期刊文献+
共找到284,654篇文章
< 1 2 250 >
每页显示 20 50 100
基于响应面方法与NSGA-Ⅱ的液体静压转台工况参数匹配研究
1
作者 王浩 田学光 +1 位作者 戚厚军 阎兵 《制造技术与机床》 北大核心 2026年第1期222-231,共10页
为提高液体静压转台在多加工场景下的综合性能与适应性,提出了一种基于响应面代理模型与NSGA-Ⅱ多目标遗传算法的工况参数匹配方法。通过建立液体静压转台的流固热耦合仿真模型,并以转台承载力与转台台面变形量为优化目标,设计了四因素... 为提高液体静压转台在多加工场景下的综合性能与适应性,提出了一种基于响应面代理模型与NSGA-Ⅱ多目标遗传算法的工况参数匹配方法。通过建立液体静压转台的流固热耦合仿真模型,并以转台承载力与转台台面变形量为优化目标,设计了四因素三水平的Box-Behnken实验,构建了转台承载力与变形量的响应面代理模型,并采用方差分析与残差诊断方法验证了代理模型的准确性与可靠性。通过参数敏感度与响应面分析方法,发现液体静压转台的承载力主要受供油压力与油膜厚度的线性和交互效应控制,且表现出明显的非线性特征。转台台面变形量不仅受转台转速和油膜厚度主导,还受到多参数交互作用的显著影响。应用NSGA-Ⅱ算法对代理模型进行多目标优化,借助TOPSIS算法对Pareto最优解集进行决策,获得了兼顾高承载力与低变形量的10组最优参数组合,并通过仿真验证了其有效性,为液体静压转台的性能优化提供了一种新的方法,对工程应用具有一定的参考与指导意义。 展开更多
关键词 液体静压转台 参数匹配 响应面方法 nsga-Ⅱ PARETO解集
在线阅读 下载PDF
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
2
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
基于改进NSGA-II算法的钢管混凝土拱桥优化研究
3
作者 汤杰豪 余钱华 《工程建设》 2026年第1期39-45,共7页
为了有效解决大跨径钢管混凝土拱桥多目标优化设计中解集收敛性不足、工程实用性受限的难题,以涂乍河特大桥为工程背景,通过提出一种融合自适应交叉变异算子与动态约束处理机制的改进NSGA-Ⅱ算法,以实现承载力、轻量化与经济性的协同优... 为了有效解决大跨径钢管混凝土拱桥多目标优化设计中解集收敛性不足、工程实用性受限的难题,以涂乍河特大桥为工程背景,通过提出一种融合自适应交叉变异算子与动态约束处理机制的改进NSGA-Ⅱ算法,以实现承载力、轻量化与经济性的协同优化。优化结果表明:主拱圈重量降低12.2%,承载力安全系数提升至1.83;主梁跨中正弯矩减少14.5%,活载挠度降幅达17.8%;综合造价较原方案节约8%。进一步分析算法性能可知,改进NSGA-Ⅱ的Pareto解集收敛性与分布性显著提升(超体积指标HV较传统算法提高22%),且所有优化方案均严格满足规范要求。本文成果可为复杂拱桥结构的多目标优化设计提供理论支撑与工程实践参考。 展开更多
关键词 钢管混凝土拱桥 多目标优化设计 承载力 轻量化 经济性 改进nsga-Ⅱ算法
原文传递
Multi-objective optimal design of asymmetric base-isolated structures using NSGA-Ⅱ algorithm for improving torsional resistance
4
作者 Zhang Jiayu Qi Ai Yang Mianyue 《Earthquake Engineering and Engineering Vibration》 2025年第3期811-825,共15页
Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is... Finding an optimal isolator arrangement for asymmetric structures using traditional conceptual design methods that can significantly minimize torsional response while ensuring efficient horizontal seismic isolation is cumbersome and inefficient.Thus,this work develops a multi-objective optimization method to enhance the torsional resistance of asymmetric base-isolated structures.The primary objective is to simultaneously minimize the interstory rotation of the superstructure,the rotation of the isolation layer,and the interstory displacement of the superstructure without exceeding the isolator displacement limits.A fast non-dominated sorting genetic algorithm(NSGA-Ⅱ)is employed to satisfy this optimization objective.Subsequently,the isolator arrangement,encompassing both positions and categories,is optimized according to this multi-objective optimization method.Additionally,an optimization design platform is developed to streamline the design operation.This platform integrates the input of optimization parameters,the output of optimization results,the finite element analysis,and the multi-objective optimization method proposed herein.Finally,the application of this multi-objective optimization method and its associated platform are demonstrated on two asymmetric base-isolated