行实验,并与传统直方图均衡、双直方图均衡、限制对比度的自适应直方图均衡和现有基于K-Means算法的双直方图均衡四种算法相比较。实验结果表明,本文算法增强结果在主观上视觉效果更佳,且增强后两幅图像的信息熵、平均梯度、峰值信噪比和空间频率4个性能指标的平均值相较于原图像分别提升了1.2396、2.6046、7.1581和6.3042。最后使用4个基准函数对本文改进布谷鸟搜索算法性能进行检测,对于不同特征的基准函数,本文算法收敛速度与求解精度都有提升。综上,本文算法在红外图像增强领域具有一定优势。 展开更多
关键词 红外图像增强 布谷鸟算法 教与学搜索策略 大津算法 直方图均衡化
在线阅读 下载PDF
Dynamic threshold for SPWVD parameter estimation based on Otsu algorithm 被引量:11
11
作者 Ning Ma Jianxin Wang 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第6期919-924,共6页
Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estima... Time-frequency-based methods are proven to be effective for parameter estimation of linear frequency modulation (LFM) signals. The smoothed pseudo Winger-Ville distribution (SPWVD) is used for the parameter estimation of multi-LFM signals, and a method of the SPWVD binarization by a dynamic threshold based on the Otsu algorithm is proposed. The proposed method is effective in the demand for the estimation of different parameters and the unknown signal-to-noise ratio (SNR) circumstance. The performance of this method is confirmed by numerical simulation. 展开更多
关键词 parameter estimation smoothed pseudo Winger-Ville distribution (SPWVD) dynamic threshold otsu algorithm
在线阅读 下载PDF
A Local Contrast Fusion Based 3D Otsu Algorithm for Multilevel Image Segmentation 被引量:13
12
作者 Ashish Kumar Bhandari Arunangshu Ghosh Immadisetty Vinod Kumar 《IEEE/CAA Journal of Automatica Sinica》 EI CSCD 2020年第1期200-213,共14页
To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level ... To overcome the shortcomings of 1 D and 2 D Otsu’s thresholding techniques, the 3 D Otsu method has been developed.Among all Otsu’s methods, 3 D Otsu technique provides the best threshold values for the multi-level thresholding processes. In this paper, to improve the quality of segmented images, a simple and effective multilevel thresholding method is introduced. The proposed approach focuses on preserving edge detail by computing the 3 D Otsu along the fusion phenomena. The advantages of the presented scheme include higher quality outcomes, better preservation of tiny details and boundaries and reduced execution time with rising threshold levels. The fusion approach depends upon the differences between pixel intensity values within a small local space of an image;it aims to improve localized information after the thresholding process. The fusion of images based on local contrast can improve image segmentation performance by minimizing the loss of local contrast, loss of details and gray-level distributions. Results show that the proposed method yields more promising segmentation results when compared to conventional1 D Otsu, 2 D Otsu and 3 D Otsu methods, as evident from the objective and subjective evaluations. 展开更多
关键词 1D otsu 2D otsu 3D otsu image fusion local contrast multi-level image segmentation
在线阅读 下载PDF
Image Segmentation of Brain MR Images Using Otsu’s Based Hybrid WCMFO Algorithm 被引量:6
13
作者 A.Renugambal K.Selva Bhuvaneswari 《Computers, Materials & Continua》 SCIE EI 2020年第8期681-700,共20页
In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid betwee... In this study,a novel hybrid Water Cycle Moth-Flame Optimization(WCMFO)algorithm is proposed for multilevel thresholding brain image segmentation in Magnetic Resonance(MR)image slices.WCMFO constitutes a hybrid between the two techniques,comprising the water cycle and moth-flame optimization algorithms.The optimal thresholds are obtained by maximizing the between class variance(Otsu’s function)of the image.To test the performance of threshold searching process,the proposed algorithm has been evaluated on standard benchmark of ten axial T2-weighted brain MR images for image segmentation.The experimental outcomes infer that it produces better optimal threshold values at a greater and quicker convergence