Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,th...Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.展开更多
The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is crit...The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms.展开更多
Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk.How-ever,the problem of matching functions between multiple firmwares has not been studied before.This paper proposes a multi...Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk.How-ever,the problem of matching functions between multiple firmwares has not been studied before.This paper proposes a multi-firmware comparison method based on evolutionary algorithms and trusted base points.We first model the multi-firmware comparison as a multi-sequence matching problem.Then,we propose an adaptation function and a population generation method based on trusted base points.Finally,we apply an evolutionary algorithm to find the optimal result.At the same time,we design the similarity of matching results as an evaluation metric to measure the effect of multi-firmware comparison.The experiments show that the proposed method outperforms Bindiff and the string-based method.Precisely,the similarity between the matching results of the proposed method and Bindiff matching results is 61%,and the similarity between the matching results of the proposed method and the string-based method is 62.8%.By sampling and manual verification,the accuracy of the matching results of the proposed method can be about 66.4%.展开更多
Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status ...Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status of land covers in Hung Yen province of Vietnam using Landsat 8 OLI satellite images,a free data source with reasonable spatial and temporal resolution.The results of the study show that all three algorithms presented good classification for five basic types of land cover including Rice land,Water bodies,Perennial vegetation,Annual vegetation,Built-up areas as their overall accuracy and Kappa coefficient were greater than 80%and 0.8,respectively.Among the three algorithms,SVM achieved the highest accuracy as its overall accuracy was 86%and the Kappa coefficient was 0.88.Land cover classification based on the SVM algorithm shows that Built-up areas cover the largest area with nearly 31,495 ha,accounting for more than 33.8%of the total natural area,followed by Rice land and Perennial vegetation which cover an area of over 30,767 ha(33%)and 15,637 ha(16.8%),respectively.Water bodies and Annual vegetation cover the smallest areas with 8,820(9.5%)ha and 6,302 ha(6.8%),respectively.The results of this study can be used for land use management and planning as well as other natural resource and environmental management purposes in the province.展开更多
This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital...This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital intelligence technology rapidly evolves,mainstream media organizations are increasingly leveraging AI-driven empathy algorithms to enhance audience engagement and optimize content delivery.This research employs a mixed-methods approach,combining quantitative analysis of algorithmic performance metrics with qualitative examination of media communication patterns.Through systematic review of 150 academic papers and analysis of data from 12 major media platforms,this study reveals that algorithmic empathy systems can improve emotional resonance by 34.7%and increase audience engagement by 28.3%compared to traditional communication methods.The findings demonstrate that AI algorithms reconstruct media communication logic through three primary pathways:emotional pattern recognition,personalized content curation,and real-time sentiment adaptation.However,the study also identifies significant challenges including algorithmic bias,emotional authenticity concerns,and ethical implications of automated empathy.The research contributes to understanding how mainstream media can leverage AI technology to build high-quality empathetic communication while maintaining journalistic integrity and social responsibility.展开更多
The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level m...The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.展开更多