structures of varying heights and plan configurations.The results indicate that the optimal isolator arrangement derived from the optimization method can further improve the control over the lateral and torsional responses of asymmetric base-isolated structures compared to conventional conceptual design methods.Notably,the interstory rotation of the optimal base-isolated structure is significantly reduced,constituting only approximately 33.7%of that observed in the original base-isolated structure.The proposed platform facilitates the automatic generation of the optimal design scheme for the isolators of asymmetric base-isolated structures,offering valuable insights and guidance for the burgeoning field of intelligent civil engineering design. 展开更多
关键词 asymmetric base-isolated structures isolator arrangement multi-objective optimization nsga-Ⅱalgorithm optimization design platform
在线阅读 下载PDF
Optimization of laser cladding FeMnSiCrNi memory alloy coating process based on response surface model and NSGA-2 algorithm
5
作者 Yu Zhang Guang-lei Liu +4 位作者 Shu-cong Liu Wen-chao Xue Wei-mei Chen Hai-xia Liu Jian-zhong Zhou 《China Foundry》 2025年第3期311-322,共12页
To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synt... To solve the problems of deformation,micro-cracks,and residual tensile stress in laser cladding coatings,the technique of laser cladding with Fe-based memory alloy can be considered.However,the process of in-situ synthesis of Fe-based memory alloy coatings is extremely complex.At present,there is no clear guidance scheme for its preparation process,which limits its promotion and application to some extent.Therefore,in this study,response surface methodology(RSM)was used to model the response surface between the target values and the cladding process parameters.The NSGA-2 algorithm was employed to optimize the process parameters.The results indicate that the composite optimization method consisting of RSM and the NSGA-2 algorithm can establish a more accurate model,with an error of less than 4.5%between the predicted and actual values.Based on this established model,the optimal scheme for process parameters corresponding to different target results can be rapidly obtained.The prepared coating exhibits a uniform structure,with no defects such as pores,cracks,and deformation.The surface roughness and microhardness of the coating are enhanced,the shaping quality of the coating is effectively improved,and the electrochemical corrosion performance of the coating in 3.5%NaCl solution is obviously better than that of the substrate,providing an important guide for engineering applications. 展开更多
关键词 laser cladding shape memory alloy coating response surface method process parameters optimization nsga-2 algorithm
在线阅读 下载PDF
Flood predictions from metrics to classes by multiple machine learning algorithms coupling with clustering-deduced membership degree
6
