期刊文献+
共找到324,070篇文章
< 1 2 250 >
每页显示 20 50 100
Multi-source image fusion algorithm based on fast weighted guided filter 被引量:6
1
作者 WANG Jian YANG Ke +2 位作者 REN Ping QIN Chunxia ZHANG Xiufei 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第5期831-840,共10页
In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Fi... In last few years,guided image fusion algorithms become more and more popular.However,the current algorithms cannot solve the halo artifacts.We propose an image fusion algorithm based on fast weighted guided filter.Firstly,the source images are separated into a series of high and low frequency components.Secondly,three visual features of the source image are extracted to construct a decision graph model.Thirdly,a fast weighted guided filter is raised to optimize the result obtained in the previous step and reduce the time complexity by considering the correlation among neighboring pixels.Finally,the image obtained in the previous step is combined with the weight map to realize the image fusion.The proposed algorithm is applied to multi-focus,visible-infrared and multi-modal image respectively and the final results show that the algorithm effectively solves the halo artifacts of the merged images with higher efficiency,and is better than the traditional method considering subjective visual consequent and objective evaluation. 展开更多
关键词 FAST guided FILTER image fusion visual feature DECISION map
在线阅读 下载PDF
Simultaneous scheduling of machines and automated guided vehicles in flexible manufacturing systems using genetic algorithms 被引量:5
2
作者 I.A.Chaudhry S.Mahmood M.Shami 《Journal of Central South University》 SCIE EI CAS 2011年第5期1473-1486,共14页
The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain inde... The problem of simultaneous scheduling of machines and vehicles in flexible manufacturing system (FMS) was addressed.A spreadsheet based genetic algorithm (GA) approach was presented to solve the problem.A domain independent general purpose GA was used,which was an add-in to the spreadsheet software.An adaptation of the propritary GA software was demonstrated to the problem of minimizing the total completion time or makespan for simultaneous scheduling of machines and vehicles in flexible manufacturing systems.Computational results are presented for a benchmark with 82 test problems,which have been constructed by other researchers.The achieved results are comparable to the previous approaches.The proposed approach can be also applied to other problems or objective functions without changing the GA routine or the spreadsheet model. 展开更多
关键词 automated guided vehicles (AGVs) SCHEDULING JOB-SHOP genetic algorithms flexible manufacturing system (FMS) SPREADSHEET
在线阅读 下载PDF
Study on scheduling algorithm for multiple handling requests of single automated guided vehicles 被引量:4
3
作者 Lu Yuan Feng Kuikui Hu Ying 《High Technology Letters》 EI CAS 2019年第3期334-339,共6页
To solve the problem of small amount of machining centers in small and medium flexible manufacture systems(FMS), a scheduling mode of single automated guided vehicle(AGV) is adopted to deal with multiple transport req... To solve the problem of small amount of machining centers in small and medium flexible manufacture systems(FMS), a scheduling mode of single automated guided vehicle(AGV) is adopted to deal with multiple transport requests in this paper. Firstly, a workshop scheduling mechanism of AGV is analyzed and a mathematical model is established using Genetic Algorithm. According to several sets of transport priority of AGV, processes of FMS are encoded, and fitness function, selection, crossover, and variation methods are designed. The transport priority which has the least impact on scheduling results is determined based on the simulation analysis of Genetic Algorithm, and the makespan, the longest waiting time, and optimal route of the car are calculated. According to the actual processing situation of the workshop, feasibility of this method is verified successfully to provide an effective solution to the scheduling problem of single AGV. 展开更多
关键词 automated guided vehicle(AGV) flexible manufacturing scheduling policy MAKESPAN genetic algorithm PRIORITY
在线阅读 下载PDF
Algorithm for the multidisciplinary management of hemorrhage in EUS-guided drainage for pancreatic fluid collections 被引量:2
4
作者 Tian-An Jiang Li-Ting Xie 《World Journal of Clinical Cases》 SCIE 2018年第10期308-321,共14页
