期刊文献+
共找到282,120篇文章
< 1 2 250 >
每页显示 20 50 100
SL-COA:Hybrid Efficient and Enhanced Coati Optimization Algorithm for Structural Reliability Analysis
1
作者 Yunhan Ling Huajun Peng +4 位作者 Yiqing Shi Chao Xu Jingzhen Yan Jingjing Wang Hui Ma 《Computer Modeling in Engineering & Sciences》 2025年第4期767-808,共42页
Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence spee... Thetraditional first-order reliability method(FORM)often encounters challengeswith non-convergence of results or excessive calculation when analyzing complex engineering problems.To improve the global convergence speed of structural reliability analysis,an improved coati optimization algorithm(COA)is proposed in this paper.In this study,the social learning strategy is used to improve the coati optimization algorithm(SL-COA),which improves the convergence speed and robustness of the newheuristic optimization algorithm.Then,the SL-COAis comparedwith the latest heuristic optimization algorithms such as the original COA,whale optimization algorithm(WOA),and osprey optimization algorithm(OOA)in the CEC2005 and CEC2017 test function sets and two engineering optimization design examples.The optimization results show that the proposed SL-COA algorithm has a high competitiveness.Secondly,this study introduces the SL-COA algorithm into the MPP(Most Probable Point)search process based on FORM and constructs a new reliability analysis method.Finally,the proposed reliability analysis method is verified by four mathematical examples and two engineering examples.The results show that the proposed SL-COA-assisted FORM exhibits fast convergence and avoids premature convergence to local optima as demonstrated by its successful application to problems such as composite cylinder design and support bracket analysis. 展开更多
关键词 Hybrid reliability analysis single-loop interactive hybrid analysis most probability point metaheuristic algorithms coati optimization algorithm
在线阅读 下载PDF
多策略改进COA算法优化LSSVM的变压器故障诊断研究 被引量:2
2
作者 李斌 白翔旭 《电工电能新技术》 北大核心 2025年第4期112-119,共8页
为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混... 为解决变压器故障诊断准确率低的问题,本文提出一种多策略改进浣熊优化算法(ICOA)与最小二乘支持向量机(LSSVM)相结合的变压器故障诊断方法。首先,通过核主成分分析(KPCA)将变压器故障数据集进行特征提取,降低故障数据维度;其次,应用混沌映射、透镜反向学习、Levy飞行等策略对浣熊优化算法(COA)进行优化,提高全局寻优能力;然后,应用ICOA算法进行LSSVM参数寻优,构建ICOA-LSSVM故障诊断模型;最后,将特征提取后的数据导入ICOA-LSSVM中并与其他模型对比。实验结果表明所提方法准确率为96.19%,相比其他诊断模型具有更高的故障诊断精度。 展开更多
关键词 变压器故障诊断 浣熊优化算法 核主成分分析 最小二乘支持向量机
在线阅读 下载PDF
基于K均值聚类和VMD-COA-BiLSTM的光伏功率预测 被引量:1
3
作者 查航伟 成燕 黄瑞承 《热能动力工程》 北大核心 2025年第5期157-165,共9页
