The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured o...The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured one from the database of the collected spectra by employing the cross-correlation operation,subsequently deriving the predicted value via weighted calculation.As the algorithm uses the complete information in the measured raw spectrum,more accurate results and larger measurement range can be obtained.Additionally,the improved cross-correlation algorithm also has the potential to improve the measurement speed compared to current standards due to the possibility for the collection using low sampling rate.This work presents an important algorithm towards a simpler,faster way to improve the demodulation performance of VE-OFS.展开更多
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ...Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.展开更多
It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional ...It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional Sparrow Search Algorithm(SSA)suffers from limited global search capability,insufficient population diversity,and slow convergence,which often leads to premature stagnation in local optima.Despite the proposal of various enhanced versions,the effective balancing of exploration and exploitation remains an unsolved challenge.To address the previously mentioned problems,this study proposes a multi-strategy collaborative improved SSA,which systematically integrates four complementary strategies:(1)the Northern Goshawk Optimization(NGO)mechanism enhances global exploration through guided prey-attacking dynamics;(2)an adaptive t-distribution mutation strategy balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom;(3)a dual chaotic initialization method(Bernoulli and Sinusoidal maps)increases population diversity and distribution uniformity;and(4)an elite retention strategy maintains solution quality and prevents degradation during iterations.These strategies cooperate synergistically,forming a tightly coupled optimization framework that significantly improves search efficiency and robustness.Therefore,this paper names it NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of magnitude.Compared with SSA,GWO,ISSA,and CSSOA,NTSSA improves solution accuracy by up to 14.3%(F8)and 99.8%(F12),while accelerating convergence by approximately 1.5–2×.The Wilcoxon rank-sum test(p<0.05)indicates that NTSSA demonstrates a statistically substantial performance advantage.Theoretical analysis demonstrates that the collaborative synergy among adaptive mutation,chaos-based diversification,and elite preservation ensures both high convergence accuracy and global stability.This work bridges a key research gap in SSA by realizing a coordinated optimization mechanism between exploration and exploitation,offering a robust and efficient solution framework for complex high-dimensional problems in intelligent computation and engineering design.展开更多
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape...The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.展开更多
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ...Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.展开更多
The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a prog...The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a progressive quantum algorithm(PQA)to reduce qubit requirements for QAOA+in solving the maximum independent set(MIS)problem.PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution.Specifically,PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies.After each expansion,PQA solves the MIS problem on the newly generated subgraph using QAOA+.In each run,PQA repeats the expansion and solving process until a predefined stopping condition is reached.Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57%(2.17%)of the qubits and 17.59%(6.43%)of the runtime compared with directly solving the original problem with QAOA+on Erd?s-Rényi(3-regular)graphs,highlighting the efficiency and scalability of PQA.展开更多
Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from...Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.展开更多
The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite traj...The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite trajectory is obtained by dual quaternion interpolation, then the relative position and attitude of the deputy satellite are ob- tained by dual quaternion modeling on the principal satellite. Through above process, relative position and atti- tude are unified. Compared with the orbital parameter and the quaternion methods, the simulation result proves that the algorithm can unify position and attitude, and satisfy the precision requirement of formation flying satel- lites.展开更多
For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the mag...For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the magnetometer and accelerometer are not two comparable kinds of sensors and both are not small field-of-view sensors as well. So in this paper a new unit measurement model is derived. According to the Wahba problem, the optimal weights for each measurement are obtained by the error variance researches. Then an improved quaternion Gauss–Newton method is presented and adopted to acquire attitude. Eventually, simulation results and experimental validation employed to test the proposed method demonstrate the usefulness of the improved algorithm.展开更多
A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone con...A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.展开更多
In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying result...In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.展开更多
The variety of encryption mechanism and algorithms which were conventionally used have some limitations.The kernel operator library based on Cryptographic algorithm is put forward. Owing to the impenetrability of algo...The variety of encryption mechanism and algorithms which were conventionally used have some limitations.The kernel operator library based on Cryptographic algorithm is put forward. Owing to the impenetrability of algorithm, the data transfer system with the cryptographic algorithm library has many remarkable advantages in algorithm rebuilding and optimization,easily adding and deleting algorithm, and improving the security power over the traditional algorithm. The user can choose any one in all algorithms with the method against any attack because the cryptographic algorithm library is extensible.展开更多
Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with si...Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.展开更多
In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functio...In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functions and non-serf-regular ones. The dynamic step size is compared with fixed step size for the algorithms in inner iteration of Newton step. Numerical tests show that the algorithms with dynaraic step size are more efficient than those with fixed step size.展开更多
The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powe...The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.展开更多
Due to the atmospheric turbulence and the system noise, images are blurred in the astronomical or space object detection. Wavefront aberrations and system noise make the capability of detecting objects decrease greatl...Due to the atmospheric turbulence and the system noise, images are blurred in the astronomical or space object detection. Wavefront aberrations and system noise make the capability of detecting objects decrease greatly. A two-channel image restoration method based on alternating minimization is proposed to restore the turbulence degraded images. The images at different times are regarded as separate channels, then the object and the point spread function(PSF) are reconstructed in an alternative way. There are two optimization parameters in the algorithm: the object and the PSF. Each optimization step is transformed into a constraint problem by variable splitting and processed by the augmented Lagrangian method. The results of simulation and actual experiment verify that the two-channel image restoration method can always converge rapidly within five iterations, and values of normalized root mean square error(NRMSE) remain below 3% after five iterations. Standard deviation data show that optimized alternating minimization(OAM) has strong stability and adaptability to different turbulent levels and noise levels. Restored images are approximate to the ideal imaging by visual assessment, even though atmospheric turbulence and systemnoise have a strong impact on imaging. Additionally, the method can remove noise effectively during the process of image restoration.展开更多
For the navigation algorithm of the strapdown inertial navigation system,by comparing to the equations of the dual quaternion and quaternion,the superiority of the attitude algorithm based on dual quaternion over the ...For the navigation algorithm of the strapdown inertial navigation system,by comparing to the equations of the dual quaternion and quaternion,the superiority of the attitude algorithm based on dual quaternion over the ones based on rotation vector in accuracy is analyzed in the case of the rotation of navigation frame.By comparing the update algorithm of the gravitational velocity in dual quaternion solution with the compensation algorithm of the harmful acceleration in traditional velocity solution,the accuracy advantage of the gravitational velocity based on dual quaternion is addressed.In view of the idea of the attitude and velocity algorithm based on dual quaternion,an improved navigation algorithm is proposed,which is as much as the rotation vector algorithm in computational complexity.According to this method,the attitude quaternion does not require compensating as the navigation frame rotates.In order to verify the correctness of the theoretical analysis,simulations are carried out utilizing the software,and the simulation results show that the accuracy of the improved algorithm is approximately equal to the dual quaternion algorithm.展开更多
In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barr...In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.展开更多
The security of international date encryption algorithm (IDEA(16)), a mini IDEA cipher, against differential cryptanalysis is investigated. The results show that [DEA(16) is secure against differential cryptanal...The security of international date encryption algorithm (IDEA(16)), a mini IDEA cipher, against differential cryptanalysis is investigated. The results show that [DEA(16) is secure against differential cryptanalysis attack after 5 rounds while IDEA(8) needs 7 rounds for the same level of security. The transition matrix for IDEA(16) and its eigenvalue of second largest magnitude are computed. The storage method for the transition matrix has been optimized to speed up file I/O. The emphasis of the work lies in finding out an effective way of computing the eigenvalue of the matrix. To lower time complexity, three mature algorithms in finding eigenvalues are compared from one another and subspace iteration algorithm is employed to compute the eigenvalue of second largest module, with a precision of 0.001.展开更多
文摘The improved cross-correlation algorithm for the strain demodulation of Vernier-effect-based optical fiber sensor(VE-OFS)is proposed in this article.The algorithm identifies the most similar spectrum to the measured one from the database of the collected spectra by employing the cross-correlation operation,subsequently deriving the predicted value via weighted calculation.As the algorithm uses the complete information in the measured raw spectrum,more accurate results and larger measurement range can be obtained.Additionally,the improved cross-correlation algorithm also has the potential to improve the measurement speed compared to current standards due to the possibility for the collection using low sampling rate.This work presents an important algorithm towards a simpler,faster way to improve the demodulation performance of VE-OFS.
基金supported by the National Key R&D Program of China(Grant No.2022YFA1005000)the National Natural Science Foundation of China(Grant No.62025110 and 62101308).
文摘Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI.