rate.In contrast to other state-of-the-art methods,namely Adaptive Wind Driven Optimization(AWDO),Adaptive Bacterial Foraging(ABF)and Particle Swarm Optimization(PSO),the proposed algorithm has been found to be better at producing the best objective function,Peak Signal-to-Noise Ratio(PSNR),Standard Deviation(STD)and lower computational time values.Further,it was observed thatthe segmented image gives greater detail when the threshold level increases.Moreover,the statistical test result confirms that the best and mean values are almost zero and the average difference between best and mean value 1.86 is obtained through the 30 executions of the proposed algorithm.Thus,these images will lead to better segments of gray,white and cerebrospinal fluid that enable better clinical choices and diagnoses using a proposed algorithm. 展开更多
关键词 Hybrid WCMFO algorithm otsu’s function multilevel thresholding image segmentation brain MR image
在线阅读 下载PDF
Automated retinal blood vessels segmentation based on simplified PCNN and fast 2D-Otsu algorithm 被引量:9
14
作者 姚畅 陈后金 《Journal of Central South University》 SCIE EI CAS 2009年第4期640-646,共7页
According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorit... According to the characteristics of dynamic firing in pulse coupled neural network (PCNN) and regional configuration in retinal blood vessel network, a new method combined with simplified PCNN and fast 2D-Otsu algorithm was proposed for automated retinal blood vessels segmentation. Firstly, 2D Gaussian matched filter was used to enhance the retinal images and simplified PCNN was employed to segment the blood vessels by firing neighborhood neurons. Then, fast 2D-Otsu algorithm was introduced to search the best segmentation results and iteration times with less computation time. Finally, the whole vessel network was obtained via analyzing the regional connectivity. Experiments implemented on the public Hoover database indicate that this new method gets a 0.803 5 true positive rate and a 0.028 0 false positive rate on an average. According to the test results, compared with Hoover algorithm and method of PCNN and 1D-Otsu, the proposed method shows much better performance. 展开更多
关键词 blood vessel segmentation pulse coupled neural network (PCNN) otsu NEURON
暂未订购
混沌映射麻雀搜索优化OTSU的图像分割算法
15
作者 余由俊 谢峰 +1 位作者 王成 张大伟 《光学仪器》 2025年第4期25-32,共8页
针对皮肤镜图像病灶分割存在耗时长且过于主观等问题,提出一个改进的麻雀优化算法(improve sparrow search algorithm,ISSA)来优化OTSU阈值分割。算法通过模拟麻雀觅食和反捕食行为的麻雀搜索算法,将图像的类间方差作为适应度函数,在种... 针对皮肤镜图像病灶分割存在耗时长且过于主观等问题,提出一个改进的麻雀优化算法(improve sparrow search algorithm,ISSA)来优化OTSU阈值分割。算法通过模拟麻雀觅食和反捕食行为的麻雀搜索算法,将图像的类间方差作为适应度函数,在种群初始化引入分段线性混沌映射(piecewise linear chaotic map,PWLCM),提高了算法的搜索空间和寻优性能,帮助算法及时跳出局部最优。将本文提出的算法与常用的粒子群优化算法(particle swarm optimizer,PSO)、灰熊优化算法(grey wolf optimizer,GWO)和麻雀搜索算法(sparrow search algorithm,SSA)进行对比,采用皮肤镜图像进行双阈值OTSU分割实验,结果表明,所提出的ISSA不仅在寻优方面有所增强,迭代的次数相比于PSO、GWO和SSA算法也分别减少了92.2%、68.2%和41.7%,运行时间减少了66.4%、43.4%和21.1%,证明了该算法的可行性。 展开更多
关键词 图像分割 麻雀搜索算法 otsu算法 PWLCM混沌映射 皮肤镜图像
在线阅读 下载PDF
Research on Defect Detection of Wind Turbine Blades Based on Morphology and Improved Otsu Algorithm Using Infrared Images
16
作者 Shuang Kang Yinchao He +1 位作者 Wenwen Li Sen Liu 《Computers, Materials & Continua》 SCIE EI 2024年第10期933-949,共17页