光伏发电功率受气象因素的影响呈现出不稳定性和间歇性,准确预测光伏功率有助于实现大规模并网并保障电网的稳定运行。以澳大利亚DKASC Solar Centre光伏电站数据为研究对象,提出一种基于气象相似日的变分模态分解算法、长鼻浣熊算法和... 光伏发电功率受气象因素的影响呈现出不稳定性和间歇性,准确预测光伏功率有助于实现大规模并网并保障电网的稳定运行。以澳大利亚DKASC Solar Centre光伏电站数据为研究对象,提出一种基于气象相似日的变分模态分解算法、长鼻浣熊算法和双向长短期记忆神经网络(VMD-COA-BiLSTM)的光伏功率短期预测模型。针对光伏数据的复杂非线性特征、噪声干扰以及高维特征等问题,通过K均值聚类将数据划分为3种天气类型,增强模型映射能力;利用VMD将聚类之后的原始信号分解,采用中心频率法确定最佳模态数,充分提取集合中的输入因素信息,提高数据质量;将分解后的各分量分别输入BiLSTM网络进行预测,采用COA优化BiLSTM的超参数配置,实现不同天气类型下的光伏功率的准确预测。结果表明:K均值聚类和VMD算法有效提升了数据质量,增强了输入、输出数据的耦合强度;COA优化BiLSTM模型在优化能力和收敛速度上均优于粒子群算法(PSO);所提出的VMD-COA-BiLSTM模型在晴天、多云和阴雨天的RMSE分别降低了35.24%,45.54%和42.88%,显著提高了预测精度,且能适应不同环境下的可靠预测。 展开更多
关键词 光伏发电功率 预测 K-MEANS聚类 变分模态分解 长鼻浣熊算法 双向长短期记忆神经网络
原文传递
基于ICOA-P&O算法的MPPT控制研究
4
作者 王金玉 李新宇 董秀波 《自动化与仪表》 2025年第4期6-10,28,共6页
在光伏阵列发生局部遮荫时会出现多个功率极值点,传统的MPPT控制算法以及一般的优化算法不能够准确地跟踪光伏最大功率点(MPP),进而导致整个光伏系统的效率降低。小龙虾优化算法(COA)是2023年提出的一种优化算法,该文针对光伏阵列功率... 在光伏阵列发生局部遮荫时会出现多个功率极值点,传统的MPPT控制算法以及一般的优化算法不能够准确地跟踪光伏最大功率点(MPP),进而导致整个光伏系统的效率降低。小龙虾优化算法(COA)是2023年提出的一种优化算法,该文针对光伏阵列功率多峰值的问题,选取对应的多峰值函数对小龙虾算法与其他优化算法进行测试,验证了小龙虾算法的优异性能。为了应对光伏MPP跟踪的实际问题,提出了一种改进小龙虾算法(ICOA)与二分步长的扰动观察法(P&O)相结合的复合算法跟踪MPP,通过在Simulink中模拟静态遮荫与动态遮荫,验证了所提算法可以快速准确地跟踪到MPP。 展开更多
关键词 小龙虾算法 扰动观察 局部遮荫 最大功率点跟踪
在线阅读 下载PDF
基于MICOA的随钻加速度计误差在线补偿 被引量:1
5
作者 杨金显 贺紫薇 《电子测量与仪器学报》 北大核心 2025年第1期187-194,共8页
为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法。首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数。... 为了提高随钻加速度计测量精度,设计一种基于磁惯性长鼻浣熊算法的加速度计误差在线补偿方法。首先,根据误差来源建立误差补偿模型;利用陀螺仪和磁强计建立重力夹角与磁重力夹角约束条件;将加速度真值与理论值模值之差设置为目标函数。其次,在长鼻浣熊算法基础上,根据递推重力加速度确定误差参数的初始搜索边界,同时根据当前误差参数、最优误差参数、边界值三者的相对距离缩小边界;再设计分界点筛选初始误差参数,使算法最初就朝着高质量解的方向搜索,同时保留部分劣解以增加误差参数多样性;接着在算法的全局探索阶段设计参数使其根据加速度计当前误差参数与误差参数平均值之间的误差来调整加速度计误差参数的搜索范围;最后,将重力模值之比设为深度开发阈值,构造高斯变异个体向量使加速度计误差参数跳出局部最优。实验结果表明:经MICOA补偿之后,加速度误差减小,井斜角范围降低了约62.5%,不同钻进角度下,井斜角均方根误差与标准差均能保持在1°以下。 展开更多
关键词 随钻测量 加速度计 长鼻浣熊算法 误差补偿 井斜角
原文传递
Research on multiple-strategy improved coati optimization algorithm for engineering applications
6
作者 GAO Yaqiong WU Jin +1 位作者 SU Zhengdong LI Chaoxing 《High Technology Letters》 EI CAS 2024年第4期405-414,共10页
In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and ... In this paper,a multi-strategy improved coati optimization algorithm(MICOA)for engineering applications is proposed to improve the performance of the coati optimization algorithm(COA)in terms of convergence speed and convergence accuracy.First,a chaotic mapping is applied to initial-ize the population in order to improve the quality of the population and thus the