Pancreatic fluid collections(PFCs),common sequelae of acute or chronic pancreatitis,are broadly classified as pancreatic pseudocysts or walled-off necrosis according to the revised Atlanta classification.Endoscopic ul... Pancreatic fluid collections(PFCs),common sequelae of acute or chronic pancreatitis,are broadly classified as pancreatic pseudocysts or walled-off necrosis according to the revised Atlanta classification.Endoscopic ultrasound(EUS)-guided drainage is often considered a standard first-line therapy preferable to surgical or interventional radiology approaches for patients with symptomatic PFC.EUS-guided drainage is effective and successful;it has a technical success rate of90%-100%and a clinical success rate of 85%-98%.Recent studies have shown a 5%-30%adverse events(AEs)rate for the procedure.The most common AEs include infection,hemorrhage,perforation and stent migration.Hemorrhage,a severe and sometimes deadly outcome,requires a well-organized and appropriate treatment strategy.However,few studies have reported the integrated management of hemorrhage during EUS-guided drainage of PFC.Establishing a practical therapeutic strategy is an essential and significant step in standardized management.The aim of this review is to describe the current situation of EUS-guided drainage of PFCs,including the etiology and treatment of procedure-related bleeding as well as current problems and future perspectives.We propose a novel and meaningful algorithm for systematically managing hemorrhage events.To our limited knowledge,a multidisciplinary algorithm for managing EUS-guided drainage for PFC-related bleeding has not been previously reported. 展开更多
关键词 PANCREATIC FLUID COLLECTIONS HEMORRHAGE Endoscopic ULTRASOUND-guided Treatment algorithm Adverse events
暂未订购
A Global Best-guided Firefly Algorithm for Engineering Problems 被引量:6
5
作者 Mohsen Zare Mojtaba Ghasemi +4 位作者 Amir Zahedi Keyvan Golalipour Soleiman Kadkhoda Mohammadi Seyedali Mirjalili Laith Abualigah 《Journal of Bionic Engineering》 SCIE EI CSCD 2023年第5期2359-2388,共30页
The Firefly Algorithm(FA)is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating.This article proposes a method based on Differential Evoluti... The Firefly Algorithm(FA)is a highly efficient population-based optimization technique developed by mimicking the flashing behavior of fireflies when mating.This article proposes a method based on Differential Evolution(DE)/current-to-best/1 for enhancing the FA's movement process.The proposed modification increases the global search ability and the convergence rates while maintaining a balance between exploration and exploitation by deploying the global best solution.However,employing the best solution can lead to premature algorithm convergence,but this study handles this issue using a loop adjacent to the algorithm's main loop.Additionally,the suggested algorithm’s sensitivity to the alpha parameter is reduced compared to the original FA.The GbFA surpasses both the original and five-version of enhanced FAs in finding the optimal solution to 30 CEC2014 real parameter benchmark problems with all selected alpha values.Additionally,the CEC 2017 benchmark functions and the eight engineering optimization challenges are also utilized to evaluate GbFA’s efficacy and robustness on real-world problems against several enhanced algorithms.In all cases,GbFA provides the optimal result compared to other methods.Note that the source code of the GbFA algorithm is publicly available at https://www.optim-app.com/projects/gbfa. 展开更多
关键词 Firefly algorithm New movement vector Global best-guided firefly algorithm Global optimization Engineering design
在线阅读 下载PDF
A greedy path planning algorithm based on pre-path-planning and real-time-conflict for multiple automated guided vehicles in large-scale outdoor scenarios 被引量:2
6
作者 王腾达 WU Wenjun +2 位作者 YANG Feng SUN Teng GAO Qiang 《High Technology Letters》 EI CAS 2023年第3期279-287,共9页
With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path... With the wide application of automated guided vehicles(AGVs) in large scale outdoor scenarios with complex terrain,the collaborative work of a large number of AGVs becomes the main trend.The effective multi-agent path finding(MAPF) algorithm is urgently needed to ensure the efficiency and realizability of the whole system. The complex terrain of outdoor scenarios is fully considered by using different values of passage cost to quantify different terrain types. The objective of the MAPF problem is to minimize the cost of passage while the Manhattan distance of paths and the time of passage are also evaluated for a comprehensive comparison. The pre-path-planning and real-time-conflict based greedy(PRG) algorithm is proposed as the solution. Simulation is conducted and the proposed PRG algorithm is compared with waiting-stop A^(*) and conflict based search(CBS) algorithms. Results show that the PRG algorithm outperforms the waiting-stop A^(*) algorithm in all three performance indicators,and it is more applicable than the CBS algorithm when a large number of AGVs are working collaboratively with frequent collisions. 展开更多
关键词 automated guided vehicle(AGV) multi-agent path finding(MAPF) complex terrain greedy algorithm
在线阅读 下载PDF
Enhancing Firefly Algorithm with Best Neighbor Guided Search Strategy 被引量:2
7
作者 WU Shuangke WU Zhijian PENG Hu 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2019年第6期524-536,共13页
Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a fi... Firefly algorithm(FA)is a recently-proposed swarm intelligence technique.It has shown good performance in solving various optimization problems.According to the standard firefly algorithm and most of its variants,a firefly migrates to every other brighter firefly in each iteration.However,this method leads to defects of oscillations of positions,which hampers the convergence to the optimum.To address these problems and enhance the performance of FA,we propose a new firefly algorithm,which is called the Best Neighbor Firefly Algorithm(BNFA).It employs the best neighbor guided strategy,where each firefly is attracted to the best firefly among some randomly chosen neighbors,thus reducing the firefly oscillations in every attraction-induced migration stage,while increasing the probability of the guidance a new better direction.Moreover,it selects neighbors randomly to prevent the firefly form being trapped into a local optimum.Extensive experiments are conducted to find out the optimal parameter settings.To verify the performance of BNFA,13 classical benchmark functions are tested.Results show that BNFA outperforms the standard FA and other recently proposed modified FAs. 展开更多
关键词 FIREFLY algorithm(FA) global optimization RANDOM neighbour exploration and EXPLOITATION
原文传递
An adaptive genetic algorithm with diversity-guided mutation and its global convergence property 被引量:9
8
作者 李枚毅 蔡自兴 孙国荣 《Journal of Central South University of Technology》 EI 2004年第3期323-327,共5页
An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive gene... An adaptive genetic algorithm with diversity-guided mutation, which combines adaptive probabilities of crossover and mutation was proposed. By means of homogeneous finite Markov chains, it is proved that adaptive genetic algorithm with diversity-guided mutation and genetic algorithm with diversity-guided mutation converge to the global optimum if they maintain the best solutions, and the convergence of adaptive genetic algorithms with adaptive probabilities of crossover and mutation was studied. The performances of the above algorithms in optimizing several unimodal and multimodal functions were compared. The results show that for multimodal functions the average convergence generation of the adaptive genetic algorithm with diversity-guided mutation is about 900 less than that of (adaptive) genetic algorithm with adaptive probabilities and genetic algorithm with diversity-guided mutation, and the adaptive genetic algorithm with diversity-guided mutation does not lead to premature convergence. It is also shown that the better balance between overcoming premature convergence and quickening convergence speed can be gotten. 展开更多
关键词 diversity-guided mutation adaptive genetic algorithm Markov chain global convergence
在线阅读 下载PDF
Extended Range Guided Munition Parameter Optimization Based on Genetic Algorithms
9
作者 王金柱 刘藻珍 刘敏 《Journal of Beijing Institute of Technology》 EI CAS 2005年第3期297-301,共5页
Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimize... Many factors influencing range of extended range guided munition (ERGM) are analyzed. The definition domain of the most important three parameters are ascertained by preparatory mathematical simulation, the optimized mathematical model of ERGM maximum range with boundary conditions is created, and parameter optimization based on genetic algorithm (GA) is adopted. In the GA design, three-point crossover is used and the best chromosome is kept so that the convergence speed becomes rapid. Simulation result shows that GA is feasible, the result is good and it can be easy to attain global optimization solution, especially when the objective function is not the convex one for independent variables and it is a multi-parameter problem. 展开更多
关键词 genetic algorithm(GA) parameter optimization penalty function
在线阅读 下载PDF
Rendered image denoising method with filtering guided by lighting information 被引量:1
10
作者 MA Minghui HU Xiaojuan +2 位作者 ZHANG Ripei CHEN Chunyi YU Haiyang 《Optoelectronics Letters》 2025年第4期242-248,共7页
The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions a... The visual noise of each light intensity area is different when the image is drawn by Monte Carlo method.However,the existing denoising algorithms have limited denoising performance under complex lighting conditions and are easy to lose detailed information.So we propose a rendered image denoising method with filtering guided by lighting information.First,we design an image segmentation algorithm based on lighting information to segment the image into different illumination areas.Then,we establish the parameter prediction model guided by lighting information for filtering(PGLF)to predict the filtering parameters of different illumination areas.For different illumination areas,we use these filtering parameters to construct area filters,and the filters are guided by the lighting information to perform sub-area filtering.Finally,the filtering results are fused with auxiliary features to output denoised images for improving the overall denoising effect of the image.Under the physically based rendering tool(PBRT)scene and Tungsten dataset,the experimental results show that compared with other guided filtering denoising methods,our method improves the peak signal-to-noise ratio(PSNR)metrics by 4.2164 dB on average and the structural similarity index(SSIM)metrics by 7.8%on average.This shows that our method can better reduce the noise in complex lighting scenesand improvethe imagequality. 展开更多