作者 ZHAI Xiaoyan ZHANG Yongyong +5 位作者 XIA Jun ZHANG Yongqiang TANG Qiuhong SHAO Quanxi CHEN Junxu ZHANG Fan 《Journal of Geographical Sciences》 2026年第1期149-176,共28页
Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting... Accurate prediction of flood events is important for flood control and risk management.Machine learning techniques contributed greatly to advances in flood predictions,and existing studies mainly focused on predicting flood resource variables using single or hybrid machine learning techniques.However,class-based flood predictions have rarely been investigated,which can aid in quickly diagnosing comprehensive flood characteristics and proposing targeted management strategies.This study proposed a prediction approach of flood regime metrics and event classes coupling machine learning algorithms with clustering-deduced membership degrees.Five algorithms were adopted for this exploration.Results showed that the class membership degrees accurately determined event classes with class hit rates up to 100%,compared with the four classes clustered from nine regime metrics.The nonlinear algorithms(Multiple Linear Regression,Random Forest,and least squares-Support Vector Machine)outperformed the linear techniques(Multiple Linear Regression and Stepwise Regression)in predicting flood regime metrics.The proposed approach well predicted flood event classes with average class hit rates of 66.0%-85.4%and 47.2%-76.0%in calibration and validation periods,respectively,particularly for the slow and late flood events.The predictive capability of the proposed prediction approach for flood regime metrics and classes was considerably stronger than that of hydrological modeling approach. 展开更多
关键词 flood regime metrics class prediction machine learning algorithms hydrological model
原文传递
Equivalent Modeling with Passive Filter Parameter Clustering for Photovoltaic Power Stations Based on a Particle Swarm Optimization K-Means Algorithm
7
作者 Binjiang Hu Yihua Zhu +3 位作者 Liang Tu Zun Ma Xian Meng Kewei Xu 《Energy Engineering》 2026年第1期431-459,共29页
This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the compl... This paper proposes an equivalent modeling method for photovoltaic(PV)power stations via a particle swarm optimization(PSO)K-means clustering(KMC)algorithm with passive filter parameter clustering to address the complexities,simulation time cost and convergence problems of detailed PV power station models.First,the amplitude–frequency curves of different filter parameters are analyzed.Based on the results,a grouping parameter set for characterizing the external filter characteristics is established.These parameters are further defined as clustering parameters.A single PV inverter model is then established as a prerequisite foundation.The proposed equivalent method combines the global search capability of PSO with the rapid convergence of KMC,effectively overcoming the tendency of KMC to become trapped in local optima.This approach enhances