convergence speed of the algorithm.Second,the prey’s position is improved during the prey-hunting phase.Then,the COA is combined with the particle swarm optimization(PSO)and the golden sine algorithm(Gold-SA),and the position is updated with probabilities to avoid local extremes.Finally,a population decreasing strategy is applied as a way to improve the performance of the algorithm in a comprehen-sive approach.The paper compares the proposed algorithm MICOA with 7 well-known meta-heuristic optimization algorithms and evaluates the algorithm in 23 test functions as well as engineering appli-cation.Experimental results show that the MICOA proposed in this paper has good effectiveness and superiority,and has a strong competitiveness compared with the comparison algorithms. 展开更多
关键词 coati optimization algorithm(coa) chaotic map multi-strategy
在线阅读 下载PDF
Fuzzy inference system using genetic algorithm and pattern search for predicting roof fall rate in underground coal mines
7
作者 Ayush Sahu Satish Sinha Haider Banka 《International Journal of Coal Science & Technology》 EI CAS CSCD 2024年第1期31-41,共11页
One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operati... One of the most dangerous safety hazard in underground coal mines is roof falls during retreat mining.Roof falls may cause life-threatening and non-fatal injuries to miners and impede mining and transportation operations.As a result,a reliable roof fall prediction model is essential to tackle such challenges.Different parameters that substantially impact roof falls are ill-defined and intangible,making this an uncertain and challenging research issue.The National Institute for Occupational Safety and Health assembled a national database of roof performance from 37 coal mines to explore the factors contributing to roof falls.Data acquired for 37 mines is limited due to several restrictions,which increased the likelihood of incompleteness.Fuzzy logic is a technique for coping with ambiguity,incompleteness,and uncertainty.Therefore,In this paper,the fuzzy inference method is presented,which employs a genetic algorithm to create fuzzy rules based on 109 records of roof fall data and pattern search to refine the membership functions of parameters.The performance of the deployed model is evaluated using statistical measures such as the Root-Mean-Square Error,Mean-Absolute-Error,and coefficient of determination(R_(2)).Based on these criteria,the suggested model outperforms the existing models to precisely predict roof fall rates using fewer fuzzy rules. 展开更多
