期刊文献+
共找到281,138篇文章
< 1 2 250 >
每页显示 20 50 100
奶山羊FTO基因对乳腺上皮细胞脂代谢相关基因表达及甘油三酯合成的影响
1
作者 姚大为 郭晓飞 +4 位作者 刘玉 李玉鹏 陈龙宾 张金龙 张效生 《家畜生态学报》 北大核心 2025年第1期17-25,共9页
试验旨在通过过表达和干扰技术探究脂肪与肥胖相关基因(fat mass and obesity associated,FTO)对奶山羊乳腺上皮细胞脂代谢相关基因的表达及甘油三酯合成的影响。通过克隆得到奶山羊(Capra hircus)乳腺组织FTO基因的CDS区序列,构建FTO... 试验旨在通过过表达和干扰技术探究脂肪与肥胖相关基因(fat mass and obesity associated,FTO)对奶山羊乳腺上皮细胞脂代谢相关基因的表达及甘油三酯合成的影响。通过克隆得到奶山羊(Capra hircus)乳腺组织FTO基因的CDS区序列,构建FTO过表达载体,并设计合成靶向FTO的siRNA(small interference RNA),利用实时荧光定量PCR(RT-qPCR)技术检测过表达或干扰FTO基因后奶山羊乳腺上皮细胞中脂代谢相关基因及甘油三酯含量的变化。结果表明,奶山羊FTO基因的CDS区全长1518 bp,与绵羊(Ovis aries)(NM_001104931.1)、牛(Bos taurus)(NM_001098142.1)和水牛(Bubalus bubalis)(XM_006043050.4)的序列相似性分别为99%、97%和96%。在乳腺上皮细胞中过表达FTO能够显著上调固醇调节元件结合蛋白1(sterol-regulatory element binding proteins 1,SREBF1)、脂肪酸合成酶(fatty acid synthase,FASN)、二酰甘油酰基转移酶2(diacylglycerol O-acyltransferase 2,DGAT2)的mRNA水平(P<0.05),显著下调甘油三酯水解相关基因如激素敏感脂酶(hormone-sensitive lipase,HSL)的表达水平(P<0.05),同时细胞中甘油三酯含量显著增加。在奶山羊乳腺上皮细胞中干扰FTO得到与之相反的结果。综上,FTO基因在调节奶山羊乳腺上皮细胞脂代谢中发挥重要的作用。 展开更多
关键词 奶山羊 乳腺上皮细胞 fto 脂代谢 甘油三酯
在线阅读 下载PDF
FTO基因对鸡肌内脂肪细胞脂沉积的调控作用
2
作者 黄华云 隋雨乐 +4 位作者 孔熠 梁忠 杨苗苗 刘星 韩威 《中国农业科学》 北大核心 2025年第22期4786-4796,共11页
【目的】脂肪量和肥胖相关基因(FTO)作为与人类和畜禽脂肪沉积密切相关的基因,其在鸡肌内脂肪沉积中的作用尚未见相关报道。通过明确FTO对鸡肌内脂肪细胞增殖及脂滴沉积的影响,筛选响应其调控的关键通路与基因,为解析鸡肌内脂肪沉积分... 【目的】脂肪量和肥胖相关基因(FTO)作为与人类和畜禽脂肪沉积密切相关的基因,其在鸡肌内脂肪沉积中的作用尚未见相关报道。通过明确FTO对鸡肌内脂肪细胞增殖及脂滴沉积的影响,筛选响应其调控的关键通路与基因,为解析鸡肌内脂肪沉积分子调控网络提供理论依据。【方法】构建FTO慢病毒表达载体,外源转染FTO慢病毒表达载体和阴性对照载体至鸡原代肌内脂肪细胞,利用荧光倒置显微镜观察荧光,实时荧光定量PCR(qPCR)检测转染组和阴性对照组FTO mRNA的表达变化,确保FTO慢病毒表达载体成功转染至细胞;FTO慢病毒表达载体转染72 h和96 h后,CCK8试剂盒检测转染组和阴性对照组细胞增殖变化;转染后6 d,油红O染色,异丙醇萃取脂滴,检测肌内脂肪细胞脂滴沉积的变化,甘油检测试剂盒检测培养基中甘油含量变化;通过转录组测序、生物信息学分析及蛋白互作(PPI)分析,筛选响应FTO调控肌内脂肪细胞脂沉积的关键通路和基因。【结果】FTO慢病毒表达载体转染至肌内脂肪细胞,qPCR结果表明,与对照组相比,转染组FTO mRNA表达极显著升高(P<0.01),表明FTO慢病毒表达载体成功转染至细胞;转染FTO慢病毒表达载体72和96 h后,与对照组相比,肌内脂肪细胞的增殖能力显著降低(P<0.05);FTO慢病毒表达载体转染肌内脂肪细胞6 d后,转染组细胞脂滴沉积能力显著高于阴性对照组(P<0.05),培养基中的甘油含量显著低于阴性对照组(P<0.05)。转录组测序结果表明:共筛选到164个差异表达基因响应FTO调控肌内脂肪沉积,其中上调基因71个,下调基因93个;差异表达基因KEGG富集分析结果显示,共有13信号通路显著富集,其中黏着斑,肌动蛋白细胞骨架的调控,丝裂原活化蛋白激酶信号通路,间隙连接,细胞因子-细胞因子受体相互作用,叉头盒蛋白O信号通路,细胞凋亡,C型凝集素受体信号通路,转化生长因子-β信号通路(P<0.05)通路与脂肪代谢相关;进一步筛选响应FTO调控的关键通路和基因,将显著富集通路里的差异基因做PPI分析,结果显示PIK3R2,FGF16,FGF9和RHOA为响应FTO调控鸡肌内脂肪细胞脂沉积的关键基因,显著富集通路——肌动蛋白细胞骨架调控通路为核心通路。【结论】FTO具有抑制鸡肌内脂肪细胞增殖、促进脂沉积、抑制脂肪分解的作用;PIK3R2、FGF16、FGF9和RHOA(肌动蛋白细胞骨架的调控通路)是响应FTO调控肌内脂肪细胞脂沉积的关键基因/通路。 展开更多