文摘It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional Sparrow Search Algorithm(SSA)suffers from limited global search capability,insufficient population diversity,and slow convergence,which often leads to premature stagnation in local optima.Despite the proposal of various enhanced versions,the effective balancing of exploration and exploitation remains an unsolved challenge.To address the previously mentioned problems,this study proposes a multi-strategy collaborative improved SSA,which systematically integrates four complementary strategies:(1)the Northern Goshawk Optimization(NGO)mechanism enhances global exploration through guided prey-attacking dynamics;(2)an adaptive t-distribution mutation strategy balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom;(3)a dual chaotic initialization method(Bernoulli and Sinusoidal maps)increases population diversity and distribution uniformity;and(4)an elite retention strategy maintains solution quality and prevents degradation during iterations.These strategies cooperate synergistically,forming a tightly coupled optimization framework that significantly improves search efficiency and robustness.Therefore,this paper names it NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of magnitude.Compared with SSA,GWO,ISSA,and CSSOA,NTSSA improves solution accuracy by up to 14.3%(F8)and 99.8%(F12),while accelerating convergence by approximately 1.5–2×.The Wilcoxon rank-sum test(p<0.05)indicates that NTSSA demonstrates a statistically substantial performance advantage.Theoretical analysis demonstrates that the collaborative synergy among adaptive mutation,chaos-based diversification,and elite preservation ensures both high convergence accuracy and global stability.This work bridges a key research gap in SSA by realizing a coordinated optimization mechanism between exploration and exploitation,offering a robust and efficient solution framework for complex high-dimensional problems in intelligent computation and engineering design.
文摘The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications.
文摘Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms.
基金supported by the National Natural Science Foundation of China(Grant Nos.62371069,62372048,and 62272056)BUPT Excellent Ph.D.Students Foundation(Grant No.CX2023123)。
文摘The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a progressive quantum algorithm(PQA)to reduce qubit requirements for QAOA+in solving the maximum independent set(MIS)problem.PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution.Specifically,PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies.After each expansion,PQA solves the MIS problem on the newly generated subgraph using QAOA+.In each run,PQA repeats the expansion and solving process until a predefined stopping condition is reached.Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57%(2.17%)of the qubits and 17.59%(6.43%)of the runtime compared with directly solving the original problem with QAOA+on Erd?s-Rényi(3-regular)graphs,highlighting the efficiency and scalability of PQA.
基金supported by the Major Science and Technology Programs in Henan Province(No.241100210100)Henan Provincial Science and Technology Research Project(No.252102211085,No.252102211105)+3 种基金Endogenous Security Cloud Network Convergence R&D Center(No.602431011PQ1)The Special Project for Research and Development in Key Areas of Guangdong Province(No.2021ZDZX1098)The Stabilization Support Program of Science,Technology and Innovation Commission of Shenzhen Municipality(No.20231128083944001)The Key scientific research projects of Henan higher education institutions(No.24A520042).
文摘Existing feature selection methods for intrusion detection systems in the Industrial Internet of Things often suffer from local optimality and high computational complexity.These challenges hinder traditional IDS from effectively extracting features while maintaining detection accuracy.This paper proposes an industrial Internet ofThings intrusion detection feature selection algorithm based on an improved whale optimization algorithm(GSLDWOA).The aim is to address the problems that feature selection algorithms under high-dimensional data are prone to,such as local optimality,long detection time,and reduced accuracy.First,the initial population’s diversity is increased using the Gaussian Mutation mechanism.Then,Non-linear Shrinking Factor balances global exploration and local development,avoiding premature convergence.Lastly,Variable-step Levy Flight operator and Dynamic Differential Evolution strategy are introduced to improve the algorithm’s search efficiency and convergence accuracy in highdimensional feature space.Experiments on the NSL-KDD and WUSTL-IIoT-2021 datasets demonstrate that the feature subset selected by GSLDWOA significantly improves detection performance.Compared to the traditional WOA algorithm,the detection rate and F1-score increased by 3.68%and 4.12%.On the WUSTL-IIoT-2021 dataset,accuracy,recall,and F1-score all exceed 99.9%.
基金Supported by the National Natural Science Foundation of China(60974107)the Research Foundation of Nanjing University of Aeronautics and Astronautics(2010219)~~
文摘The traditional algorithms for formation flying satellites treat the satellite position and attitude sepa- rately. A novel algorithm combining satellite attitude with position is proposed. The principal satellite trajectory is obtained by dual quaternion interpolation, then the relative position and attitude of the deputy satellite are ob- tained by dual quaternion modeling on the principal satellite. Through above process, relative position and atti- tude are unified. Compared with the orbital parameter and the quaternion methods, the simulation result proves that the algorithm can unify position and attitude, and satisfy the precision requirement of formation flying satel- lites.
