期刊文献+
共找到280,597篇文章
< 1 2 250 >
每页显示 20 50 100
DDoS Attack Tracking Using Multi-Round Iterative Viterbi Algorithm in Satellite Internet
1
作者 Guo Wei Xu Jin +2 位作者 Pei Yukui Yin Liuguo Feng Wei 《China Communications》 2025年第3期148-163,共16页
Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant ... Satellite Internet(SI)provides broadband access as a critical information infrastructure in 6G.However,with the integration of the terrestrial Internet,the influx of massive terrestrial traffic will bring significant threats to SI,among which DDoS attack will intensify the erosion of limited bandwidth resources.Therefore,this paper proposes a DDoS attack tracking scheme using a multi-round iterative Viterbi algorithm to achieve high-accuracy attack path reconstruction and fast internal source locking,protecting SI from the source.Firstly,to reduce communication overhead,the logarithmic representation of the traffic volume is added to the digests after modeling SI,generating the lightweight deviation degree to construct the observation probability matrix for the Viterbi algorithm.Secondly,the path node matrix is expanded to multi-index matrices in the Viterbi algorithm to store index information for all probability values,deriving the path with non-repeatability and maximum probability.Finally,multiple rounds of iterative Viterbi tracking are performed locally to track DDoS attack based on trimming tracking results.Simulation and experimental results show that the scheme can achieve 96.8%tracking accuracy of external and internal DDoS attack at 2.5 seconds,with the communication overhead at 268KB/s,effectively protecting the limited bandwidth resources of SI. 展开更多
关键词 DDoS tracking iterative Viterbi algorithm satellite Internet 6G
在线阅读 下载PDF
NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization
2
作者 Hui Lv Yuer Yang Yifeng Lin 《Computers, Materials & Continua》 2025年第10期925-953,共29页
It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional ... It is evident that complex optimization problems are becoming increasingly prominent,metaheuristic algorithms have demonstrated unique advantages in solving high-dimensional,nonlinear problems.However,the traditional Sparrow Search Algorithm(SSA)suffers from limited global search capability,insufficient population diversity,and slow convergence,which often leads to premature stagnation in local optima.Despite the proposal of various enhanced versions,the effective balancing of exploration and exploitation remains an unsolved challenge.To address the previously mentioned problems,this study proposes a multi-strategy collaborative improved SSA,which systematically integrates four complementary strategies:(1)the Northern Goshawk Optimization(NGO)mechanism enhances global exploration through guided prey-attacking dynamics;(2)an adaptive t-distribution mutation strategy balances the transition between exploration and exploitation via dynamic adjustment of the degrees of freedom;(3)a dual chaotic initialization method(Bernoulli and Sinusoidal maps)increases population diversity and distribution uniformity;and(4)an elite retention strategy maintains solution quality and prevents degradation during iterations.These strategies cooperate synergistically,forming a tightly coupled optimization framework that significantly improves search efficiency and robustness.Therefore,this paper names it NTSSA:A Novel Multi-Strategy Enhanced Sparrow Search Algorithm with Northern Goshawk Optimization and Adaptive t-Distribution for Global Optimization.Extensive experiments on the CEC2005 benchmark set demonstrate that NTSSA achieves theoretical optimal accuracy on unimodal functions and significantly enhances global optimum discovery for multimodal functions by 2–5 orders of magnitude.Compared with SSA,GWO,ISSA,and CSSOA,NTSSA improves solution accuracy by up to 14.3%(F8)and 99.8%(F12),while accelerating convergence by approximately 1.5–2×.The Wilcoxon rank-sum test(p<0.05)indicates that NTSSA demonstrates a statistically substantial performance advantage.Theoretical analysis demonstrates that the collaborative synergy among adaptive mutation,chaos-based diversification,and elite preservation ensures both high convergence accuracy and global stability.This work bridges a key research gap in SSA by realizing a coordinated optimization mechanism between exploration and exploitation,offering a robust and efficient solution framework for complex high-dimensional problems in intelligent computation and engineering design. 展开更多
关键词 Sparrow search algorithm multi-strategy fusion T-DISTRIBUTION elite retention strategy wilcoxon rank-sum test
在线阅读 下载PDF
A Tolerant and Energy Optimization Approach for Internet of Things to Enhance the QoS Using Adaptive Blended Marine Predators Algorithm
3
作者 Vijaya Krishna Akula Tan Kuan Tak +2 位作者 Pravin Ramdas Kshirsagar Shrikant Vijayrao Sonekar Gopichand Ginnela 《Computers, Materials & Continua》 2025年第5期2449-2479,共31页