关键词 fto 肌内脂肪
在线阅读 下载PDF
基于FTO/m6A信号通路探讨心阳片改善心力衰竭心室重构的作用机制
3
作者 刘东华 李姿儒 +7 位作者 李思静 何星灵 张小娇 倪世豪 龙文杰 廖慧丽 杨忠奇 董晓明 《中国中药杂志》 北大核心 2025年第4期1075-1086,共12页
该研究旨在探讨心阳片调控脂肪量和肥胖相关蛋白(fat mass and obesity-associated protein,FTO)/N6-甲基腺嘌呤(N6-methyladenosine,m6A)信号通路改善心力衰竭(heart failure,HF)心室重构的作用机制。体内研究采用主动脉弓缩窄术(trans... 该研究旨在探讨心阳片调控脂肪量和肥胖相关蛋白(fat mass and obesity-associated protein,FTO)/N6-甲基腺嘌呤(N6-methyladenosine,m6A)信号通路改善心力衰竭(heart failure,HF)心室重构的作用机制。体内研究采用主动脉弓缩窄术(transverse aortic constriction,TAC)建立HF小鼠模型,随机分为假手术组,模型组,心阳片低、中、高剂量组,阳性对照药培哚普利组,每组10只。术后第3天开始灌胃,连续6周。给药结束后,使用小动物超声检测小鼠心功能,RT-qPCR检测心房钠尿肽(atrial natriuretic peptide,ANP)、B型利钠肽(B-type natriuretic peptide,BNP)、心肌肌球蛋白重链亚基(β-myosin heavy chain,β-MHC)、Ⅰ型胶原蛋白alpha链(collagen typeⅠalpha chain,Col1α)、Ⅲ型胶原蛋白alpha链(collagen typeⅢalpha chain,Col3α)、α-平滑肌动蛋白(alpha smooth muscle actin,α-SMA)、FTO的m RNA相对表达量。马松(Masson)、麦胚凝集素(wheat germ agglutinin,WGA)染色对心脏组织进行病理切片检测。免疫组化法检测Col1α、Col3α、α-SMA、FTO在心肌组织的表达水平。试剂盒检测各组小鼠心肌组织m6A修饰水平。体外实验采用血管紧张素Ⅱ(angiotensinⅡ,AngⅡ)诱导H9c2心肌细胞肥大模型,筛选合适小干扰RNA(small interfering RNA,siRNA)以抑制FTO,通过RT-qPCR检测FTO以及心室重构相关基因的m RNA相对表达量,试剂盒检测细胞m6A修饰水平,蛋白质免疫印迹(Western blot,WB)法检测心肌细胞磷酸化的磷脂酰肌醇3-激酶(phosphorylated phosphatidylinositol 3-kinase,p-PI3K)/磷脂酰肌醇3-激酶(phosphatidylinositol 3-kinase,PI3K)、磷酸化蛋白激酶B(phosphorylated serine/threonine kinase,p-Akt)/蛋白激酶B(serine/threonine kinase,Akt)比值。体内研究结果显示,与模型组相比,心阳片各组小鼠的心功能和纤维沉积得到显著改善,FTO m RNA及蛋白表达水平升高,m6A修饰水平显著降低。体外研究结果显示,心阳片含药血清可以使心肌细胞FTO m RNA表达水平显著升高,m6A修饰水平、p-PI3K/PI3K及p-Akt/Akt的比值显著降低。此外,敲低FTO可逆转心阳片含药血清对AngⅡ诱导细胞肥大模型的改善作用。综上所述,心阳片可能通过调控FTO/m6A轴抑制PI3K/Akt信号通路的激活以发挥改善心室重构的作用。 展开更多
关键词 心力衰竭 心室重构 fto/m6A 心阳片
原文传递
FTO通过Wnt/β-catenin信号通路调节三阴性乳腺癌对阿霉素的耐药性
4
作者 吴进敏 戚宇航 +3 位作者 方静怡 穆薇智 陈昭琳 杨昭毅 《中国药理学通报》 北大核心 2025年第12期2334-2341,共8页