关键词 Underground coal mining Roof fall Fuzzy logic Genetic algorithm
在线阅读 下载PDF
结合分子对接技术研究牦牛乳苦味肽RK7和KQ7的HMG-CoA还原酶抑制活性
8
作者 王鹏 梁琪 +1 位作者 赵保堂 宋雪梅 《食品与发酵工业》 北大核心 2025年第11期208-215,I0013-I0020,共16页
牦牛乳干酪酪蛋白的苦味肽具有血管紧张素转换酶(angiotension converting enzyme,ACE)抑制活性、抑菌活性、抗糖活性等多种良好的生物活性。HMG-CoA还原酶是治疗高胆固醇血症(hypercholesterolemia,HC)的主要靶点之一,是体内生物合成... 牦牛乳干酪酪蛋白的苦味肽具有血管紧张素转换酶(angiotension converting enzyme,ACE)抑制活性、抑菌活性、抗糖活性等多种良好的生物活性。HMG-CoA还原酶是治疗高胆固醇血症(hypercholesterolemia,HC)的主要靶点之一,是体内生物合成胆固醇的关键限速酶。该试验以牦牛乳干酪苦味肽RPKHPIK(RK7)和KVLPVPQ(KQ7)为研究对象,阿托伐他汀、辛伐他汀、瑞舒伐他汀和普伐他汀为对照样品,通过生物信息学工具研究RK7和KQ7的理化性质,运用分子对接和分子动力学模拟揭示抑制HMG-CoA还原酶的作用机制,并结合体外试验测定RK7和KQ7对HMG-CoA还原酶的抑制活性。研究结果表明,RK7与KQ7的分子质量分别为874.90 Da和779.50 Da;RK7与KQ7以及4种他汀类药物均能与HMG-CoA还原酶生成配体-受体复合构象;将RK7和KQ7与抑制HMG-CoA还原酶肽数据库比对之后发现,KQ7与已知的抑制肽段相似度为75%,RK7为具有抑制HMG-CoA还原酶的新型抑制肽;体外试验表明,RK7和KQ7 HMG-CoA还原酶的IC50分别为1.045 mg/mL和1.228 mg/mL。该试验通过生物信息学平台及体外验证试验高效快速的获得牦牛乳源HMG-CoA还原酶抑制肽,并通过分子对接及分子动力学模拟研究分子间的相互作用机制,为HMG-CoA还原酶抑制肽提供新的思路。 展开更多
关键词 牦牛乳干酪 苦味肽 分子对接 分子动力学 HMG-coa还原酶抑制活性
在线阅读 下载PDF
基于CoAtNet-LSTM模型的多传感器信息融合刀具磨损预测
9
作者 李亚 尚轩丞 +1 位作者 王海瑞 朱贵富 《计量学报》 北大核心 2025年第10期1433-1445,共13页
基于长短时记忆网络(LSTM)与CoAtNet网络,提出了一种刀具磨损预测CoAtNet-LSTM模型。在时域、频域、时频域中提取传感器信号特征,并通过孤立森林算法进行信号特征异常值处理,再将其输入预测模型中获得刀具磨损预测值并通过Hyperband算... 基于长短时记忆网络(LSTM)与CoAtNet网络,提出了一种刀具磨损预测CoAtNet-LSTM模型。在时域、频域、时频域中提取传感器信号特征,并通过孤立森林算法进行信号特征异常值处理,再将其输入预测模型中获得刀具磨损预测值并通过Hyperband算法优化模型超参数。应用PHM2010数控铣床刀具数据集验证训练模型的预测精度。实验结果表明,该模型的决定系数相较于原CoAtNet和LSTM网络模型平均提升了12.73%、16.44%。 展开更多
关键词 几何量计量 刀具磨损 coatNet-LSTM模型 长短期时间记忆网络 Hyperband算法 孤立森林算法
在线阅读 下载PDF
基于CH-COA神经网络的飞机后机身眼镜框装配实时变形预测研究
10
作者 刘畅 刘红军 《南方农机》 2025年第S1期156-159,共4页
【目的】解决后机身眼镜框装配变形预测的难题,实现眼镜框壁板变形量的精确预测。【方法】提出了一种改进的神经网络预测算法,首先,利用小龙虾群优化算法(COA)将神经网络的初始值和阈值进行初步优化。其次,在算法觅食阶段引入天鹰座优... 【目的】解决后机身眼镜框装配变形预测的难题,实现眼镜框壁板变形量的精确预测。【方法】提出了一种改进的神经网络预测算法,首先,利用小龙虾群优化算法(COA)将神经网络的初始值和阈值进行初步优化。其次,在算法觅食阶段引入天鹰座优化算法(AO)第一阶段来弥补全局搜索能力的不足,调整搜索边界、扩展搜索策略,并引入垂直交叉操作进行多维度搜索,提高预测精准度,从而建立了CH-COA后机身眼镜框装配变形预测模型。最后,利用ANSYS软件获取50组眼镜框变形数据作为神经网络的训练和预测数据,对神经网络模型进行了训练,并分别与未改进的COA、MOV、HHO、MPA预测模型进行了对比。【结果】基于CH-COA神经网络模型的后机身眼镜框装配变形预测精度标准差为0.21%,显著低于其他算法,验证了CH-COA具有更好的稳定性和可靠性。【结论】本研究创新性地提出了基于垂直交叉操作的解更新机制、设计了动态调整的缩放因子、引入了边界处理策略,可为后机身装配中的形变控制提供理论支持与技术参考。 展开更多
关键词 变形预测 coa优化算法 BP神经网络 ANSYS仿真
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
11
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
12
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
13
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