The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This pape... The rapid expansion of Internet of Things(IoT)networks has introduced challenges in network management,primarily in maintaining energy efficiency and robust connectivity across an increasing array of devices.This paper introduces the Adaptive Blended Marine Predators Algorithm(AB-MPA),a novel optimization technique designed to enhance Quality of Service(QoS)in IoT systems by dynamically optimizing network configurations for improved energy efficiency and stability.Our results represent significant improvements in network performance metrics such as energy consumption,throughput,and operational stability,indicating that AB-MPA effectively addresses the pressing needs ofmodern IoT environments.Nodes are initiated with 100 J of stored energy,and energy is consumed at 0.01 J per square meter in each node to emphasize energy-efficient networks.The algorithm also provides sufficient network lifetime extension to a resourceful 7000 cycles for up to 200 nodes with a maximum Packet Delivery Ratio(PDR)of 99% and a robust network throughput of up to 1800 kbps in more compact node configurations.This study proposes a viable solution to a critical problem and opens avenues for further research into scalable network management for diverse applications. 展开更多
关键词 Internet of things trust energy marine predators algorithm(MPA) differential evolution(DE) NODES throughput lifetime
在线阅读 下载PDF
Patterns in Heuristic Optimization Algorithms: A Comprehensive Analysis
4
作者 Robertas Damasevicius 《Computers, Materials & Continua》 2025年第2期1493-1538,共46页
Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality ... Heuristic optimization algorithms have been widely used in solving complex optimization problems in various fields such as engineering,economics,and computer science.These algorithms are designed to find high-quality solutions efficiently by balancing exploration of the search space and exploitation of promising solutions.While heuristic optimization algorithms vary in their specific details,they often exhibit common patterns that are essential to their effectiveness.This paper aims to analyze and explore common patterns in heuristic optimization algorithms.Through a comprehensive review of the literature,we identify the patterns that are commonly observed in these algorithms,including initialization,local search,diversity maintenance,adaptation,and stochasticity.For each pattern,we describe the motivation behind it,its implementation,and its impact on the search process.To demonstrate the utility of our analysis,we identify these patterns in multiple heuristic optimization algorithms.For each case study,we analyze how the patterns are implemented in the algorithm and how they contribute to its performance.Through these case studies,we show how our analysis can be used to understand the behavior of heuristic optimization algorithms and guide the design of new algorithms.Our analysis reveals that patterns in heuristic optimization algorithms are essential to their effectiveness.By understanding and incorporating these patterns into the design of new algorithms,researchers can develop more efficient and effective optimization algorithms. 展开更多
关键词 Heuristic optimization algorithms design patterns INITIALIZATION local search diversity maintenance ADAPTATION STOCHASTICITY exploration EXPLOITATION search space metaheuristics
在线阅读 下载PDF
Progressive quantum algorithm for maximum independent set with quantum alternating operator ansatz
5
作者 Xiao-Hui Ni Ling-Xiao Li +3 位作者 Yan-Qi Song Zheng-Ping Jin Su-Juan Qin Fei Gao 《Chinese Physics B》 2025年第7期75-87,共13页
The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a prog... The quantum alternating operator ansatz algorithm(QAOA+)is widely used for constrained combinatorial optimization problems(CCOPs)due to its ability to construct feasible solution spaces.In this paper,we propose a progressive quantum algorithm(PQA)to reduce qubit requirements for QAOA+in solving the maximum independent set(MIS)problem.PQA iteratively constructs a subgraph likely to include the MIS solution of the original graph and solves the problem on it to approximate the global solution.Specifically,PQA starts with a small-scale subgraph and progressively expands its graph size utilizing heuristic expansion strategies.After each expansion,PQA solves the MIS problem on the newly generated subgraph using QAOA+.In each run,PQA repeats the expansion and solving process until a predefined stopping condition is reached.Simulation results show that PQA achieves an approximation ratio of 0.95 using only 5.57%(2.17%)of the qubits and 17.59%(6.43%)of the runtime compared with directly solving the original problem with QAOA+on Erd?s-Rényi(3-regular)graphs,highlighting the efficiency and scalability of PQA. 展开更多
关键词 quantum alternating operator ansatz algorithm(QAOA+) constrained combinatorial optimization problems(CCOPs) maximum independent set(MIS) feasible space
原文传递
A Full-Newton Step Feasible Interior-Point Algorithm for the Special Weighted Linear Complementarity Problems Based on a Kernel Function 被引量:2
6
作者 GENG Jie ZHANG Mingwang ZHU Dechun 《Wuhan University Journal of Natural Sciences》 CAS CSCD 2024年第1期29-37,共9页