both clustering accuracy and numerical stability when determining equivalence for PV inverter units.Using the proposed clustering method,both a detailed PV power station model and an equivalent model are developed and compared.Simulation and hardwarein-loop(HIL)results based on the equivalent model verify that the equivalent method accurately represents the dynamic characteristics of PVpower stations and adapts well to different operating conditions.The proposed equivalent modeling method provides an effective analysis tool for future renewable energy integration research. 展开更多
关键词 Photovoltaic power station multi-machine equivalentmodeling particle swarmoptimization K-means clustering algorithm
在线阅读 下载PDF
GSLDWOA: A Feature Selection Algorithm for Intrusion Detection Systems in IIoT
8
作者 Wanwei Huang Huicong Yu +3 位作者 Jiawei Ren Kun Wang Yanbu Guo Lifeng Jin 《Computers, Materials & Continua》 2026年第1期2006-2029,共24页
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from... Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%. 展开更多
关键词 Industrial Internet of Things intrusion detection system feature selection whale optimization algorithm Gaussian mutation
在线阅读 下载PDF
Identification of small impact craters in Chang’e-4 landing areas using a new multi-scale fusion crater detection algorithm
9
作者 FangChao Liu HuiWen Liu +7 位作者 Li Zhang Jian Chen DiJun Guo Bo Li ChangQing Liu ZongCheng Ling Ying-Bo Lu JunSheng Yao 《Earth and Planetary Physics》 2026年第1期92-104,共13页
Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious an... Impact craters are important for understanding the evolution of lunar geologic and surface erosion rates,among other functions.However,the morphological characteristics of these micro impact craters are not obvious and they are numerous,resulting in low detection accuracy by deep learning models.Therefore,we proposed a new multi-scale fusion crater detection algorithm(MSF-CDA)based on the YOLO11 to improve the accuracy of lunar impact crater detection,especially for small craters with a diameter of<1 km.Using the images taken by the LROC(Lunar Reconnaissance Orbiter Camera)at the Chang’e-4(CE-4)landing area,we constructed three separate datasets for craters with diameters of 0-70 m,70-140 m,and>140 m.We then trained three submodels separately with these three datasets.Additionally,we designed a slicing-amplifying-slicing strategy to enhance the ability to extract features from small craters.To handle redundant predictions,we proposed a new Non-Maximum Suppression with Area Filtering method to fuse the results in overlapping targets within the multi-scale submodels.Finally,our new MSF-CDA method achieved high detection performance,with the Precision,Recall,and F1 score having values of 0.991,0.987,and 0.989,respectively,perfectly addressing the problems induced by the lesser features and sample imbalance of small craters.Our MSF-CDA can provide strong data support for more in-depth