文摘For the vector attitude determination, the traditional optimal algorithms which are based on quaternion estimator(QUEST) measurement noise model are complicated for just two observations. In our application, the magnetometer and accelerometer are not two comparable kinds of sensors and both are not small field-of-view sensors as well. So in this paper a new unit measurement model is derived. According to the Wahba problem, the optimal weights for each measurement are obtained by the error variance researches. Then an improved quaternion Gauss–Newton method is presented and adopted to acquire attitude. Eventually, simulation results and experimental validation employed to test the proposed method demonstrate the usefulness of the improved algorithm.
基金supported by the Fundamental Research Funds for the Central Universities(YWF-13D2-XX-13)the National High-tech Research and Development Program(863 Program)(2008AA121802)
文摘A hybrid method for synthesizing antenna's three dimensional (3D) pattern is proposed to obtain the low sidelobe feature of truncated cone conformal phased arrays. In this method, the elements of truncated cone conformal phased arrays are projected to the tangent plane in one generatrix of the truncated cone. Then two dimensional (2D) Chebyshev amplitude distribution optimization is respectively used in two mutual vertical directions of the tangent plane. According to the location of the elements, the excitation current amplitude distribution of each element on the conformal structure is derived reversely, then the excitation current amplitude is further optimized by using the genetic algorithm (GA). A truncated cone problem with 8x8 elements on it, and a 3D pattern desired side lobe level (SLL) up to 35 dB, is studied. By using the hybrid method, the optimal goal is accomplished with acceptable CPU time, which indicates that this hybrid method for the low sidelobe synthesis is feasible.
基金Project supported by the National Basic Research Program (973) of China (No. 2002CB312200) and the Center for Bioinformatics Pro-gram Grant of Harvard Center of Neurodegeneration and Repair,Harvard Medical School, Harvard University, Boston, USA
文摘In microarray-based cancer classification, gene selection is an important issue owing to the large number of variables and small number of samples as well as its non-linearity. It is difficult to get satisfying results by using conventional linear sta- tistical methods. Recursive feature elimination based on support vector machine (SVM RFE) is an effective algorithm for gene selection and cancer classification, which are integrated into a consistent framework. In this paper, we propose a new method to select parameters of the aforementioned algorithm implemented with Gaussian kernel SVMs as better alternatives to the common practice of selecting the apparently best parameters by using a genetic algorithm to search for a couple of optimal parameter. Fast implementation issues for this method are also discussed for pragmatic reasons. The proposed method was tested on two repre- sentative hereditary breast cancer and acute leukaemia datasets. The experimental results indicate that the proposed method per- forms well in selecting genes and achieves high classification accuracies with these genes.
文摘The variety of encryption mechanism and algorithms which were conventionally used have some limitations.The kernel operator library based on Cryptographic algorithm is put forward. Owing to the impenetrability of algorithm, the data transfer system with the cryptographic algorithm library has many remarkable advantages in algorithm rebuilding and optimization,easily adding and deleting algorithm, and improving the security power over the traditional algorithm. The user can choose any one in all algorithms with the method against any attack because the cryptographic algorithm library is extensible.
基金Project supported by the National Natural Science Foundation of China (Grant No. 10117733), the Shanghai Leading Academic Discipline Project (Grant No.J50101), and the Foundation of Scientific Research for Selecting and Cultivating Young Excellent University Teachers in Shanghai (Grant No.06XPYQ52)
文摘Interior-point methods (IPMs) for linear optimization (LO) and semidefinite optimization (SDO) have become a hot area in mathematical programming in the last decades. In this paper, a new kernel function with simple algebraic expression is proposed. Based on this kernel function, a primal-dual interior-point methods (IPMs) for semidefinite optimization (SDO) is designed. And the iteration complexity of the algorithm as O(n^3/4 log n/ε) with large-updates is established. The resulting bound is better than the classical kernel function, with its iteration complexity O(n log n/ε) in large-updates case.
基金Project supported by Dutch Organization for Scientific Research(Grant No .613 .000 .010)
文摘In this paper, primal-dual interior-point algorithm with dynamic step size is implemented for linear programming (LP) problems. The algorithms are based on a few kernel functions, including both serf-regular functions and non-serf-regular ones. The dynamic step size is compared with fixed step size for the algorithms in inner iteration of Newton step. Numerical tests show that the algorithms with dynaraic step size are more efficient than those with fixed step size.