To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morpho... To address the issues of low accuracy and high false positive rate in traditional Otsu algorithm for defect detection on infrared images of wind turbine blades(WTB),this paper proposes a technique that combines morphological image enhancement with an improved Otsu algorithm.First,mathematical morphology’s differential multi-scale white and black top-hat operations are applied to enhance the image.The algorithm employs entropy as the objective function to guide the iteration process of image enhancement,selecting appropriate structural element scales to execute differential multi-scale white and black top-hat transformations,effectively enhancing the detail features of defect regions and improving the contrast between defects and background.Afterwards,grayscale inversion is performed on the enhanced infrared defect image to better adapt to the improved Otsu algorithm.Finally,by introducing a parameter K to adjust the calculation of inter-class variance in the Otsu method,the weight of the target pixels is increased.Combined with the adaptive iterative threshold algorithm,the threshold selection process is further fine-tuned.Experimental results show that compared to traditional Otsu algorithms and other improvements,the proposed method has significant advantages in terms of defect detection accuracy and reducing false positive rates.The average defect detection rate approaches 1,and the average Hausdorff distance decreases to 0.825,indicating strong robustness and accuracy of the method. 展开更多
关键词 Morphological enhancement improved otsu algorithm infrared image grayscale inversion adaptive iterative thresholding
在线阅读 下载PDF
基于改进Otsu算法的原油蒸馏塔金属腐蚀小目标检测仿真 被引量:1
17
作者 李英波 刘凤花 李娜 《金属功能材料》 2025年第1期87-91,共5页
受到光照条件以及背景复杂度等多种因素的影响,金属腐蚀区域与背景区域混合,待检测区域较大,导致腐蚀检测质量不佳,信噪比较高,对此,提出基于改进Otsu算法的原油蒸馏塔金属腐蚀小目标检测方法。采用二维函数,对图像亮度进行描述,结合双... 受到光照条件以及背景复杂度等多种因素的影响,金属腐蚀区域与背景区域混合,待检测区域较大,导致腐蚀检测质量不佳,信噪比较高,对此,提出基于改进Otsu算法的原油蒸馏塔金属腐蚀小目标检测方法。采用二维函数,对图像亮度进行描述,结合双边滤波算法提取出光照分量,引入伽马因子以及亮度均值,对光照分量进行校正。在原有分割标准的基础上,加入颜色特征与以及纹理特征参数,结合类间方差构建出分割阈值,从而实现金属腐蚀区域与背景区域的分离处理。将金属区域分割结果划分为不同的子单元,结合疑似腐蚀检验系数对每个子单元进行判断,通过迭代,更新腐蚀区域聚类中心,结合光照分量,输出腐蚀区域检测结果。仿真结果表明,该方法应用后,金属腐蚀图像处理信噪比更高,可以在每个单元下识别出重度腐蚀区域,并具备更为精准的检测效果。 展开更多
关键词 蒸馏塔 金属腐蚀图像 检测方法 OSTU算法 聚类中心 分割阈值
原文传递
The Study of Otsu Algorithm Applied in the Measuring of Ash Proportion
18
作者 Weihua Pan Jinghai Wang 《Computer Technology and Application》 2013年第8期410-414,共5页
To further improve the boiler ash ratio detection methods and resource utilization, through image processing technology for boiler ash ratio analysis, the article first studied the one-dimensional Otsu algorithm, and ... To further improve the boiler ash ratio detection methods and resource utilization, through image processing technology for boiler ash ratio analysis, the article first studied the one-dimensional Otsu algorithm, and then for the one-dimensional Otsu algorithm, in order to improve the accuracy of the algorithm, then it puts forward a two-dimensional Otsu algorithm. Finally the two-dimensional Otsu algorithm combined with the one-dimensional Otsu algorithm and the improved Otsu algorithm. By analyzing the improved Otsu algorithm, this paper considers the pixel gray value, neighborhood information, excluding light, noise and the relative efficiency of one-dimensional Otsu algorithm higher accuracy. The relative dimensional Otsu algorithm operating efficiency has been greatly improved. Improved Otsu algorithm in dealing with boiler ash ratio detection has played a very good part in the ecological environment, economic development and some other important aspects. 展开更多
关键词 otsu algorithm PIXELS the grayscale of adjacent regions the ratio of ash and dregs.
在线阅读 下载PDF
基于改进麻雀搜索算法的二维Otsu多阈值分割 被引量:1
19
作者 黄聪 《岳阳职业技术学院学报》 2025年第1期78-82,共5页
本文针对现有二维Otsu多阈值分割方法存在的分割精度较低、分割速率较慢等问题,提出了一种基于改进麻雀搜索算法的二维Otsu多阈值分割方法。在初始化阶段,引入Logistic混沌映射增强种群的多样性;在局部搜索阶段,分别应用莱维飞行策略、... 本文针对现有二维Otsu多阈值分割方法存在的分割精度较低、分割速率较慢等问题,提出了一种基于改进麻雀搜索算法的二维Otsu多阈值分割方法。在初始化阶段,引入Logistic混沌映射增强种群的多样性;在局部搜索阶段,分别应用莱维飞行策略、柯西变异策略更新麻雀种群中发现者和加入者的位置,以解决种群陷入局部最优的问题;最后,通过改进麻雀搜索算法求解二维Otsu算法的分割阈值。在BSDS500分割数据集上与5种群体智能优化算法优化的二维Otsu算法进行全面比较,在结构相似性和计算效率2个量化指标上的综合实验结果表明:该方法在分割精度和计算效率方面明显优于相比较的其他5种方法。 展开更多
关键词 图像分割 二维otsu算法 多阈值 改进麻雀搜索算法
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
20
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部