study of the geological evolution of the lunar surface and finer geological age estimations.This strategy can also be used to detect other small objects with lesser features and sample imbalance problems.We detected approximately 500,000 impact craters in an area of approximately 214 km2 around the CE-4 landing area.By statistically analyzing the new data,we updated the distribution function of the number and diameter of impact craters.Finally,we identified the most suitable lighting conditions for detecting impact crater targets by analyzing the effect of different lighting conditions on the detection accuracy. 展开更多
关键词 impact craters Chang’e-4 landing area multi-scale automatic detection YOLO11 Fusion algorithm
在线阅读 下载PDF
基于改进NSGA-Ⅲ的网络协同制造服务分包方法研究
10
作者 徐汉昌 陈松航 《计算机测量与控制》 2026年第1期134-141,149,共9页
网络协同制造是传统纺织行业转型升级的重要路径,针对核心的服务分包问题,提出了一种基于改进NSGA-Ⅲ的调度优化方法,以订单的生产成本、总完工时间、生产质量、客户满意度和资源利用率为优化目标,建立了网络协同制造模型;在NSGA-Ⅲ算... 网络协同制造是传统纺织行业转型升级的重要路径,针对核心的服务分包问题,提出了一种基于改进NSGA-Ⅲ的调度优化方法,以订单的生产成本、总完工时间、生产质量、客户满意度和资源利用率为优化目标,建立了网络协同制造模型;在NSGA-Ⅲ算法的基础上,结合了SPSA算法,提出一种具有更强局部搜索能力和收敛能力的模型求解算法,并基于层次分析法和熵权法的组合赋权法从Pareto解集中选择最适合的方案;通过标准算例的对比分析,结果显示改进的NSGA-Ⅲ算法在收敛性和解的多样性方面均优于NSGA-Ⅱ和NSGA-Ⅲ算法;通过具体的网络协同制造算例,验证了所提方法的有效性和优越性。 展开更多
关键词 网络协同制造 多目标优化 nsga-Ⅲ 任务调度 纺织行业
在线阅读 下载PDF
基于改进NSGA-Ⅲ算法的区域水资源多目标优化配置
11
作者 王钰浩 《科技创新与应用》 2026年第1期23-27,共5页
为提高第三代非支配排序遗传算法(NSGA-Ⅲ)的计算效率和求解准确度,利用改进参考点、优化筛选策略改进算法形成I-NSGA-Ⅲ算法。以晋中市南部供水区为例,构建的水资源优化配置模型,应用改进算法和TOPSIS求解模型得到配置方案。结果表明,... 为提高第三代非支配排序遗传算法(NSGA-Ⅲ)的计算效率和求解准确度,利用改进参考点、优化筛选策略改进算法形成I-NSGA-Ⅲ算法。以晋中市南部供水区为例,构建的水资源优化配置模型,应用改进算法和TOPSIS求解模型得到配置方案。结果表明,改进的算法综合性能优于NSGA-Ⅲ,能够获得高质量的Pareto解集;规划年来水频率75%下缺水量较大,设置节水情景获得的方案可以显著减少当地的用水和生态环境压力。I-NSGA-Ⅲ算法可为区域水资源多目标优化配置提供参考。 展开更多
关键词 改进nsga-Ⅲ算法 水资源优化配置 多目标模型 TOPSIS 策略优化
在线阅读 下载PDF
NSGA-Ⅱ based traffic signal control optimization algorithm for over-saturated intersection group 被引量:8
12
作者 李岩 过秀成 +1 位作者 陶思然 杨洁 《Journal of Southeast University(English Edition)》 EI CAS 2013年第2期211-216,共6页
In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is prop... In order to improve the efficiency of traffic signal control for an over-saturated intersection group, a nondominated sorting genetic algorithm Ⅱ(NSGA-Ⅱ) based traffic signal control optimization algorithm is proposed. The throughput maximum and average queue ratio minimum for the critical route of the intersection group are selected as the optimization objectives of the traffic signal control for the over-saturated condition. The consequences of the efficiency between traffic signal timing plans generated by the proposed algorithm and a commonly utilized signal timing optimization software Synchro are compared in a VISSIM signal control application programming interfaces (SCAPI) simulation environment by using real filed observed traffic data. The simulation results indicate that the signal timing plan generated by the proposed algorithm is more efficient in managing oversaturated flows at intersection groups, and, thus, it has the capability of optimizing signal timing under the over-saturated conditions. 展开更多
