期刊文献+
共找到280,677篇文章
< 1 2 250 >
每页显示 20 50 100
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
1
作者 Nour Elhouda Chalabi Abdelouahab Attia +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar 《Computer Modeling in Engineering & Sciences》 2025年第4期967-1008,共42页
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op... Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization. 展开更多
关键词 Multi-objective optimization chef-based optimization algorithm(Cboa) pareto dominance epsilon dominance cone-epsilon dominance strengthened dominance
在线阅读 下载PDF
结合不均衡样本生成及BOA-DRSN的扬声器异常声分类 被引量:1
2
作者 周静雷 李振业 +1 位作者 路昌 李丽敏 《西安工程大学学报》 2025年第4期37-45,共9页
扬声器生产过程中,其正常数据与故障数据比例可能会严重失调,从而导致样本分布不均匀,进而影响故障诊断模型的准确率及可靠性。因此,文中根据样本生成扩增和优化深度学习网络的理念提出了一种新的扬声器异常声分类方法。首先,考虑到原... 扬声器生产过程中,其正常数据与故障数据比例可能会严重失调,从而导致样本分布不均匀,进而影响故障诊断模型的准确率及可靠性。因此,文中根据样本生成扩增和优化深度学习网络的理念提出了一种新的扬声器异常声分类方法。首先,考虑到原始数据特征过于复杂而导致生成样本的质量较差,对扬声器异常声响应信号进行变分模态分解(variational mode decomposition,VMD)突出原始样本的局部特征;其次,从扩增样本角度出发提升模型故障诊断精度,使用最小二乘生成对抗网络(least squares generative adversarial networks,LSGAN)进行对抗训练,生成具有真实样本特征的虚拟样本;最后,选用蝴蝶优化算法(butterfly optimization algorithm,BOA)在大规模权重空间中高效寻优以加速模型收敛,利用深度残差收缩网络(deep residual shrinkage network,DRSN)模型进行扬声器异常声分类,从而提升在样本不均衡情况下的分类准确率及诊断稳定性。实验结果表明:该方法能有效降低误判率,在样本不均衡情况下有效提高故障诊断准确率以及分类诊断的稳定性,其分类平均准确率可达0.9912。 展开更多
关键词 故障诊断 数据不均衡 异常声分类 深度残差收缩网络(DRSN) 蝴蝶优化算法(boa) 最小二乘生成对抗网络(LSGAN)
在线阅读 下载PDF
基于BOA-SVM的冷源系统温度传感器偏差故障检测
3
作者 周璇 闫学成 +1 位作者 闫军威 梁列全 《控制理论与应用》 北大核心 2025年第5期921-930,共10页
针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性... 针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性故障数据,同时克服了SVM算法对核函数参数与惩罚因子强敏感性的问题.论文建立了广州市某办公建筑冷源系统Trnsys仿真模型,对室外干球、冷冻供水与冷却进水3种温度传感器不同程度的偏差故障进行模拟.仿真结果表明,与本文提出的其他方法相比,该方法准确率高,泛化能力及鲁棒性强,能够满足冷源系统温度传感器偏差故障的检测需求,保障空调系统的安全、高效与稳定运行. 展开更多
关键词 冷源系统 温度传感器 贝叶斯优化 支持向量机 故障检测 TRNSYS
在线阅读 下载PDF
基于BOA-SVR算法的弹射起飞安全性预测方法研究 被引量:1
4
作者 田煜 刘苗鑫 刘涛 《飞行力学》 北大核心 2025年第4期83-88,共6页
为保证舰载机弹射起飞的顺利实施,需要对弹射起飞进行安全性评估和预测。以大数据和机器学习评估技术入手,研究了基于蝴蝶优化算法的支持向量回归(BOA-SVR)弹射起飞安全性评估方法。首先梳理弹射起飞安全性影响因素和指标参数,明确评估... 为保证舰载机弹射起飞的顺利实施,需要对弹射起飞进行安全性评估和预测。以大数据和机器学习评估技术入手,研究了基于蝴蝶优化算法的支持向量回归(BOA-SVR)弹射起飞安全性评估方法。首先梳理弹射起飞安全性影响因素和指标参数,明确评估算法的输入和输出;其次研究BOA-SVR算法的实现,并利用仿真数据进行算法的回归分析和性能比较,结果表明所提出的算法比传统SVR算法具有更高的性能;最后使用弹射起飞安全性评估回归模型实现弹射起飞的安全性预测,并用于工况调整,对飞行试验和部队训练具有很好的实用性。 展开更多
关键词 弹射起飞 安全性预测 蝴蝶优化算法 支持向量回归
原文传递
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:3
5
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization Improved PSO algorithm
在线阅读 下载PDF
基于BOA-BP神经网络的四旋翼飞行器路径优化 被引量:1
6
作者 王舒玮 李嘉 +1 位作者 冯健 岳彩宾 《现代防御技术》 北大核心 2025年第3期74-81,共8页
针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了... 针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了最佳飞行路径。仿真结果表明,与传统的BOA算法相比,所提出的BOA-BP算法模型可以有效减小四旋翼飞行器路径的误差,均方根误差可从1.60%降低到0.003%。 展开更多
关键词 四旋翼 飞行器 蝴蝶优化算法 BP神经网络 路径优化 训练样本 误差处理
在线阅读 下载PDF
基于IBOA-DKF算法的锂电池SOC估计
7
作者 刘意期 王聪 黄建宇 《自动化仪表》 2025年第3期30-37,共8页
应用传统卡尔曼滤波(KF)算法估计锂电池荷电状态(SOC)时,噪声往往假设为一个固定值的零均值白噪声,从而导致锂电池SOC估计值误差随着迭代次数的增加而不断增大。对此,提出了一种改进蝴蝶优化算法-双卡尔曼滤波(IBOA-DKF)算法。将反向学... 应用传统卡尔曼滤波(KF)算法估计锂电池荷电状态(SOC)时,噪声往往假设为一个固定值的零均值白噪声,从而导致锂电池SOC估计值误差随着迭代次数的增加而不断增大。对此,提出了一种改进蝴蝶优化算法-双卡尔曼滤波(IBOA-DKF)算法。将反向学习策略及动态调整转换概率策略引入蝴蝶优化算法(BOA),可以提高收敛速度、均衡全局搜索及局部开发能力,从而对KF算法的噪声协方差矩阵进行迭代更新。在二阶电阻电容(RC)等效电路模型基础上,利用IBOA-DKF算法分别对内阻Rs与锂电池SOC进行估计。同时,通过两种动态工况测试数据进行仿真,验证了IBOA-DKF算法对锂电池SOC估计绝对值误差在1%以内,因而具备更高的精度、更好的收敛性及鲁棒性。该研究为锂电池SOC更高精度的估计提供了理论依据。 展开更多
