期刊文献+
共找到280,428篇文章
< 1 2 250 >
每页显示 20 50 100
基于ISSA-BP的地震灾害救援装备需求预测
1
作者 刘浩 石福丽 +2 位作者 罗雷 李文博 李文渊 《中国安全科学学报》 北大核心 2025年第S1期246-251,共6页
为提高地震救援装备调配保障效率,分析国内历史地震救援信息,以受灾人数为预测对象,选取震级、震源深度、地震烈度等8个灾情信息为影响因素,提出一种基于反向传播(BP)神经网络并融合空间金字塔匹配(SPM)混沌映射、正余弦算法和Levy飞行... 为提高地震救援装备调配保障效率,分析国内历史地震救援信息,以受灾人数为预测对象,选取震级、震源深度、地震烈度等8个灾情信息为影响因素,提出一种基于反向传播(BP)神经网络并融合空间金字塔匹配(SPM)混沌映射、正余弦算法和Levy飞行策略的改进麻雀搜索算法(ISSA)的预测模型,结合受灾人数与救援装备间的数量关系,间接预测地震救援装备需求量,并以“12·18积石山地震”救援实例进行验证。结果表明:ISSA-BP模型在预测受灾人数方面精度更高,可有效预测震后受灾人数,从而推算所需救援装备数量。“12·18积石山地震”救援实例验证了模型对震后救援装备需求预测的实用性。 展开更多
关键词 改进麻雀优化算法(issa) 反向传播(BP) 地震灾害 救援装备 需求预测
原文传递
基于ISSA-Transformer的电梯制动力矩预测研究
2
作者 苏万斌 江叶峰 +2 位作者 李科 周振超 易灿灿 《机电工程》 北大核心 2025年第10期2027-2036,共10页
实现电梯制动器力矩的精确预测对确保电梯安全运行和实现预测性维护具有重要的意义。针对曳引式电梯在制动力矩预测方面存在准确性与可靠性不足的问题,以及现有Transformer存在计算复杂度高和训练时间长的局限性,提出了一种基于改进鲸... 实现电梯制动器力矩的精确预测对确保电梯安全运行和实现预测性维护具有重要的意义。针对曳引式电梯在制动力矩预测方面存在准确性与可靠性不足的问题,以及现有Transformer存在计算复杂度高和训练时间长的局限性,提出了一种基于改进鲸沙虫群算法优化Transformer网络(ISSA-Transformer)的电梯制动力矩预测方法。首先,为了提高Transformer的预测精度,在Transformer模型中添加了特征融合门(FFG)以提高模型的特征提取能力,使其能够更有效地捕捉制动力矩的全局与局部特征;然后,利用拉普拉斯交叉算子、混合对立学习方法以及高斯扰动对鲸沙虫群算法(SSA)进行了改进,以增强SSA的搜索能力和全局最优收敛性。并采用ISSA算法优化了Transformer的迭代次数、批次大小和学习率,以提高模型的计算效率并减少训练时间,从而建立了电梯制动器制动力矩的预测模型;最后,对曳引式电梯制动器数据进行了分析,将所得结果与LSTM、Transformer和SSA-Transformer模型进行了比较。研究结果表明:ISSA-Transformer的均方根误差(RMSE)较LSTM、Transformer和SSA-Transformer模型分别降低了0.0318、0.0144和0.0133,用于电梯制动力矩预测的准确率达到了98.7%,相较传统方法具有更高的精度和稳定性。该方法可为电梯的安全评估和预测性维护提供更可靠的技术支持。 展开更多
关键词 曳引式电梯 升降台 电梯制动器 改进鲸沙虫群算法 Transformer网络 特征融合门 均方根误差 长短期记忆网络
在线阅读 下载PDF
Brake Discs Surface Defect Detection Using the IGD-IHT Algorithm and the PIQEDS-ISSA-NESN Algorithm 被引量:1
3
作者 Feng Li Zhen Yu +1 位作者 Juan Gao Qi An 《Instrumentation》 2024年第3期62-73,共12页