基金supported by the National Natural Science Foundation of China(61271250)
文摘The backtracking search optimization algorithm(BSA) is one of the most recently proposed population-based evolutionary algorithms for global optimization. Due to its memory ability and simple structure, BSA has powerful capability to find global optimal solutions. However, the algorithm is still insufficient in balancing the exploration and the exploitation. Therefore, an improved adaptive backtracking search optimization algorithm combined with modified Hooke-Jeeves pattern search is proposed for numerical global optimization. It has two main parts: the BSA is used for the exploration phase and the modified pattern search method completes the exploitation phase. In particular, a simple but effective strategy of adapting one of BSA's important control parameters is introduced. The proposed algorithm is compared with standard BSA, three state-of-the-art evolutionary algorithms and three superior algorithms in IEEE Congress on Evolutionary Computation 2014(IEEE CEC2014) over six widely-used benchmarks and 22 real-parameter single objective numerical optimization benchmarks in IEEE CEC2014. The results of experiment and statistical analysis demonstrate the effectiveness and efficiency of the proposed algorithm.
基金supported by the National Natural Science Foundation of China(No.11573011)the Six Talent Peaks Project of Jiangsu Province(No.KTHY-058)+1 种基金the’333’Talent’s Project in Jiangsu Province(No.BRA2019244)the Research and Practice Innovation for Postgraduate in Jiangsu Province(No.KYCX20_2961)。
文摘Due to the atmospheric turbulence and the system noise, images are blurred in the astronomical or space object detection. Wavefront aberrations and system noise make the capability of detecting objects decrease greatly. A two-channel image restoration method based on alternating minimization is proposed to restore the turbulence degraded images. The images at different times are regarded as separate channels, then the object and the point spread function(PSF) are reconstructed in an alternative way. There are two optimization parameters in the algorithm: the object and the PSF. Each optimization step is transformed into a constraint problem by variable splitting and processed by the augmented Lagrangian method. The results of simulation and actual experiment verify that the two-channel image restoration method can always converge rapidly within five iterations, and values of normalized root mean square error(NRMSE) remain below 3% after five iterations. Standard deviation data show that optimized alternating minimization(OAM) has strong stability and adaptability to different turbulent levels and noise levels. Restored images are approximate to the ideal imaging by visual assessment, even though atmospheric turbulence and systemnoise have a strong impact on imaging. Additionally, the method can remove noise effectively during the process of image restoration.
基金supported by the National Natural Science Foundation of China(No.61174126)
文摘For the navigation algorithm of the strapdown inertial navigation system,by comparing to the equations of the dual quaternion and quaternion,the superiority of the attitude algorithm based on dual quaternion over the ones based on rotation vector in accuracy is analyzed in the case of the rotation of navigation frame.By comparing the update algorithm of the gravitational velocity in dual quaternion solution with the compensation algorithm of the harmful acceleration in traditional velocity solution,the accuracy advantage of the gravitational velocity based on dual quaternion is addressed.In view of the idea of the attitude and velocity algorithm based on dual quaternion,an improved navigation algorithm is proposed,which is as much as the rotation vector algorithm in computational complexity.According to this method,the attitude quaternion does not require compensating as the navigation frame rotates.In order to verify the correctness of the theoretical analysis,simulations are carried out utilizing the software,and the simulation results show that the accuracy of the improved algorithm is approximately equal to the dual quaternion algorithm.
基金Supported by the Natural Science Foundation of Hubei Province (2008CDZD47)
文摘In this paper, we design a primal-dual interior-point algorithm for linear optimization. Search directions and proximity function are proposed based on a new kernel function which includes neither growth term nor barrier term. Iteration bounds both for large-and small-update methods are derived, namely, O(nlog(n/c)) and O(√nlog(n/ε)). This new kernel function has simple algebraic expression and the proximity function has not been used before. Analogous to the classical logarithmic kernel function, our complexity analysis is easier than the other pri- mal-dual interior-point methods based on logarithmic barrier functions and recent kernel functions.
基金Supported by the National Natural Science Foundation of China (60573032, 90604036)Participation in Research Project of Shanghai Jiao Tong University
文摘The security of international date encryption algorithm (IDEA(16)), a mini IDEA cipher, against differential cryptanalysis is investigated. The results show that [DEA(16) is secure against differential cryptanalysis attack after 5 rounds while IDEA(8) needs 7 rounds for the same level of security. The transition matrix for IDEA(16) and its eigenvalue of second largest magnitude are computed. The storage method for the transition matrix has been optimized to speed up file I/O. The emphasis of the work lies in finding out an effective way of computing the eigenvalue of the matrix. To lower time complexity, three mature algorithms in finding eigenvalues are compared from one another and subspace iteration algorithm is employed to compute the eigenvalue of second largest module, with a precision of 0.001.