关键词 锂电池 荷电状态 卡尔曼滤波 蝴蝶优化算法 等效电路模型
在线阅读 下载PDF
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
8
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
基于BOA‑VMD‑SVD的MEMS陀螺仪信号降噪方法研究
9
作者 马星河 闫崇威 《武汉大学学报(工学版)》 北大核心 2025年第7期1130-1138,共9页
针对微机电系统(micro-electro-mechanical system,MEMS)加速度计输出信号中随机噪声较大的问题,提出一种基于蝴蝶优化算法(butterfly optimization algorithm,BOA)的变分模态分解(variational mode decomposition,VMD)联合奇异值分解(s... 针对微机电系统(micro-electro-mechanical system,MEMS)加速度计输出信号中随机噪声较大的问题,提出一种基于蝴蝶优化算法(butterfly optimization algorithm,BOA)的变分模态分解(variational mode decomposition,VMD)联合奇异值分解(singular value decomposition,SVD)的随机噪声降噪方法。首先应用BOA-VMD算法将加速度计信号分解为K个最优的IMF(intrinsic mode function)分量;其次计算分解后的各IMF分量的排列熵值,并将其划分为加速度计信号主导的IMF分量、噪声主导的IMF分量以及噪声信号3种类型;再对噪声主导的IMF分量进行SVD分解降噪,舍弃噪声分量;最后将加速度计信号主导分量与降噪后的噪声主导分量进行重构,得到最终信号。仿真与实验数据表明:相较于VMD联合小波阈值方法,BOA-VMD-SVD算法的信噪比提高了19.8%,均方根误差下降了44.5%;相较于VMD-SVD算法,BOA-VMD-SVD算法的信噪比提高了15.6%,均方根误差下降了19.5%。这表明所提算法在处理MEMS加速度计信号中的随机噪声时具有更好的去噪效果,进而证明了所提方法的有效性。 展开更多
关键词 微机电系统 蝴蝶优化算法 奇异值分解 随机噪声 去噪
原文传递
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
10
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
11
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于CIBOA-LSSVM的超短期风电功率预测
12
作者 史彭珍 魏霞 +1 位作者 张国桢 谢丽蓉 《计算机仿真》 2025年第9期144-148,454,共6页
为了提升超短期风电功率预测精度,提出一种基于疯狂改进蝴蝶优化算法(Crazy Improvement Butterfly Optimization Algorithm, CIBOA)优化最小二乘支持向量机的组合风电功率预测模型。引入自适应权重和疯狂因子来改进蝴蝶优化算法从而提... 为了提升超短期风电功率预测精度,提出一种基于疯狂改进蝴蝶优化算法(Crazy Improvement Butterfly Optimization Algorithm, CIBOA)优化最小二乘支持向量机的组合风电功率预测模型。引入自适应权重和疯狂因子来改进蝴蝶优化算法从而提高算法的寻优能力,对比同类不同的群智能优化算法验证改进后算法性能;CIBOA对LSSVM模型中超参数寻优,得到最优的参数情况下,构建CIBOA-LSSVM风电功率预测模型。为了提高对风电功率的预测的真实性,充分考虑外界环境的影响(如风速、风向、温度和湿度等),引入评价指标,通过CIBOA-LSSVM与其它5种不同组合预测模型作对比仿真来验证其性能。仿真验证:CIBOA具有较好的寻优能力和收敛性,CIBOA-LSSVM组合模型较高的预测精度,有效提高超短期风电功率预测精度。 展开更多
关键词 预测精度 蝴蝶优化算法 群智能优化算法 组合预测模型
在线阅读 下载PDF
A LODBO algorithm for multi-UAV search and rescue path planning in disaster areas 被引量:1
13
作者 Liman Yang Xiangyu Zhang +2 位作者 Zhiping Li Lei Li Yan Shi 《Chinese Journal of Aeronautics》 2025年第2期200-213,共14页
In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms... In disaster relief operations,multiple UAVs can be used to search for trapped people.In recent years,many researchers have proposed machine le arning-based algorithms,sampling-based algorithms,and heuristic algorithms to solve the problem of multi-UAV path planning.The Dung Beetle Optimization(DBO)algorithm has been widely applied due to its diverse search patterns in the above algorithms.However,the update strategies for the rolling and thieving dung beetles of the DBO algorithm are overly simplistic,potentially leading to an inability to fully explore the search space and a tendency to converge to local optima,thereby not guaranteeing the discovery of the optimal path.To address these issues,we propose an improved DBO algorithm guided by the Landmark Operator(LODBO).Specifically,we first use tent mapping to update the population strategy,which enables the algorithm to