目的探讨FTO通过Wnt/β-catenin信号通路对三阴性乳腺癌阿霉素耐药的影响及作用机制。方法采用逐步增加阿霉素浓度、间歇诱导的方法构建MDA-MB-231/ADR耐药细胞株。比较MDA-MB-231细胞和MDA-MB-231/ADR细胞对阿霉素的半抑制浓度(IC_(50)... 目的探讨FTO通过Wnt/β-catenin信号通路对三阴性乳腺癌阿霉素耐药的影响及作用机制。方法采用逐步增加阿霉素浓度、间歇诱导的方法构建MDA-MB-231/ADR耐药细胞株。比较MDA-MB-231细胞和MDA-MB-231/ADR细胞对阿霉素的半抑制浓度(IC_(50))值以及FTO的表达;敲低MDA-MB-231/ADR细胞FTO后,分别采用CCK-8、qRT-PCR、克隆形成实验、Transwell、流式细胞术和Western blot检测MDA-MB-231/ADR细胞对阿霉素IC_(50)值、增殖、迁移、侵袭、凋亡和相关蛋白表达水平的变化。结果FTO在MDA-MB-231/ADR细胞中高表达。敲低FTO后MDA-MB-231/ADR细胞对阿霉素的IC_(50)值减小,增殖、迁移和侵袭能力减弱;FTO敲低组细胞中Bax、cleaved-caspase-3、GSK-3β蛋白表达水平以及凋亡率明显升高,而Bcl-2、Wnt5a、β-catenin、c-myc、cyclin D1和P-gp蛋白表达水平降低。结论FTO可能通过Wnt/β-catenin信号通路抑制MDA-MB-231/ADR细胞凋亡,改变P-gp表达,进而增强MDA-MB-231/ADR细胞对阿霉素的耐药性。 展开更多
关键词 fto 三阴性乳腺癌 WNT/Β-CATENIN 阿霉素 耐药 凋亡
暂未订购
去甲基化酶FTO基因敲除对5-HT诱导糖尿病冠脉平滑肌收缩功能异常的影响
5
作者 王梓帆 蒋柳香 +5 位作者 梁美英 刘梦云 陈美江 杨慧 饶芳 邓春玉 《中国药理学通报》 北大核心 2025年第2期315-322,共8页
目的探讨去甲基化酶脂肪质量和肥胖相关基因(fat mass and obesity associated gene,FTO)在糖尿病冠脉平滑肌收缩功能异常中的影响。方法Cre-loxP重组技术制备平滑肌特异性FTO敲除小鼠(FTO^(SMKO))。分为4组:对照组(WT)、糖尿病组(DM)、... 目的探讨去甲基化酶脂肪质量和肥胖相关基因(fat mass and obesity associated gene,FTO)在糖尿病冠脉平滑肌收缩功能异常中的影响。方法Cre-loxP重组技术制备平滑肌特异性FTO敲除小鼠(FTO^(SMKO))。分为4组:对照组(WT)、糖尿病组(DM)、FTO敲除组(FTO^(SMKO))和FTOSMKO糖尿病组(FTO^(SMKO)-DM),每组各15只。糖尿病小鼠由腹腔注射链脲佐菌素(STZ)制备;其余小鼠注射等量的柠檬酸-柠檬酸钠缓冲液。通过小血管环张力测定技术,观察5-HT对4组小鼠冠脉平滑肌收缩反应的影响;采用Western blot与Dot blot技术检测小鼠血管组织FTO蛋白及n6-甲基腺嘌呤(m6A)甲基化修饰水平的变化。结果与WT组相比,DM组血糖明显升高(P<0.01),体质量明显下降(P<0.05);DM组小鼠主动脉FTO蛋白水平升高( P <0.01),m6A甲基化修饰水平降低( P <0.01)。DM组5-HT诱导收缩反应与WT组相比明显下降( P <0.01),而FTOSMKO-DM组收缩反应比DM组明显增加( P <0.01);FTO^(SMKO) -DM组非L型钙通道介导的血管平滑肌收缩反应增强,其中,1,4,5-三磷酸肌醇受体(IP3R)和咖啡因激活兰尼碱受体(RyR)介导的肌浆网钙释放诱导收缩反应均明显增加( P <0.05)。 结论 特异性敲除平滑肌 FTO 可改善糖尿病小鼠冠脉对血管收缩剂5-HT的反应性,可能与FTO介导5-HT受体信号通路异常有关。 展开更多
关键词 fto基因 糖尿病血管 m6A甲基化 非L型钙通道 肌浆网钙释放 血管收缩
暂未订购
山奈酚调控FTO对胃癌顺铂化疗敏感性及细胞迁移的影响 被引量:3
6
作者 陈形梅 朱丽叶 +5 位作者 黄珊珮 宁绮婷 韦二丹 覃丽霏 丘新泽 刘诗权 《现代肿瘤医学》 2025年第5期724-732,共9页
目的:探讨山奈酚(kaempferol,KF)对胃癌细胞顺铂化疗敏感性及细胞迁移的影响及机制。方法:采用慢病毒转染构建稳定低表达肥胖相关蛋白(fat mass and obesity-associated protein,FTO)的人胃癌细胞AGS。将细胞分为对照组、山奈酚组、顺... 目的:探讨山奈酚(kaempferol,KF)对胃癌细胞顺铂化疗敏感性及细胞迁移的影响及机制。方法:采用慢病毒转染构建稳定低表达肥胖相关蛋白(fat mass and obesity-associated protein,FTO)的人胃癌细胞AGS。将细胞分为对照组、山奈酚组、顺铂组、山奈酚+顺铂组、空载组、FTO低表达组、顺铂+空载组、顺铂+FTO低表达组、山奈酚+顺铂+空载组、山奈酚+顺铂+FTO低表达组。