In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear ... In this paper,a new full-Newton step primal-dual interior-point algorithm for solving the special weighted linear complementarity problem is designed and analyzed.The algorithm employs a kernel function with a linear growth term to derive the search direction,and by introducing new technical results and selecting suitable parameters,we prove that the iteration bound of the algorithm is as good as best-known polynomial complexity of interior-point methods.Furthermore,numerical results illustrate the efficiency of the proposed method. 展开更多
关键词 interior-point algorithm weighted linear complementarity problem full-Newton step kernel function iteration complexity
原文传递
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
7
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining Roof fall Fuzzy logic Genetic algorithm
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
8
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
9
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
BAR:a branch-alternation-resorting algorithm for locality exploration in graph processing
10
作者 邓军勇 WANG Junjie +2 位作者 JIANG Lin XIE Xiaoyan ZHOU Kai 《High Technology Letters》 EI CAS 2024年第1期31-42,共12页
Unstructured and irregular graph data causes strong randomness and poor locality of data accesses in graph processing.This paper optimizes the depth-branch-resorting algorithm(DBR),and proposes a branch-alternation-re... Unstructured and irregular graph data causes strong randomness and poor locality of data accesses in graph processing.This paper optimizes the depth-branch-resorting algorithm(DBR),and proposes a branch-alternation-resorting algorithm(BAR).In order to make the algorithm run in parallel and improve the efficiency of algorithm operation,the BAR algorithm is mapped onto the reconfigurable array processor(APR-16)to achieve vertex reordering,effectively improving the locality of graph data.This paper validates the BAR algorithm on the GraphBIG framework,by utilizing the reordered dataset with BAR on breadth-first search(BFS),single source shortest paht(SSSP)and betweenness centrality(BC)algorithms for traversal.The results show that compared with DBR and Corder algorithms,BAR can reduce execution time by up to 33.00%,and 51.00%seperatively.In terms of data movement,the BAR algorithm has a maximum reduction of 39.00%compared with the DBR algorithm and 29.66%compared with Corder algorithm.In terms of computational complexity,the BAR algorithm has a maximum reduction of 32.56%compared with DBR algorithm and53.05%compared with Corder algorithm. 展开更多
关键词 graph processing vertex reordering branch-alternation-resorting algorithm(BAR) reconfigurable array processor
在线阅读 下载PDF
Internet of Things Enabled DDoS Attack Detection Using Pigeon Inspired Optimization Algorithm with Deep Learning Approach
11
作者 Turki Ali Alghamdi Saud S.Alotaibi 《Computers, Materials & Continua》 SCIE EI 2024年第9期4047-4064,共18页
Internet of Things(IoTs)provides better solutions in various fields,namely healthcare,smart transportation,home,etc.Recognizing Denial of Service(DoS)outbreaks in IoT platforms is significant in certifying the accessi... Internet of Things(IoTs)provides better solutions in various fields,namely healthcare,smart transportation,home,etc.Recognizing Denial of Service(DoS)outbreaks in IoT platforms is significant in certifying the accessibility and integrity of IoT systems.Deep learning(DL)models outperform in detecting complex,non-linear relationships,allowing them to effectually severe slight deviations fromnormal IoT activities that may designate a DoS outbreak.The uninterrupted observation and real-time detection actions of DL participate in accurate and rapid detection,permitting proactive reduction events to be executed,hence securing the IoT network’s safety and functionality.Subsequently,this study presents pigeon-inspired optimization with a DL-based attack detection and classification(PIODL-ADC)approach in an IoT environment.The PIODL-ADC approach implements a hyperparameter-tuned DL method for Distributed Denial-of-Service(DDoS)attack detection in an IoT platform.Initially,the PIODL-ADC model utilizes Z-score normalization to scale input data into a uniformformat.For handling the convolutional and adaptive behaviors of IoT,the PIODL-ADCmodel employs the pigeon-inspired optimization(PIO)method for feature selection to detect the related features,considerably enhancing the recognition’s accuracy.Also,the Elman Recurrent Neural Network(ERNN)model is utilized to recognize and classify DDoS attacks.Moreover,reptile search algorithm(RSA)based hyperparameter tuning is employed to improve the precision and robustness of the ERNN method.A series of investigational validations is made to ensure the accomplishment of the PIODL-ADC method.The experimental outcome exhibited that the PIODL-ADC method shows greater accomplishment when related to existing models,with a maximum accuracy of 99.81%. 展开更多
关键词 Internet of things denial of service deep learning reptile search algorithm feature selection
在线阅读 下载PDF
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
12
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