AI-Integrated Feature Selection of Intrusion Detection for Both SDN and Traditional Network Architectures Using an Improved Crayfish Optimization Algorithm
14
作者 Hui Xu Wei Huang Longtan Bai 《Computers, Materials & Continua》 2025年第8期3053-3073,共21页
With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with ... With the birth of Software-Defined Networking(SDN),integration of both SDN and traditional architectures becomes the development trend of computer networks.Network intrusion detection faces challenges in dealing with complex attacks in SDN environments,thus to address the network security issues from the viewpoint of Artificial Intelligence(AI),this paper introduces the Crayfish Optimization Algorithm(COA)to the field of intrusion detection for both SDN and traditional network architectures,and based on the characteristics of the original COA,an Improved Crayfish Optimization Algorithm(ICOA)is proposed by integrating strategies of elite reverse learning,Levy flight,crowding factor and parameter modification.The ICOA is then utilized for AI-integrated feature selection of intrusion detection for both SDN and traditional network architectures,to reduce the dimensionality of the data and improve the performance of network intrusion detection.Finally,the performance evaluation is performed by testing not only the NSL-KDD dataset and the UNSW-NB 15 dataset for traditional networks but also the InSDN dataset for SDN-based networks.Experimental results show that ICOA improves the accuracy by 0.532%and 2.928%respectively compared with GWO and COA in traditional networks.In SDN networks,the accuracy of ICOA is 0.25%and 0.3%higher than COA and PSO.These findings collectively indicate that AI-integrated feature selection based on the proposed ICOA can promote network intrusion detection for both SDN and traditional architectures. 展开更多
关键词 Software-defined networking(SDN) intrusion detection artificial intelligence(AI) feature selection crayfish optimization algorithm(coa)
在线阅读 下载PDF
COA6在乳腺癌中的表达及其与肿瘤免疫细胞浸润相关
15
作者 金晓霞 刘玉山 +1 位作者 胡继平 朱兴华 《基础医学与临床》 2025年第6期755-761,共7页
目的 检测细胞色素c氧化酶组装因子6(COA6)在乳腺癌中的表达及临床意义,分析COA6与乳腺癌免疫浸润的相关性。方法 全转录组测序筛选差异基因,并联合TCGA数据库验证COA6的表达。免疫组化技术检测125例乳腺癌组织及癌旁组织COA6蛋白表达,... 目的 检测细胞色素c氧化酶组装因子6(COA6)在乳腺癌中的表达及临床意义,分析COA6与乳腺癌免疫浸润的相关性。方法 全转录组测序筛选差异基因,并联合TCGA数据库验证COA6的表达。免疫组化技术检测125例乳腺癌组织及癌旁组织COA6蛋白表达,分析其与临床特征的相关性。分别用qRT-PCR、Western blot检测乳腺癌细胞、组织中COA6 mRNA及蛋白表达。利用TIMER数据库分析COA6基因的高表达与免疫细胞浸润的关系。结果 乳腺癌组织中COA6的阳性表达率为(88%, 110/125),显著高于癌旁组织(7.2%, 9/125)(P<0.05),并且与肿瘤的大小和组织学分级呈正相关。在新鲜乳腺癌组织中,COA6蛋白的表达水平明显高于癌旁组织。在乳腺癌细胞系中,COA6 mRNA和蛋白表达均明显增加。COA6与辅助T细胞、NK细胞、CD8+T细胞、M1型巨噬细胞、调节性T细胞、树突细胞、记忆性CD4+T细胞在肿瘤微环境中的浸润有关。结论 COA6在乳腺癌中的表达水平升高,并且与肿瘤免疫浸润呈正相关,这为乳腺癌治疗提供了潜在的治疗靶点。 展开更多