CCK-8法及平板克隆实验检测各不同处理对细胞增殖的影响;Transwell迁移实验检测不同处理对细胞迁移的影响。免疫印迹和实时荧光定量PCR检测FTO的表达。应用CB-Dock2在线工具分析山奈酚与FTO之间的分子对接情况。结果:山奈酚呈时间剂量依赖性抑制胃癌细胞的增殖能力,且显著增强胃癌细胞对顺铂的化疗敏感性,抑制胃癌细胞的迁移能力(P<0.05)。山奈酚可有效抑制胃癌细胞内FTO表达水平,低表达FTO则抑制细胞增殖和迁移能力(P<0.05)。与对照组相比,FTO的抑制消除了山奈酚对胃癌细胞顺铂化疗敏感性及迁移的影响(P<0.05)。此外,分子对接结果显示山奈酚与FTO之间有5个相互结合的活性口袋。结论:山奈酚通过抑制FTO的表达增强胃癌细胞顺铂化疗敏感性并抑制细胞迁移。 展开更多
关键词 山奈酚 fto 胃癌 化疗敏感性 迁移
暂未订购
恩他卡朋联合运动对肥胖小鼠下丘脑FTO及肝脏GLUT4表达的影响研究
7
作者 韩贺龙 黄伟伟 +2 位作者 任佳宝 何恩鹏 李艳红 《新疆师范大学学报(自然科学版)》 2025年第3期23-28,共6页
文章探索恩他卡朋及运动干预对肥胖小鼠下丘脑肥胖相关基因(FTO)及肝脏葡萄糖转运蛋白(GLUT4)表达的影响。利用高脂饮食诱导肥胖小鼠模型,将40只小鼠随机均分为4组,依次为高脂组(HFD)、恩他卡朋组(ENT)、运动训练组(EX)和恩他卡朋+运动... 文章探索恩他卡朋及运动干预对肥胖小鼠下丘脑肥胖相关基因(FTO)及肝脏葡萄糖转运蛋白(GLUT4)表达的影响。利用高脂饮食诱导肥胖小鼠模型,将40只小鼠随机均分为4组,依次为高脂组(HFD)、恩他卡朋组(ENT)、运动训练组(EX)和恩他卡朋+运动训练组(ENT-EX),另取10只同龄正常小鼠作为空白对照(CON)。实验进行5周后,分别检测小鼠空腹血糖变化,采用Real-time PCR、Western blot技术检测下丘脑FTO和肝脏GLUT4基因及蛋白表达,使用m^(6)A甲基化试剂盒检测下丘脑m^(6)A甲基化水平。与CON组相比,HFD组小鼠空腹血糖、FTO mRNA和蛋白表达显著升高,GLUT4 mRNA和蛋白表达显著降低;与HFD组相比,ENT-EX和EX组小鼠空腹血糖、FTO mRNA和蛋白表达显著下降,GLUT4 mRNA和蛋白表达显著升高且ENT-EX组效果优于单独EX组;各组间下丘脑m^(6)A甲基化水平无显著性差异。并得出结论:ENT-EX和EX干预可能会通过抑制下丘脑FTO表达调节肥胖小鼠肝脏GLUT4对血糖的摄取和利用来有效缓解肥胖小鼠糖耐量异常。 展开更多
关键词 恩他卡朋 运动训练 肥胖小鼠 fto表达 GLUT4表达
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
8
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
9
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
10
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
A Traffic Scheduling Strategy in SDN Data Center Based on Fibonacci Tree Optimization Algorithm
11
作者 Wang Yaomin Hu Ping +3 位作者 Zeng Jing Li Donghong Yuan Lu Long Hua 《China Communications》 2025年第11期176-191,共16页
To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in t... To improve the traffic scheduling capability in operator data center networks,an analysis prediction and online scheduling mechanism(APOS)is designed,considering both the network structure and the network traffic in the operator data center.Fibonacci tree optimization algorithm(FTO)is embedded into the analysis prediction and the online scheduling stages,the FTO traffic scheduling strategy is proposed.By