Recent advancements in artificial intelligence(AI)have shown promising potential for the automated screening and grading of cataracts.However,the different types of visual impairment caused by cataracts exhibit simila...Recent advancements in artificial intelligence(AI)have shown promising potential for the automated screening and grading of cataracts.However,the different types of visual impairment caused by cataracts exhibit similar phenotypes,posing significant challenges for accurately assessing the severity of visual impairment.To address this issue,we propose a dense convolution combined with attention mechanism and multi-level classifier(DAMC_Net)for visual impairment grading.First,the double-attention mechanism is utilized to enable the DAMC_Net to focus on lesions-related regions.Then,a hierarchical multi-level classifier is constructed to enhance the recognition ability in distinguishing the severities of visual impairment,while maintaining a better screening rate for normal samples.In addition,a cost-sensitive method is applied to address the problem of higher false-negative rate caused by the imbalanced dataset.Experimental results demonstrated that the DAMC_Net outperformed ResNet50 and dense convolutional network 121(DenseNet121)models,with sensitivity improvements of 6.0%and 3.4%on the category of mild visual impairment caused by cataracts(MVICC),and 2.1%and 4.3%on the category of moderate to severe visual impairment caused by cataracts(MSVICC),respectively.The comparable performance on two external test datasets was achieved,further verifying the effectiveness and generalizability of the DAMC_Net.展开更多
1000 MPa级高强钢在水电领域的应用已日趋成熟,但国内相应高性能焊材的研发较少,高强度熔敷金属保持低温高韧性是研发难点之一.通过添加Ce元素优化熔敷金属,并利用扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(tr...1000 MPa级高强钢在水电领域的应用已日趋成熟,但国内相应高性能焊材的研发较少,高强度熔敷金属保持低温高韧性是研发难点之一.通过添加Ce元素优化熔敷金属,并利用扫描电子显微镜(scanning electron microscope,SEM)、透射电子显微镜(transmission electron microscope,TEM)、高温激光共聚焦扫描显微镜(confocal laser scanning microscope,CLSM)等微观组织表征方法,研究了Ce含量对1000 MPa级高强钢埋弧焊熔敷金属组织强韧性及组织演变规律的影响.结果表明,Ce含量为0.02%时,抗拉和屈服强度分别提高3.7%和17.2%,此时强韧匹配效果最好,低温冲击韧性整体提升,Ce含量为0.01%时提升最大,-40℃和-60℃环境下分别为24.3%和42.2%.微观组织方面,Ce可细化晶粒,使M-A组元分布更弥散,增强组织韧性;含量为0.04%时会使块状铁素体和针状铁素体尺寸变大、大尺寸晶粒增多,影响抗拉强度.演变机理上,Ce与C协同富集引发晶格畸变促进M-A组元生成,含量为0.02%时使残余奥氏体含量增加,借助相变诱发塑性(transformationinduced plasticity,TRIP)效应提升塑性变形能力,促进下贝氏体转变实现强韧性协同提升;0.04%的Ce则导致晶界偏析加剧,形成含Ce脆性相析出物,降低奥氏体稳定性,使冲击韧性相对于0.02%时劣化.展开更多
As an essential tool for realistic description of the current or future debris environment,the Space Debris Environment Engineering Model(SDEEM)has been developed to provide support for risk assessment of spacecraft.I...As an essential tool for realistic description of the current or future debris environment,the Space Debris Environment Engineering Model(SDEEM)has been developed to provide support for risk assessment of spacecraft.In contrast with SDEEM2015,SDEEM2019,the latest version,extends the orbital range from the Low Earth Orbit(LEO)to Geosynchronous Orbit(GEO)for the years 1958-2050.In this paper,improved modeling algorithms used by SDEEM2019 in propagating simulation,spatial density distribution,and spacecraft flux evaluation are presented.The debris fluxes of SDEEM2019 are compared with those of three typical models,i.e.,SDEEM2015,Orbital Debris Engineering Model 3.1(ORDEM 3.1),and Meteoroid and Space Debris Terrestrial Environment Reference(MASTER-8),in terms of two assessment modes.Three orbital cases,including the Geostationary Transfer Orbit(GTO),Sun-Synchronous Orbit(SSO)and International Space Station(ISS)orbit,are selected for the spacecraft assessment mode,and the LEO region is selected for the spatial density assessment mode.The analysis indicates that compared with previous algorithms,the variable step-size orbital propagating algorithm based on semi-major axis control is more precise,the spatial density algorithm based on the second zonal harmonic of the non-spherical Earth gravity(J_(2))is more applicable,and the result of the position-centered spacecraft flux algorithm is more convergent.The comparison shows that SDEEM2019 and MASTER-8 have consistent trends due to similar modeling processes,while the differences between SDEEM2019 and ORDEM 3.1 are mainly caused by different modeling approaches for uncatalogued debris.展开更多
基金received funding from the Postgraduate Research&Practice Innovation Program of Jiangsu Province(SJCX23_1633)2023 University Student Innovation and Entrepreneurship Training Program(202311463009Z)+1 种基金Changzhou Science and Technology Support Project(CE20235045)Open Project of Jiangsu Key Laboratory of Power Transmission&Distribution Equipment Technology(2021JSSPD12).