generate initial solutions with enhanced diversity within the search space.Second,we expand the search range of the rolling ball dung beetle by using the landmark factor.Finally,by using the adaptive factor that changes with the number of iterations.,we improve the global search ability of the stealing dung beetle,making it more likely to escape from local optima.To verify the effectiveness of the proposed method,extensive simulation experiments are conducted,and the result shows that the LODBO algorithm can obtain the optimal path using the shortest time compared with the Genetic Algorithm(GA),the Gray Wolf Optimizer(GWO),the Whale Optimization Algorithm(WOA)and the original DBO algorithm in the disaster search and rescue task set. 展开更多
关键词 Unmanned aerial vehicle Path planning Meta heuristic algorithm DBO algorithm NP-hard problems
原文传递
基于InfoWorks ICM与BOA-SVM的城市内涝分级预警 被引量:1
14
作者 张俊翔 崔嘉宇 +3 位作者 史杨峰 班玉龙 罗青 吴杰 《吉林水利》 2025年第3期51-59,78,共10页
极端降雨事件及其导致的洪涝灾害频发,对城市居民生命财产安全构成严重威胁,科学有效的城市内涝风险预警方法对于提升城市内涝灾害的防治能力至关重要。本文将InfoWorks ICM模型与BOA-SVM模型相结合,对江苏省昆山市不同重现期下的内涝... 极端降雨事件及其导致的洪涝灾害频发,对城市居民生命财产安全构成严重威胁,科学有效的城市内涝风险预警方法对于提升城市内涝灾害的防治能力至关重要。本文将InfoWorks ICM模型与BOA-SVM模型相结合,对江苏省昆山市不同重现期下的内涝风险进行了分级预警,结果表明:构建的基于一维、二维耦合的昆山市内涝模拟InfoWorks ICM模型,经验证具有良好的精度和可靠性;BOA-SVM模型相较于SVM模型和GA-SVM模型具有更高的精度(MAE提升了67.9%和25.6%)和更快的运行速度(提升了52.6%和18.8%);随着降雨重现期的增加,昆山市的内涝风险预警等级随之增大。 展开更多
关键词 城市内涝 InfoWorks ICM boa-SVM 分级预警
在线阅读 下载PDF
Research on Euclidean Algorithm and Reection on Its Teaching
15
作者 ZHANG Shaohua 《应用数学》 北大核心 2025年第1期308-310,共3页
In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and t... In this paper,we prove that Euclid's algorithm,Bezout's equation and Divi-sion algorithm are equivalent to each other.Our result shows that Euclid has preliminarily established the theory of divisibility and the greatest common divisor.We further provided several suggestions for teaching. 展开更多
关键词 Euclid's algorithm Division algorithm Bezout's equation
在线阅读 下载PDF
基于BOA-RVM特征优选和Prophet-LSTM的锅炉受热面壁温预测
16
作者 麻淑芳 王秀慧 张晗 《锅炉技术》 北大核心 2025年第4期10-17,共8页
及时准确地对锅炉受热面壁温进行预测对于保证电厂的安全稳定运行具有重要意义。提出一种蝴蝶优化算法-相关向量机(BOA-RVM)和Prophet-长短时记忆神经网络(LSTM)相结合的锅炉受热面壁温预测组合模型。利用RVM筛选出与壁温相关性最高的... 及时准确地对锅炉受热面壁温进行预测对于保证电厂的安全稳定运行具有重要意义。提出一种蝴蝶优化算法-相关向量机(BOA-RVM)和Prophet-长短时记忆神经网络(LSTM)相结合的锅炉受热面壁温预测组合模型。利用RVM筛选出与壁温相关性最高的重要特征参数集合,降低后续预测模型的复杂度和运算量。针对RVM核参数选择难题,利用BOA对其进行全局寻优;利用Prophet模型对壁温数据进行自适应分解,将其分解为结构简单、波形平滑的趋势项、周期项和波动项,并分别建立LSTM模型进行预测。将预测结果综合叠加得到原始壁温数据的预测结果。基于实际锅炉运行数据开展试验,结果表明:所提方法预测结果的平均相对误差和均方根误差指标分别为0.15和1.06,相对于对比方法分别提升超过8.59%和9.22%。 展开更多
关键词 壁温预测 特征选择 长短时记忆神经网络 蝴蝶优化算法 参数寻优
在线阅读 下载PDF
DDoS Attack Autonomous Detection Model Based on Multi-Strategy Integrate Zebra Optimization Algorithm
17
作者 Chunhui Li Xiaoying Wang +2 位作者 Qingjie Zhang Jiaye Liang Aijing Zhang 《Computers, Materials & Continua》 SCIE EI 2025年第1期645-674,共30页
Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convol... Previous studies have shown that deep learning is very effective in detecting known attacks.However,when facing unknown attacks,models such as Deep Neural Networks(DNN)combined with Long Short-Term Memory(LSTM),Convolutional Neural Networks(CNN)combined with LSTM,and so on are built by simple stacking,which has the problems of feature loss,low efficiency,and low accuracy.Therefore,this paper proposes an autonomous detectionmodel for Distributed Denial of Service attacks,Multi-Scale Convolutional Neural Network-Bidirectional Gated Recurrent Units-Single Headed Attention(MSCNN-BiGRU-SHA),which is based on a Multistrategy Integrated Zebra Optimization Algorithm(MI-ZOA).The model undergoes training and testing with the CICDDoS2019 dataset,and its performance is evaluated on a new GINKS2023 dataset.The hyperparameters for Conv_filter and GRU_unit are optimized using the Multi-strategy Integrated Zebra Optimization Algorithm(MIZOA).The experimental results show that the test accuracy of the MSCNN-BiGRU-SHA model based on the MIZOA proposed in this paper is as high as 0.9971 in the CICDDoS 2019 dataset.The evaluation accuracy of the new dataset GINKS2023 created in this paper is 0.9386.Compared to the MSCNN-BiGRU-SHA model based on the Zebra Optimization Algorithm(ZOA),the detection accuracy on the GINKS2023 dataset has improved by 5.81%,precisionhas increasedby 1.35%,the recallhas improvedby 9%,and theF1scorehas increasedby 5.55%.Compared to the MSCNN-BiGRU-SHA models developed using Grid Search,Random Search,and Bayesian Optimization,the MSCNN-BiGRU-SHA model optimized with the MI-ZOA exhibits better performance in terms of accuracy,precision,recall,and F1 score. 展开更多
关键词 Distributed denial of service attack intrusion detection deep learning zebra optimization algorithm multi-strategy integrated zebra optimization algorithm
在线阅读 下载PDF
Bearing capacity prediction of open caissons in two-layered clays using five tree-based machine learning algorithms 被引量:1
18
作者 Rungroad Suppakul Kongtawan Sangjinda +3 位作者 Wittaya Jitchaijaroen Natakorn Phuksuksakul Suraparb Keawsawasvong Peem Nuaklong 《Intelligent Geoengineering》 2025年第2期55-65,共11页
Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered so... Open caissons are widely used in foundation engineering because of their load-bearing efficiency and adaptability in diverse soil conditions.However,accurately predicting their undrained bearing capacity in layered soils remains a complex challenge.This study presents a novel application of five ensemble machine(ML)algorithms-random forest(RF),gradient boosting machine(GBM),extreme gradient boosting(XGBoost),adaptive boosting(AdaBoost),and categorical boosting(CatBoost)-to predict the undrained bearing capacity factor(Nc)of circular open caissons embedded in two-layered clay on the basis of results from finite element limit analysis(FELA).The input dataset consists of 1188 numerical simulations using the Tresca failure criterion,varying in geometrical and soil parameters.The FELA was performed via OptumG2 software with adaptive meshing techniques and verified against existing benchmark studies.The ML models were trained on 70% of the dataset and tested on the remaining 30%.Their performance was evaluated using six statistical metrics:coefficient of determination(R²),mean absolute error(MAE),root mean squared error(RMSE),index of scatter(IOS),RMSE-to-standard deviation ratio(RSR),and variance