taking the global optimal and the multi-modal optimization advantage of FTO,the traffic scheduling optimal solution and many suboptimal solutions can be obtained.The experiment results show that the FTO traffic scheduling strategy can schedule traffic in data center networks reasonably,and improve the load balancing in the operator data center network effectively. 展开更多
关键词 Fibonacci tree optimization algorithm(fto) multi-modal optimization SDN data center traffic scheduling
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
12
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
13
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
14
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
15
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
16
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
FTO在睾丸组织中的表达定位及潜在调控基因的筛选研究
17
作者 沈千怡 范俊杰 +4 位作者 黄鑫 蒋莹 何科萱 杨灿 洪叶挺 《生殖医学杂志》 2025年第4期515-524,共10页
目的探究FTO在睾丸组织中的表达定位,并筛选其潜在的调控基因。方法采用qRT-PCR和Western blot技术检测FTO基因在小鼠和大鼠各器官中的表达情况,利用HE染色和免疫组化技术分析FTO在睾丸组织的表达定位;通过慢病毒表达系统构建FTO稳定表... 目的探究FTO在睾丸组织中的表达定位,并筛选其潜在的调控基因。方法采用qRT-PCR和Western blot技术检测FTO基因在小鼠和大鼠各器官中的表达情况,利用HE染色和免疫组化技术分析FTO在睾丸组织的表达定位;通过慢病毒表达系统构建FTO稳定表达的小鼠精母细胞模型,采用转录组学测序结合qRT-PCR技术筛选FTO潜在的调控基因。结果FTO在睾丸组织中具有较高的mRNA和蛋白表达水平;免疫组化结果进一步显示FTO在睾丸精母细胞中表达量最为显著。基于FTO稳定表达细胞模型转录组学的分析,成功筛选出27个潜在调控基因,并通过qRT-PCR实验验证了6个与精子功能密切相关的基因,分别为Shank3、Dnaaf3、Susd2、Bend5、Ggt5和Svs2。结论FTO在睾丸组织尤其精母细胞中显著表达,提示可能在精子发生过程中扮演关键角色。本研究筛选出的FTO潜在调控基因,为深入理解FTO在精子功能中的作用机制提供了分子依据。 展开更多
关键词 fto 睾丸 转录组学分析 潜在调控基因 精子功能
暂未订购
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
18
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
Improved algorithm of multi-mainlobe interference suppression under uncorrelated and coherent conditions 被引量:1
19
作者 CAI Miaohong CHENG Qiang +1 位作者 MENG Jinli ZHAO Dehua 《Journal of Southeast University(English Edition)》 2025年第1期84-90,共7页
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s... A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances. 展开更多
关键词 mainlobe interference suppression adaptive beamforming spatial spectral estimation iterative adaptive algorithm blocking matrix preprocessing