As one of the core parts, the brake discs directly impact the braking and safety performance of vehicles. Traditional surface detection methods of the brake disc have poor robustness due to their reliance on manual fe... As one of the core parts, the brake discs directly impact the braking and safety performance of vehicles. Traditional surface detection methods of the brake disc have poor robustness due to their reliance on manual feature extraction. A detection instrument was designed to focus on the detection. The features were extracted using the improved Gaussian difference algorithm and Hough transform algorithm(IGD-IHT). An identification method for brake disc surface defects was designed in this paper based on the Perception-based Image Quality Evaluator and Dempster rule-improved sparrow search algorithm-Nonlinear echo state network(PIQEDS-ISSA-NESN) to better identify. It was shown in the experiment that the accuracy was more than 97%, the false alarm rate was less than 1.5%, and the false alarm rate was less than 1.5%. 展开更多
关键词 surface defectdetection IGD-IHT algorithm PIQEDS-issa-NESN algorithm brake discs
原文传递
基于ISSA-BP神经网络的混凝土声发射定位算法 被引量:1
4
作者 黄振宇 郭涛 时英元 《自动化与仪器仪表》 2025年第1期19-23,共5页
针对现阶段声发射技术在混凝土结构健康检测中由于衰减严重而导致的损伤源精度低问题,提出了一种基于改进麻雀搜索算法来优化BP神经网络(ISSA-BP)用于混凝土声发射定位的方法。首先采用BP人工神经网络作为混凝土声发射定位的基础框架,... 针对现阶段声发射技术在混凝土结构健康检测中由于衰减严重而导致的损伤源精度低问题,提出了一种基于改进麻雀搜索算法来优化BP神经网络(ISSA-BP)用于混凝土声发射定位的方法。首先采用BP人工神经网络作为混凝土声发射定位的基础框架,通过对声发射信号进行小波降噪,并将信号的峰值时间,时间差,能量和幅值作为网络的输入参数,然后利用ISSA对BP神经网络的权重和偏置进行优化。为了验证该方法的有效性采用0.5 mm硬度为2H的铅芯进行断铅实验,实验结果表明所提方法算法比传统BP神经网络和麻雀搜索算法(SSA)优化神经网络在混凝土损伤源声发射定位上平均误差分别减少了43.47%、14.02%,最大误差减少了56.52%、4.41%,最小误差减少了42.82%、72.42%,具有一定的工程应用价值。 展开更多
关键词 issa-BP 声发射定位 混凝土 BP神经网络
原文传递
基于WPD-ISSA-CA-CNN模型的电厂碳排放预测
5
作者 池小波 续泽晋 +1 位作者 贾新春 张伟杰 《控制工程》 北大核心 2025年第8期1387-1394,共8页
碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利... 碳排放的准确预测有利于制定合理的碳减排策略。目前,针对电厂碳排放的研究较少,且传统预测模型训练时间过长。基于此,提出一种分量增广输入的WPD-ISSA-CA-CNN碳排放量预测模型,该模型创新性地构建“分解-增广融合预测”策略。首先,利用小波包分解(wavelet packet decomposition,WPD)算法将信号按频率特性分解为子序列,再将全部分量增广(component augmentation,CA)作为模型输入,以减少模型的训练时间。其次,考虑到该模型超参数选择困难,利用多策略融合的改进麻雀搜索算法(improved sparrow search algorithm,ISSA)对卷积神经网络(convolutional neural networks,CNNs)的超参数进行寻优。以山西某发电厂2×25 MW锅炉的历史数据为样本,利用5种评价指标将所提模型与BP、LSTM、CNN及其混合模型进行对比。结果表明,所提混合模型在预测火力发电碳排放中各指标均有最佳的准确度且模型训练速度明显提升。 展开更多