Enhancing Evolutionary Algorithms With Pattern Mining for Sparse Large-Scale Multi-Objective Optimization Problems
13
作者 Sheng Qi Rui Wang +3 位作者 Tao Zhang Weixiong Huang Fan Yu Ling Wang 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2024年第8期1786-1801,共16页
Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to tr... Sparse large-scale multi-objective optimization problems(SLMOPs)are common in science and engineering.However,the large-scale problem represents the high dimensionality of the decision space,requiring algorithms to traverse vast expanse with limited computational resources.Furthermore,in the context of sparse,most variables in Pareto optimal solutions are zero,making it difficult for algorithms to identify non-zero variables efficiently.This paper is dedicated to addressing the challenges posed by SLMOPs.To start,we introduce innovative objective functions customized to mine maximum and minimum candidate sets.This substantial enhancement dramatically improves the efficacy of frequent pattern mining.In this way,selecting candidate sets is no longer based on the quantity of nonzero variables they contain but on a higher proportion of nonzero variables within specific dimensions.Additionally,we unveil a novel approach to association rule mining,which delves into the intricate relationships between non-zero variables.This novel methodology aids in identifying sparse distributions that can potentially expedite reductions in the objective function value.We extensively tested our algorithm across eight benchmark problems and four real-world SLMOPs.The results demonstrate that our approach achieves competitive solutions across various challenges. 展开更多
关键词 Evolutionary algorithms pattern mining sparse large-scale multi-objective problems(SLMOPs) sparse large-scale optimization.
在线阅读 下载PDF
A Multi-Strategy-Improved Northern Goshawk Optimization Algorithm for Global Optimization and Engineering Design
14
作者 Liang Zeng Mai Hu +2 位作者 Chenning Zhang Quan Yuan Shanshan Wang 《Computers, Materials & Continua》 SCIE EI 2024年第7期1677-1709,共33页
Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the ... Optimization algorithms play a pivotal role in enhancing the performance and efficiency of systems across various scientific and engineering disciplines.To enhance the performance and alleviate the limitations of the Northern Goshawk Optimization(NGO)algorithm,particularly its tendency towards premature convergence and entrapment in local optima during function optimization processes,this study introduces an advanced Improved Northern Goshawk Optimization(INGO)algorithm.This algorithm incorporates a multifaceted enhancement strategy to boost operational efficiency.Initially,a tent chaotic map is employed in the initialization phase to generate a diverse initial population,providing high-quality feasible solutions.Subsequently,after the first phase of the NGO’s iterative process,a whale fall strategy is introduced to prevent premature convergence into local optima.This is followed by the integration of T-distributionmutation strategies and the State Transition Algorithm(STA)after the second phase of the NGO,achieving a balanced synergy between the algorithm’s exploitation and exploration.This research evaluates the performance of INGO using 23 benchmark functions alongside the IEEE CEC 2017 benchmark functions,accompanied by a statistical analysis of the results.The experimental outcomes demonstrate INGO’s superior achievements in function optimization tasks.Furthermore,its applicability in solving engineering design problems was verified through simulations on Unmanned Aerial Vehicle(UAV)trajectory planning issues,establishing INGO’s capability in addressing complex optimization challenges. 展开更多
关键词 Northern Goshawk Optimization tent chaotic map T-distribution disturbance state transition algorithm UAV path planning
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
15
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
16
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
17
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
18
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Congestion Control Algorithms for the Internet-A Secondary Publication
19
作者 Satoshi Utsumi 《Journal of Electronic Research and Application》 2024年第2期33-48,共16页
In the last five years,there has been a V-shaped recovery in the number of papers on congestion control algorithms on the Internet.In this paper,congestion problems on the Internet are discussed,such as congestion col... In the last five years,there has been a V-shaped recovery in the number of papers on congestion control algorithms on the Internet.In this paper,congestion problems on the Internet are discussed,such as congestion collapse and bufferbloat from the perspective of the necessity of congestion control algorithms.The typical congestion control algorithms are introduced,and the research areas and methods of congestion control algorithms are described.Recent research trends and future prospects of congestion control algorithms are also presented. 展开更多
关键词 TCP Congestion control algorithm CONGESTION INTernET
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部