在线阅读 下载PDF
Intelligent sequential multi-impulse collision avoidance method for non-cooperative spacecraft based on an improved search tree algorithm 被引量:1
20
作者 Xuyang CAO Xin NING +4 位作者 Zheng WANG Suyi LIU Fei CHENG Wenlong LI Xiaobin LIAN 《Chinese Journal of Aeronautics》 2025年第4期378-393,共16页
The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making co... The problem of collision avoidance for non-cooperative targets has received significant attention from researchers in recent years.Non-cooperative targets exhibit uncertain states and unpredictable behaviors,making collision avoidance significantly more challenging than that for space debris.Much existing research focuses on the continuous thrust model,whereas the impulsive maneuver model is more appropriate for long-duration and long-distance avoidance missions.Additionally,it is important to minimize the impact on the original mission while avoiding noncooperative targets.On the other hand,the existing avoidance algorithms are computationally complex and time-consuming especially with the limited computing capability of the on-board computer,posing challenges for practical engineering applications.To conquer these difficulties,this paper makes the following key contributions:(A)a turn-based(sequential decision-making)limited-area impulsive collision avoidance model considering the time delay of precision orbit determination is established for the first time;(B)a novel Selection Probability Learning Adaptive Search-depth Search Tree(SPL-ASST)algorithm is proposed for non-cooperative target avoidance,which improves the decision-making efficiency by introducing an adaptive-search-depth mechanism and a neural network into the traditional Monte Carlo Tree Search(MCTS).Numerical simulations confirm the effectiveness and efficiency of the proposed method. 展开更多
关键词 Non-cooperative target Collision avoidance Limited motion area Impulsive maneuver model Search tree algorithm Neural networks
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部