关键词 碳排放预测 小波包分解 改进麻雀搜索算法 卷积神经网络
原文传递
基于RF-ISSA-SVM和SHAP的疾病诱因可解释性模型——以肥胖症为例
6
作者 马捷 孙文晶 郝志远 《数据分析与知识发现》 北大核心 2025年第9期74-87,共14页
【目的】构建具有可解释性的高质量疾病预测模型,通过识别影响疾病形成的关键诱因,并进一步分析诱因对于疾病的作用方式,从而为辅助诊断和精准医疗提供有力支持。【方法】首先,利用随机森林模型在疾病数据的多维特征中筛选出最具代表性... 【目的】构建具有可解释性的高质量疾病预测模型,通过识别影响疾病形成的关键诱因,并进一步分析诱因对于疾病的作用方式,从而为辅助诊断和精准医疗提供有力支持。【方法】首先,利用随机森林模型在疾病数据的多维特征中筛选出最具代表性的特征子集;其次,通过构建增强型麻雀搜索算法实现支持向量机核参数与惩罚系数的自适应获取;然后,同步应用优化后的支持向量机模型对数据样本进行预测分析,并将该模型与8种基线模型展开对比;最后,借助SHAP解释框架对疾病诱因与疾病形成的作用关系进行量化分析。【结果】以肥胖症为研究对象开展实证研究,所提模型的预测准确率、特异度与马修斯相关系数值分别达到85.5%、83.6%和61.0%,三种指标值均高于其他8组基线模型,证明了该模型的有效性。此外,家族史、蔬菜摄入频率、每日正餐数量、身高、性别、交通工具使用情况与高热量食物摄入情况是影响肥胖症形成的关键因素。【局限】针对肥胖症展开的实证研究无法有效验证模型的泛化性;未对特征变量之间的交互作用进行分析。【结论】本文模型不仅具有较高的预测准确率,还能够分析不同诱因对疾病形成的影响程度和作用方向,所得结论可为医疗机构提供决策支持。 展开更多
关键词 疾病预测 特征选择 可解释性 麻雀搜索算法 支持向量机
原文传递
基于MISSA-IADRC的变桨控制器优化设计
7
作者 胡启国 吴申 +2 位作者 任渝荣 胡豁然 郭军光 《船舶工程》 北大核心 2025年第4期67-75,共9页
[目的]为提高风电机组获取风能和稳定地输出功率的能力,[方法]以海上10 MW中速永磁半直驱型风力发电机组为对象,建立风力发电机组数学模型,以改进后的自抗扰控制器为基础,引入阿诺德(Arnold)映射策略、正余弦函数动态调整策略和逻辑混沌... [目的]为提高风电机组获取风能和稳定地输出功率的能力,[方法]以海上10 MW中速永磁半直驱型风力发电机组为对象,建立风力发电机组数学模型,以改进后的自抗扰控制器为基础,引入阿诺德(Arnold)映射策略、正余弦函数动态调整策略和逻辑混沌-柯西变异扰动策略对多策略改进的麻雀搜索算法(MISSA)进行优化,得到一种新型的变桨控制器。[结果]结果表明:基于改进主动抗干扰控制器的变桨系统优化后风电系统的抗干扰性能和输出功率的稳定性明显提升。[结论]研究成果可为变桨系统控制器的设计提供一定参考。 展开更多
关键词 风电机组 自抗扰控制器 多策略改进 麻雀搜索算法
原文传递
融合ISSA和TA-CapNets的矿井滚动轴承故障诊断方法 被引量:1
8
作者 屈波 张兰峰 +2 位作者 王惠伟 闫明 周超逸 《金属矿山》 北大核心 2025年第4期226-232,共7页
滚动轴承作为矿井设备的核心部件,其运行状态直接关系到矿山生产安全和经济效益。为提升矿井滚动轴承故障诊断的性能,提出了一种融合改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)和时频自适应胶囊网络(Time-Frequency Ada... 滚动轴承作为矿井设备的核心部件,其运行状态直接关系到矿山生产安全和经济效益。为提升矿井滚动轴承故障诊断的性能,提出了一种融合改进麻雀搜索算法(Improved Sparrow Search Algorithm,ISSA)和时频自适应胶囊网络(Time-Frequency Adaptive Capsule Networks,TA-CapNets)的新型诊断方法。首先,通过采集矿井滚动轴承的运行数据,提取出反映轴承健康状况的特征;然后利用ISSA对特征进行优化选择,该算法通过模拟麻雀觅食行为,提高了全局搜索能力和收敛速度;再将优化后的特征输入TA-CapNets中,能够自适应地学习时频特征,有效捕捉轴承故障的动态变化。通过TA-CapNets的输出,结合故障模式识别,实现了对轴承故障的准确诊断。试验结果表明:该方法在故障诊断的准确性和实时性方面均优于传统方法,具有一定的实用价值和推广前景。 展开更多