关键词 traffic signal control optimization algorithm intersection group over-saturated status nsga-H algorithm
在线阅读 下载PDF
A^(*)与NSGA-II融合的船舶气象航线多目标规划方法 被引量:1
13
作者 李元奎 索基源 +3 位作者 于东冶 张新宇 杨放 杨雪锋 《中国舰船研究》 北大核心 2025年第3期288-295,共8页
[目的]面向我国智能航运和气象导航国产化的发展要求,提出一种基于A^(*)与非支配排序遗传算法(NSGA-II)融合的船舶多目标航线规划方法,以适应复杂多样的远洋航行任务。[方法]通过将A^(*)算法引入至NSGA-II中引导搜索方向加快算法收敛速... [目的]面向我国智能航运和气象导航国产化的发展要求,提出一种基于A^(*)与非支配排序遗传算法(NSGA-II)融合的船舶多目标航线规划方法,以适应复杂多样的远洋航行任务。[方法]通过将A^(*)算法引入至NSGA-II中引导搜索方向加快算法收敛速度,然后通过构建环境数据模型和目标函数,采用跨太平洋航线对模型和算法进行仿真验证。[结果]仿真结果表明:设计的模型和算法可求解得到分布均匀、多样化的Pareto最优航线解集,所有航线均可以顺利躲避大风浪区域,且可根据决策者需求选择船舶最适航线。[结论]所提方法可用于多约束条件下的船舶远洋航线优化,求解符合航次目标的航线,从而降低营运成本、提高航运效率,对船舶气象导航和未来船舶智能航行具有一定的支撑作用。 展开更多
关键词 气象航线 多目标优化 A^(*)算法 nsga-II 智能航行 遗传算法
在线阅读 下载PDF
基于NSGA-Ⅱ遗传算法的市域快线无砟轨道结构多目标优化 被引量:1
14
作者 冯青松 王龙 +1 位作者 孙魁 李秋义 《铁道标准设计》 北大核心 2025年第1期15-21,共7页
为研究市域快线无砟轨道结构轻量化经济性、列车快速运行安全性协同优化设计问题,利用多体动力学软件Universal Mechanical建立车辆-轨道空间耦合模型,详细分析轨道板长度、宽度、厚度、弹性模量和扣件刚度、扣件间距单独变化时,对市域... 为研究市域快线无砟轨道结构轻量化经济性、列车快速运行安全性协同优化设计问题,利用多体动力学软件Universal Mechanical建立车辆-轨道空间耦合模型,详细分析轨道板长度、宽度、厚度、弹性模量和扣件刚度、扣件间距单独变化时,对市域D型动车以速度160 km/h通过时所引起的轮轨系统动力响应,通过响应面实验得到市域快线无砟轨道钢轨垂向位移响应面模型,并经NAGA-Ⅱ遗传算法进行多目标优化得到最优参数组合。结果表明:通过单因素试验,对钢轨垂向位移影响显著的依次为扣件间距、扣件刚度和轨道板长度;建议在进行市域快线无砟轨道结构设计时将钢轨垂向位移作为关键评价指标;各设计变量对市域快线无砟轨道力学性能影响的主次顺序依次为扣件间距、扣件刚度、轨道板长度、轨道板宽度、轨道板厚度、轨道板弹性模量;推荐设计方案为扣件系统刚度25 kN/mm,扣件间距0.625 m,轨道板长度4.9 m,轨道板宽度2.8 m,轨道板厚度0.26 m,轨道板混凝土等级C40。 展开更多
关键词 市域快线 无砟轨道 响应面法 nsga-Ⅱ遗传算法 多目标优化
在线阅读 下载PDF
基于DNN-NSGA-Ⅱ的高填方加筋边坡参数优化研究
15
作者 查文华 谭雪剑 +3 位作者 许涛 徐源歆 赖斯祾 纪超 《水力发电》 2026年第1期45-51,共7页
以福建某典型高填方加筋边坡为研究对象,提出一种集成深度神经网络(DNN)与非支配排序遗传算法(NSGA-Ⅱ)的智能化优化设计方法,用于实现高填方加筋边坡支护设计的多目标协同优化。首先,通过有限元模拟生成样本数据,构建以关键设计参数为... 以福建某典型高填方加筋边坡为研究对象,提出一种集成深度神经网络(DNN)与非支配排序遗传算法(NSGA-Ⅱ)的智能化优化设计方法,用于实现高填方加筋边坡支护设计的多目标协同优化。首先,通过有限元模拟生成样本数据,构建以关键设计参数为输入、稳定性响应指标为输出的DNN代理模型;随后,将该代理模型嵌入NSGA-Ⅱ框架,实现以最小化水平位移、加筋材料用量与最大化安全系数为目标的多目标寻优。通过对Pareto前沿解集的分析与典型方案提取,验证所提方法在兼顾边坡安全性与经济性方面的有效性,可为高填方边坡优化设计提供理论支撑与工程参考。 展开更多
关键词 高填方边坡 加筋设计 多目标优化 深度神经网络 非支配排序遗传算法
在线阅读 下载PDF
基于NSGA-Ⅱ与BP神经网络的复合材料身管结构参数优化
16
作者 孙磊 韩书永 +2 位作者 马梦蹊 王坚 刘宁 《火炮发射与控制学报》 北大核心 2025年第3期115-122,共8页
针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处... 针对复合材料身管结构设计时多个性能指标设计要求,在Isight中集成BP神经网络、Solidworks参数化几何模型及Abaqus有限元仿真模型通过NSGA-Ⅱ遗传算法对多个目标进行优化。优化目标值为身管的一阶固有频率、质量以及复合材料缠绕部位处的身管内壁最大等效应力,复合材料身管三段复合缠绕位置处的金属内衬直径以及复合材料缠绕角度为设计变量。通过BP神经网络建立代理模型,再通过NSGA-Ⅱ遗传算法对多个目标进行优化求解,解得复合材料身管结构参数的Pareto最优解集。通过优化结果可知,采用遗传算法多目标优化生成的Pareto前沿面最优解集分散地较为均匀,优化解集的复合材料身管结构参数方案在刚度、强度和质量方面均有改善,为复合材料身管结构设计和优化提供了参考。 展开更多
关键词 复合材料 多目标结构优化 BP神经网络代理模型 nsga-Ⅱ算法
在线阅读 下载PDF
基于NSGA-Ⅱ算法的数控磨床回转工作台结构优化设计
17
作者 王晓强 徐诗博 +2 位作者 田英健 王彪 陈怡晴 《机床与液压》 北大核心 2025年第16期35-41,共7页
为提高回转工作台的综合性能,提出一种基于NSGA-Ⅱ算法的回转工作台结构优化设计方法。建立回转工作台三维模型,利用ANSYS Workbench对回转工作台静动态特性进行分析,以回转工作台最大变形量、质量和1阶固有频率为评价指标,开展六因素... 为提高回转工作台的综合性能,提出一种基于NSGA-Ⅱ算法的回转工作台结构优化设计方法。建立回转工作台三维模型,利用ANSYS Workbench对回转工作台静动态特性进行分析,以回转工作台最大变形量、质量和1阶固有频率为评价指标,开展六因素五水平正交试验。基于正交试验结果构建其多元回归预测模型,并利用方差分析和正态残差图验证模型的准确性和可靠性。通过NSGA-Ⅱ算法对多元回归模型进行优化,得到帕累托最优前沿。结果表明:当迭代次数为1 600时,Pareto前沿粒子光滑连续,且其性能随迭代次数的增加无明显改善,此时优化效果最好;优化后的回转工作台最大变形量减少了15.3%,质量减少了3.9%,1阶固有频率提高了14.8%,优化后回转工作台的静动态特性得到显著提高,验证了NSGA-Ⅱ算法对于回转工作台尺寸优化的可行性,为回转工作台的结构优化设计提供一种有效且可靠的方法。 展开更多