关键词 细胞色素c氧化酶组装因子6(coa6) 乳腺癌 免疫组织化学 免疫浸润
暂未订购
基于COA优化BP神经网络的药厂温度控制研究
16
作者 张长天 张琦 +2 位作者 姚满 李智乐 张硕伦 《企业科技与发展》 2025年第2期96-99,共4页
药厂技术车间因其占地面积大及高挑空的结构特点,形成一个温度控制较为复杂的滞后系统。在此环境下,传统的PID(比例-积分-微分)控制器难以实现自适应参数调整,而人工调节参数既烦琐,又无法确保达到最佳的控制效果。针对此问题,文章设计... 药厂技术车间因其占地面积大及高挑空的结构特点,形成一个温度控制较为复杂的滞后系统。在此环境下,传统的PID(比例-积分-微分)控制器难以实现自适应参数调整,而人工调节参数既烦琐,又无法确保达到最佳的控制效果。针对此问题,文章设计了一种新型控制器,该控制器结合基于小龙虾优化算法(Crayfish Optimization Algorithm,COA)来优化的BP(反向传播)神经网络算法与Smith预估补偿机器,旨在实现对药厂技术车间温度的精准控制。实验结果表明,相较于经典的PID控制器,这一新型控制器能显著降低超调量达33.2%,同时使稳态时间缩短了59.77%。这些数据验证了该控制器在药厂技术车间温度控制中的快速响应能力、准确性,以及在复杂环境下的优越性能。 展开更多
关键词 coa BP神经网络 SMITH预估器 PID 滞后
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
17
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
Research on Euclidean Algorithm and Reection on Its Teaching
18
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于COA-CNN模型的综采工作面煤与瓦斯突出灾害预测研究
19
作者 许爱国 《陕西煤炭》 2025年第2期62-66,共5页
随着煤矿开采持续向深部延伸,工作面面临的地质压力不断增大,瓦斯释放和积聚的风险显著增加。此外,深部矿井中煤层的物理性质和构造特征也与浅部煤层存在一定差异,进一步增加了煤与瓦斯突出的潜在风险。本研究基于某矿数据,首先应用箱线... 随着煤矿开采持续向深部延伸,工作面面临的地质压力不断增大,瓦斯释放和积聚的风险显著增加。此外,深部矿井中煤层的物理性质和构造特征也与浅部煤层存在一定差异,进一步增加了煤与瓦斯突出的潜在风险。本研究基于某矿数据,首先应用箱线图(Boxplot)与多重插补法(MI)进行数据清洗,结合相关系数(Correlation)筛选影响因素,建立基于Boxplot-MI-C的煤与瓦斯突出预测指标体系。然后运用深度学习中的卷积神经网络(CNN)搭建模型框架,结合鸬鹚搜索算法(COA)优化模型超参数,建立基于COA-CNN的煤与瓦斯突出预测模型。最后,建立支持向量机(SVM)、COA-SVM、人工神经网络(ANN)、COA-ANN、CNN模型进行对比验证,其中,COA-CNN模型预测结果的准确率最高,拥有更优的鲁棒性与泛化能力,可以为煤与瓦斯突出灾害的预测与防控提供更好的决策参考。 展开更多
关键词 煤与瓦斯突出 数据清洗 指标体系 coa优化算法 CNN预测模型
在线阅读 下载PDF
融合ICOA及PSM的轮毂电机多场耦合噪声优化
20
作者 吴华伟 李蒗 +2 位作者 李智 曾运运 彭建平 《重庆交通大学学报(自然科学版)》 北大核心 2025年第7期23-32,共10页
为削弱轮毂电机电磁振动噪声,以18槽16极14吋永磁轮毂电机为例,提出了一种融合改进浣熊优化算法(ICOA)及参数扫描法(PSM)的结构优化设计方法。建立基于PSM的齿槽转矩数据库,解析定子辅助槽数量对齿槽转矩的影响机理;构建基于自适应边界... 为削弱轮毂电机电磁振动噪声,以18槽16极14吋永磁轮毂电机为例,提出了一种融合改进浣熊优化算法(ICOA)及参数扫描法(PSM)的结构优化设计方法。建立基于PSM的齿槽转矩数据库,解析定子辅助槽数量对齿槽转矩的影响机理;构建基于自适应边界和淘汰机制的改进浣熊优化算法,设计基于ICOA的求解器对轮毂电机辅助槽进行优化,并与基于COA、MA、SSA的3种求解器对比寻优性能;搭建轮毂电机的结构场、电磁场及声场等多物理场耦合仿真模型,对比定子电枢结构优化前后的噪声声压级。研究结果表明:ICOA求解器在收敛速度和结果精度上优于其他求解器;优化后齿槽转矩幅值削弱59.08%;在空载时,电机转轴轴向的振动削弱了9.916×10^(3)mm/s^(2),转轴径向的振动削弱了2.1919×10^(4)mm/s^(2),A计权声压级减小了3.818 dB;在负载时,转轴轴向的振动削弱了4.8459×10^(4)mm/s^(2),转轴径向的振动削弱了4.4226×10^(4)mm/s^(2),A计权声压级减小了7.648 dB;7倍频振动得到有效抑制,噪声总体水平从70 dB级削弱到60 dB级,提高了驾乘人员的安全性和舒适性。 展开更多
关键词 车辆工程 轮毂电机 噪声优化 改进浣熊优化算法 参数扫描法 多场耦合
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部