关键词 矿井滚动轴承 故障诊断 改进麻雀搜索算法 时频自适应胶囊网络
在线阅读 下载PDF
基于SD-ISSA-DALSTM的交通运输业碳排放预测
9
作者 王庆荣 王俊杰 +1 位作者 朱昌锋 郝福乐 《华南理工大学学报(自然科学版)》 北大核心 2025年第5期66-81,共16页
针对交通运输业碳排放数据序列的波动性和非线性影响预测精度的问题,提出了一种结合二次分解、双重注意力机制、改进麻雀搜索算法(ISSA)和长短期记忆(LSTM)网络的交通运输业碳排放预测模型。首先,引入自适应噪声完备集合经验模态分解,... 针对交通运输业碳排放数据序列的波动性和非线性影响预测精度的问题,提出了一种结合二次分解、双重注意力机制、改进麻雀搜索算法(ISSA)和长短期记忆(LSTM)网络的交通运输业碳排放预测模型。首先,引入自适应噪声完备集合经验模态分解,将交通碳排放数据序列分解为不同频率的模态分量,再利用样本熵对各分量复杂度进行量化,并利用变分模态分解对熵值最高的分量进行二次分解,进一步弱化交通碳排放数据序列的波动性和非线性;然后,为挖掘交通碳排放量与其影响因素间的关联性,构建基于双重注意力机制优化的LSTM(DALSTM)模型,在LSTM模型的输入端嵌入特征注意力机制,突出关键输入特征;同时,在输出端嵌入时间注意力机制,提取关键历史时刻信息;最后,结合Circle混沌映射、动态惯性权重因子和混合变异算子策略改进SSA算法,并对各模态分量分别建立ISSA-DALSTM模型,接着对各模态分量预测值进行重构。用所测算的中国交通运输业1990—2019年碳排放数据来对模型进行验证,结果表明,所提模型的均方根误差、均方误差、平均绝对百分比误差分别为5.3088、3.5661、0.4439,均优于其他对比模型,验证了所提模型的有效性。 展开更多
关键词 交通运输业 碳排放预测 二次分解 双重注意力机制 改进麻雀搜索算法
在线阅读 下载PDF
基于P-ISSA-GRU模型的养殖水体溶解氧含量预测
10
作者 李敬民 陈斯 +1 位作者 唐海晨 杨增汪 《江苏农业学报》 北大核心 2025年第9期1781-1790,共10页
为了解决养殖水体溶解氧(DO)含量预测精度低的难题,本研究提出了一种基于改进的麻雀搜索算法(ISSA)优化门控循环单元(GRU)的养殖水体溶解氧含量预测模型(P-ISSA-GRU)。通过皮尔逊(Pearson)相关系数法确定水质中各种因子与溶解氧含量的... 为了解决养殖水体溶解氧(DO)含量预测精度低的难题,本研究提出了一种基于改进的麻雀搜索算法(ISSA)优化门控循环单元(GRU)的养殖水体溶解氧含量预测模型(P-ISSA-GRU)。通过皮尔逊(Pearson)相关系数法确定水质中各种因子与溶解氧含量的相关系数,选取强关联因子为模型输入特征;通过引入Tent混沌映射改进种群初始化,自适应动态权重因子ω动态改变权重系数以及高斯扰动(GP)改进最优位置更新,增强了麻雀搜索算法(SSA)在寻找全局最优解和局部最优解的能力,加快了其收敛速度;通过ISSA优化GRU网络,进行模型参数的优化搜索,构建了非线性溶解氧含量预测模型(P-ISSA-GRU)。试验结果表明,P-ISSA-GRU模型与其他5个常用的模型相比显示出更好的预测效果,均方误差(MSE)为0.152(mg/L)^(2)、平均绝对误差(MAE)为0.311 mg/L、均方根误差(RMSE)为0.390 mg/L、决定系数(R^(2))为0.984。因此,本研究建立的P-ISSA-GRU模型与传统模型相比在一定程度上提高了对养殖水体溶解氧含量的预测性能。 展开更多
关键词 溶解氧含量预测 皮尔逊相关系数 改进的麻雀搜索算法(issa) 门控循环单元(GRU)
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