文摘Uneven power distribution,transient voltage,and frequency deviations are observed in the photovoltaic storage hybrid inverter during the switching between grid-connected and island modes.In response to these issues,this paper proposes a grid-connected/island switching control strategy for photovoltaic storage hybrid inverters based on the modified chimpanzee optimization algorithm.The proposed strategy incorporates coupling compensation and power differentiation elements based on the traditional droop control.Then,it combines the angular frequency and voltage amplitude adjustments provided by the phase-locked loop-free pre-synchronization control strategy.Precise pre-synchronization is achieved by regulating the virtual current to zero and aligning the photovoltaic storage hybrid inverter with the grid voltage.Additionally,two novel operators,learning and emotional behaviors are introduced to enhance the optimization precision of the chimpanzee algorithm.These operators ensure high-precision and high-reliability optimization of the droop control parameters for photovoltaic storage hybrid inverters.A Simulink model was constructed for simulation analysis,which validated the optimized control strategy’s ability to evenly distribute power under load transients.This strategy effectively mitigated transient voltage and current surges during mode transitions.Consequently,seamless and efficient switching between gridconnected and island modes was achieved for the photovoltaic storage hybrid inverter.The enhanced energy utilization efficiency,in turn,offers robust technical support for grid stability.
文摘The advent of microgrids in modern energy systems heralds a promising era of resilience,sustainability,and efficiency.Within the realm of grid-tied microgrids,the selection of an optimal optimization algorithm is critical for effective energy management,particularly in economic dispatching.This study compares the performance of Particle Swarm Optimization(PSO)and Genetic Algorithms(GA)in microgrid energy management systems,implemented using MATLAB tools.Through a comprehensive review of the literature and sim-ulations conducted in MATLAB,the study analyzes performance metrics,convergence speed,and the overall efficacy of GA and PSO,with a focus on economic dispatching tasks.Notably,a significant distinction emerges between the cost curves generated by the two algo-rithms for microgrid operation,with the PSO algorithm consistently resulting in lower costs due to its effective economic dispatching capabilities.Specifically,the utilization of the PSO approach could potentially lead to substantial savings on the power bill,amounting to approximately$15.30 in this evaluation.Thefindings provide insights into the strengths and limitations of each algorithm within the complex dynamics of grid-tied microgrids,thereby assisting stakeholders and researchers in arriving at informed decisions.This study contributes to the discourse on sustainable energy management by offering actionable guidance for the advancement of grid-tied micro-grid technologies through MATLAB-implemented optimization algorithms.
文摘Multi-firmware comparison techniques can improve efficiency when auditing firmwares in bulk.How-ever,the problem of matching functions between multiple firmwares has not been studied before.This paper proposes a multi-firmware comparison method based on evolutionary algorithms and trusted base points.We first model the multi-firmware comparison as a multi-sequence matching problem.Then,we propose an adaptation function and a population generation method based on trusted base points.Finally,we apply an evolutionary algorithm to find the optimal result.At the same time,we design the similarity of matching results as an evaluation metric to measure the effect of multi-firmware comparison.The experiments show that the proposed method outperforms Bindiff and the string-based method.Precisely,the similarity between the matching results of the proposed method and Bindiff matching results is 61%,and the similarity between the matching results of the proposed method and the string-based method is 62.8%.By sampling and manual verification,the accuracy of the matching results of the proposed method can be about 66.4%.
文摘Based on the Google Earth Engine cloud computing data platform,this study employed three algorithms including Support Vector Machine,Random Forest,and Classification and Regression Tree to classify the current status of land covers in Hung Yen province of Vietnam using Landsat 8 OLI satellite images,a free data source with reasonable spatial and temporal resolution.The results of the study show that all three algorithms presented good classification for five basic types of land cover including Rice land,Water bodies,Perennial vegetation,Annual vegetation,Built-up areas as their overall accuracy and Kappa coefficient were greater than 80%and 0.8,respectively.Among the three algorithms,SVM achieved the highest accuracy as its overall accuracy was 86%and the Kappa coefficient was 0.88.Land cover classification based on the SVM algorithm shows that Built-up areas cover the largest area with nearly 31,495 ha,accounting for more than 33.8%of the total natural area,followed by Rice land and Perennial vegetation which cover an area of over 30,767 ha(33%)and 15,637 ha(16.8%),respectively.Water bodies and Annual vegetation cover the smallest areas with 8,820(9.5%)ha and 6,302 ha(6.8%),respectively.The results of this study can be used for land use management and planning as well as other natural resource and environmental management purposes in the province.