关键词 establish paramet rendered image denoising Monte Carlo method filtering guided lighting information denoising algorithms image segmentation algorithm rendered image denoising method monte carlo methodhoweverthe
原文传递
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
11
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
13
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
14
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Enhanced Arithmetic Optimization Algorithm Guided by a Local Search for the Feature Selection Problem
15
作者 Sana Jawarneh 《Intelligent Automation & Soft Computing》 2024年第3期511-525,共15页
High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classifi... High-dimensional datasets present significant challenges for classification tasks.Dimensionality reduction,a crucial aspect of data preprocessing,has gained substantial attention due to its ability to improve classification per-formance.However,identifying the optimal features within high-dimensional datasets remains a computationally demanding task,necessitating the use of efficient algorithms.This paper introduces the Arithmetic Optimization Algorithm(AOA),a novel approach for finding the optimal feature subset.AOA is specifically modified to address feature selection problems based on a transfer function.Additionally,two enhancements are incorporated into the AOA algorithm to overcome limitations such as limited precision,slow convergence,and susceptibility to local optima.The first enhancement proposes a new method for selecting solutions to be improved during the search process.This method effectively improves the original algorithm’s accuracy and convergence speed.The second enhancement introduces a local search with neighborhood strategies(AOA_NBH)during the AOA exploitation phase.AOA_NBH explores the vast search space,aiding the algorithm in escaping local optima.Our results demonstrate that incorporating neighborhood methods enhances the output and achieves significant improvement over state-of-the-art methods. 展开更多
关键词 Arithmetic optimization algorithm CLASSIFICATION feature selection problem optimization
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
16
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
Plateau frequency exploration of longitudinal guided waves for stress monitoring of steel strand 被引量:1
17
作者 ZHANG Jing LI Xuejian +2 位作者 LI Gang YUAN Ye YANG Dong 《Journal of Southeast University(English Edition)》 2025年第1期44-50,共7页
To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau ... To tackle the issue of notch frequency and center frequency drift of the L(0,1)mode guided wave in ultra⁃sonic guided wave⁃based stress monitoring of prestressed steel strands,a method using higher⁃order mode plateau fre⁃quencies is adopted.First,the correlation between group velocity peaks and phase velocities at these plateau frequen⁃cies is analyzed.This analysis establishes a quantitative rela⁃tionship between phase velocity and stress in the steel strand,providing a theoretical foundation for stress monitor⁃ing.Then the two⁃dimensional Fourier transform is em⁃ployed to separate wave modes.Dynamic programming techniques are applied in the frequency⁃velocity domain to extract higher⁃order modes.By identifying the group veloc⁃ity peaks of these separated higher⁃order modes,the plateau frequencies of guided waves are determined,enabling indi⁃rect measurement of stress in the steel strand.To validate this method,finite element simulations are conducted under three scenarios.Results show that the higher⁃order modes of transient signals from three different positions can be ac⁃curately extracted,leading to successful cable stress moni⁃toring.This approach effectively circumvents the issue of guided wave frequency drift and improves stress monitoring accuracy.Consequently,it significantly improves the appli⁃cation of ultrasonic guided wave technology in structural health monitoring. 展开更多
关键词 steel strand ultrasonic guided wave plateau frequency mode separation stress monitoring
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
18
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
19
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
20
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部