关键词 回转工作台 尺寸优化 结构设计 nsga-Ⅱ算法 多元回归模型
在线阅读 下载PDF
Improved non-dominated sorting genetic algorithm (NSGA)-II in multi-objective optimization studies of wind turbine blades 被引量:30
18
作者 王珑 王同光 罗源 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2011年第6期739-748,共10页
The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an exa... The non-dominated sorting genetic algorithm (NSGA) is improved with the controlled elitism and dynamic crowding distance. A novel multi-objective optimization algorithm is obtained for wind turbine blades. As an example, a 5 MW wind turbine blade design is presented by taking the maximum power coefficient and the minimum blade mass as the optimization objectives. The optimal results show that this algorithm has good performance in handling the multi-objective optimization of wind turbines, and it gives a Pareto-optimal solution set rather than the optimum solutions to the conventional multi objective optimization problems. The wind turbine blade optimization method presented in this paper provides a new and general algorithm for the multi-objective optimization of wind turbines. 展开更多
关键词 wind turbine multi-objective optimization Pareto-optimal solution non-dominated sorting genetic algorithm nsga)-II
在线阅读 下载PDF
基于NSGA-Ⅲ算法优化低影响开发设施布局去除雨水径流污染的研究 被引量:1
19
作者 钟炜 朱宝乐 《环境污染与防治》 北大核心 2025年第2期137-143,共7页
为解决现有低影响开发(LID)设施不足以应对目前城市内涝频发及雨水径流污染日益严重的问题,提出了一种定量优化布设城市LID设施的算法。在经济成本有限的基础上,以径流控制率和污染物综合去除率为优化目标,径流系数和LID设施布设面积为... 为解决现有低影响开发(LID)设施不足以应对目前城市内涝频发及雨水径流污染日益严重的问题,提出了一种定量优化布设城市LID设施的算法。在经济成本有限的基础上,以径流控制率和污染物综合去除率为优化目标,径流系数和LID设施布设面积为约束条件构建NSGA-Ⅲ算法,该算法能有效获得多个最优的LID设施布设方案,再通过偏好顺序结构评估方法确定优化目标的优先级,获得污染物综合去除率最大的LID设施布设方案。以北方某城市为例,取1、5、30、50年重现期的降雨过程,使用SWMM模型模拟并评估优化方案的效果,优化后的LID布设方案可使雨水年径流总量控制率达到80%以上,雨水峰值流量削减31.8%~66.9%;与现有LID布设方案相比,雨水峰值流量削减12.6%~34.4%,径流量峰值出现明显延后。优化后LID设施布设方案可使研究区域各类污染物的综合削减率均超过70%,对比现有LID布设方案污染物削减41.6%~71.0%。构建的优化算法可为海绵城市规划布设提供技术支持。 展开更多
关键词 雨水径流污染 低影响开发设施 nsga-Ⅲ算法 偏好顺序结构评估 SWMM
在线阅读 下载PDF
基于BP-NSGA-Ⅱ算法的小麦低损脱粒自适应调控方法
20
作者 李骅 吕大伟 +3 位作者 王永健 金诚谦 王立辉 姚聪 《农业机械学报》 北大核心 2025年第11期243-252,共10页
传统小麦收获机无法根据田间环境和作业速度实时调节作业参数,导致其夹带损失率、脱出物含杂率均较高,作业性能较低。本文以久富4LZ-7.0型联合收获机为研究对象,提出了一种基于机器学习算法的小麦低损脱粒自适应控制方法,通过实时监测... 传统小麦收获机无法根据田间环境和作业速度实时调节作业参数,导致其夹带损失率、脱出物含杂率均较高,作业性能较低。本文以久富4LZ-7.0型联合收获机为研究对象,提出了一种基于机器学习算法的小麦低损脱粒自适应控制方法,通过实时监测小麦喂入量和作物特性,动态调整滚筒转速和脱粒间隙,实现低损脱粒。基于离散元仿真和BP神经网络预测不同喂入量和小麦含水率下的脱粒性能。将训练完成的BP神经网络模型作为NSGA-Ⅱ算法寻优的适应度函数,基于BP-NSGA-Ⅱ算法建立滚筒转速和脱粒间隙控制模型,实现了滚筒转速和脱粒间隙自适应调控。将本控制系统脱粒性能与恒参数脱粒装置性能进行比较,验证了本控制模型优越性。田间试验结果表明,在不同喂入量条件下进行小麦收获时,本文设计的脱粒装置性能显著优于恒参数脱粒装置,当前进速度为0.8、1.2、1.6 m/s时夹带损失率和脱出物含杂率分别降低11%、14%、12%和8%、12%、9%。研究结果可为复杂多变田间环境下,小麦等作物低损脱粒技术研究提供参考。 展开更多
关键词 小麦收获机 BP-nsga-Ⅱ算法 自适应调控
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部