explained factor(VAF).The results indicate that all the models achieved high accuracy,with R²values exceeding 97.6%and RMSE values below 0.02.Among them,AdaBoost and CatBoost consistently outperformed the other methods across both the training and testing datasets,demonstrating superior generalizability and robustness.The proposed ML framework offers an efficient,accurate,and data-driven alternative to traditional methods for estimating caisson capacity in stratified soils.This approach can aid in reducing computational costs while improving reliability in the early stages of foundation design. 展开更多
关键词 Two-layered clay Open caisson Tree-based algorithms FELA Machine learning
在线阅读 下载PDF
Path Planning for Thermal Power Plant Fan Inspection Robot Based on Improved A^(*)Algorithm 被引量:1
19
作者 Wei Zhang Tingfeng Zhang 《Journal of Electronic Research and Application》 2025年第1期233-239,共7页
To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The... To improve the efficiency and accuracy of path planning for fan inspection tasks in thermal power plants,this paper proposes an intelligent inspection robot path planning scheme based on an improved A^(*)algorithm.The inspection robot utilizes multiple sensors to monitor key parameters of the fans,such as vibration,noise,and bearing temperature,and upload the data to the monitoring center.The robot’s inspection path employs the improved A^(*)algorithm,incorporating obstacle penalty terms,path reconstruction,and smoothing optimization techniques,thereby achieving optimal path planning for the inspection robot in complex environments.Simulation results demonstrate that the improved A^(*)algorithm significantly outperforms the traditional A^(*)algorithm in terms of total path distance,smoothness,and detour rate,effectively improving the execution efficiency of inspection tasks. 展开更多
关键词 Power plant fans Inspection robot Path planning Improved A^(*)algorithm
在线阅读 下载PDF
An Algorithm for Cloud-based Web Service Combination Optimization Through Plant Growth Simulation
20
作者 Li Qiang Qin Huawei +1 位作者 Qiao Bingqin Wu Ruifang 《系统仿真学报》 北大核心 2025年第2期462-473,共12页
In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-base... In order to improve the efficiency of cloud-based web services,an improved plant growth simulation algorithm scheduling model.This model first used mathematical methods to describe the relationships between cloud-based web services and the constraints of system resources.Then,a light-induced plant growth simulation algorithm was established.The performance of the algorithm was compared through several plant types,and the best plant model was selected as the setting for the system.Experimental results show that when the number of test cloud-based web services reaches 2048,the model being 2.14 times faster than PSO,2.8 times faster than the ant colony algorithm,2.9 times faster than the bee colony algorithm,and a remarkable 8.38 times faster than the genetic algorithm. 展开更多
关键词 cloud-based service scheduling algorithm resource constraint load optimization cloud computing plant growth simulation algorithm
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部