文摘This study investigates how artificial intelligence(AI)algorithms enable mainstream media to achieve precise emotional matching and improve communication efficiency through reconstructed communication logic.As digital intelligence technology rapidly evolves,mainstream media organizations are increasingly leveraging AI-driven empathy algorithms to enhance audience engagement and optimize content delivery.This research employs a mixed-methods approach,combining quantitative analysis of algorithmic performance metrics with qualitative examination of media communication patterns.Through systematic review of 150 academic papers and analysis of data from 12 major media platforms,this study reveals that algorithmic empathy systems can improve emotional resonance by 34.7%and increase audience engagement by 28.3%compared to traditional communication methods.The findings demonstrate that AI algorithms reconstruct media communication logic through three primary pathways:emotional pattern recognition,personalized content curation,and real-time sentiment adaptation.However,the study also identifies significant challenges including algorithmic bias,emotional authenticity concerns,and ethical implications of automated empathy.The research contributes to understanding how mainstream media can leverage AI technology to build high-quality empathetic communication while maintaining journalistic integrity and social responsibility.
文摘The word“spatial”fundamentally relates to human existence,evolution,and activity in terrestrial and even celestial spaces.After reviewing the spatial features of many areas,the paper describes basics of high level model and technology called Spatial Grasp for dealing with large distributed systems,which can provide spatial vision,awareness,management,control,and even consciousness.The technology description includes its key Spatial Grasp Language(SGL),self-evolution of recursive SGL scenarios,and implementation of SGL interpreter converting distributed networked systems into powerful spatial engines.Examples of typical spatial scenarios in SGL include finding shortest path tree and shortest path between network nodes,collecting proper information throughout the whole world,elimination of multiple targets by intelligent teams of chasers,and withstanding cyber attacks in distributed networked systems.Also this paper compares Spatial Grasp model with traditional algorithms,confirming universality of the former for any spatial systems,while the latter just tools for concrete applications.
基金supported by the National Natural Science Foundation of China(Nos.62276210,82201148 and 61775180)the Natural Science Basic Research Program of Shaanxi Province(No.2022JM-380)。
文摘Recent advancements in artificial intelligence(AI)have shown promising potential for the automated screening and grading of cataracts.However,the different types of visual impairment caused by cataracts exhibit similar phenotypes,posing significant challenges for accurately assessing the severity of visual impairment.To address this issue,we propose a dense convolution combined with attention mechanism and multi-level classifier(DAMC_Net)for visual impairment grading.First,the double-attention mechanism is utilized to enable the DAMC_Net to focus on lesions-related regions.Then,a hierarchical multi-level classifier is constructed to enhance the recognition ability in distinguishing the severities of visual impairment,while maintaining a better screening rate for normal samples.In addition,a cost-sensitive method is applied to address the problem of higher false-negative rate caused by the imbalanced dataset.Experimental results demonstrated that the DAMC_Net outperformed ResNet50 and dense convolutional network 121(DenseNet121)models,with sensitivity improvements of 6.0%and 3.4%on the category of mild visual impairment caused by cataracts(MVICC),and 2.1%and 4.3%on the category of moderate to severe visual impairment caused by cataracts(MSVICC),respectively.The comparable performance on two external test datasets was achieved,further verifying the effectiveness and generalizability of the DAMC_Net.
文摘As an essential tool for realistic description of the current or future debris environment,the Space Debris Environment Engineering Model(SDEEM)has been developed to provide support for risk assessment of spacecraft.In contrast with SDEEM2015,SDEEM2019,the latest version,extends the orbital range from the Low Earth Orbit(LEO)to Geosynchronous Orbit(GEO)for the years 1958-2050.In this paper,improved modeling algorithms used by SDEEM2019 in propagating simulation,spatial density distribution,and spacecraft flux evaluation are presented.The debris fluxes of SDEEM2019 are compared with those of three typical models,i.e.,SDEEM2015,Orbital Debris Engineering Model 3.1(ORDEM 3.1),and Meteoroid and Space Debris Terrestrial Environment Reference(MASTER-8),in terms of two assessment modes.Three orbital cases,including the Geostationary Transfer Orbit(GTO),Sun-Synchronous Orbit(SSO)and International Space Station(ISS)orbit,are selected for the spacecraft assessment mode,and the LEO region is selected for the spatial density assessment mode.The analysis indicates that compared with previous algorithms,the variable step-size orbital propagating algorithm based on semi-major axis control is more precise,the spatial density algorithm based on the second zonal harmonic of the non-spherical Earth gravity(J_(2))is more applicable,and the result of the position-centered spacecraft flux algorithm is more convergent.The comparison shows that SDEEM2019 and MASTER-8 have consistent trends due to similar modeling processes,while the differences between SDEEM2019 and ORDEM 3.1 are mainly caused by different modeling approaches for uncatalogued debris.