11
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
13
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
14
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
15
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于ISSA-SVR模型的管道腐蚀速率预测 被引量:3
16
作者 刘军衡 唐海光 +2 位作者 付军 朱瑞 陈良超 《热加工工艺》 北大核心 2025年第4期142-146,共5页
为准确预测油气管道的腐蚀速率,建立了一种基于改进的麻雀搜索算法(ISSA)优化支持向量回归(SVR)的预测模型。对传统麻雀搜索算法(SSA)的各种麻雀的位置更新公式进行调整,得到了ISSA,通过对比改进前后两种算法的迭代结果发现ISSA的收敛... 为准确预测油气管道的腐蚀速率,建立了一种基于改进的麻雀搜索算法(ISSA)优化支持向量回归(SVR)的预测模型。对传统麻雀搜索算法(SSA)的各种麻雀的位置更新公式进行调整,得到了ISSA,通过对比改进前后两种算法的迭代结果发现ISSA的收敛速度得到大幅提升。随后通过改进的麻雀搜索算法优化SVR模型的惩罚因子和核参数,提高模型的预测精度和泛化能力。采用南海油田管道的50组管道腐蚀数据对ISSA-SVR模型的预测性能进行验证。结果表明:与未经优化的SVR模型相比,ISSA-SVR模型的预测结果误差小、相关程度高,表明ISSA-SVR预测模型可为油气管道的腐蚀速率评估提供准确的数据支撑。 展开更多
关键词 麻雀搜索算法 支持向量回归 油气管道 腐蚀速率预测
原文传递
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
17
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
18
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
基于ISSA-BPNN模型的城镇燃气日负荷预测
19
作者 肖荣鸽 夏海平 李雨泽 《煤气与热力》 2025年第2期I0016-I0022,共7页
针对单一神经网络模型在预测过程中存在精度低、易陷入局部最优等问题,提出了一种改进的麻雀搜索算法优化的BP神经网络(ISSA-BPNN)模型用于燃气日负荷预测。BP神经网络与优化算法结合的模型预测精度高于单一BP神经网络。选择、交叉、变... 针对单一神经网络模型在预测过程中存在精度低、易陷入局部最优等问题,提出了一种改进的麻雀搜索算法优化的BP神经网络(ISSA-BPNN)模型用于燃气日负荷预测。BP神经网络与优化算法结合的模型预测精度高于单一BP神经网络。选择、交叉、变异等操作可以提高种群多样性,避免算法过早收敛。ISSA-BPNN模型平均绝对百分比误差为0.0393,在组合模型中预测精度最高,耗时也最长。 展开更多
关键词 燃气日负荷 BP神经网络 改进的麻雀搜索算法 负荷预测
在线阅读 下载PDF
基于ISSA优化EEMD的用户侧电力负荷预测方法
20
作者 石文娟 凌凡 +2 位作者 张俊权 宋振世 李力 《信息技术》 2025年第2期97-103,共7页
为减少负荷预测结果误差,提出基于混合改进麻雀搜索算法(ISSA)优化集合经验模态分解(EEMD)的电力负荷预测方法。获取用户历史用电信息,通过奇异值分解算法去除噪声数据,并利用差分自回归滑动平均模型完成平滑处理。针对集合经验模态分... 为减少负荷预测结果误差,提出基于混合改进麻雀搜索算法(ISSA)优化集合经验模态分解(EEMD)的电力负荷预测方法。获取用户历史用电信息,通过奇异值分解算法去除噪声数据,并利用差分自回归滑动平均模型完成平滑处理。针对集合经验模态分解所需的参数建立优化目标函数,依托于ISSA算法求出最优参数组合。通过分析历史电力负荷数据,将其输入基于广义回归神经网络的预测模型,输出电力负荷预测值。实验结果表明:所提方法预测结果的相对误差控制在0.1以下,可满足用户侧电力负荷预测要求。 展开更多
关键词 issa 集合经验模态分解 用户侧 负荷 参数优化
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部