期刊文献+
共找到282,968篇文章
< 1 2 250 >
每页显示 20 50 100
基于BOA-CatBoost的压电陶瓷烧结温度场代理模型构建研究
1
作者 衡孝韧 马超 +1 位作者 何非 呼子博 《机械设计与制造工程》 2026年第1期1-6,共6页
压电陶瓷烧结通常在隧道窑中进行,其生产过程不透明且持续时间长,因此需要构建质量预测模型来指导实际生产。坯体烧结温度是质量预测模型的重要输入参数,但是在实际生产过程中烧结温度难以获取。为了解决这一问题,以电热隧道窑为例,借... 压电陶瓷烧结通常在隧道窑中进行,其生产过程不透明且持续时间长,因此需要构建质量预测模型来指导实际生产。坯体烧结温度是质量预测模型的重要输入参数,但是在实际生产过程中烧结温度难以获取。为了解决这一问题,以电热隧道窑为例,借助数值模拟手段,通过Fluent仿真软件对包括坩埚和坯体在内的隧道窑温度场进行建模分析。考虑到仿真模型耗时、代价高昂等因素,进一步利用CatBoost算法构建压电陶瓷坯体的温度场代理模型,并通过贝叶斯优化算法(BOA)进行超参数的优化,最终实现不同隧道窑运行参数下不同位置坯体温度数据的快速获取。 展开更多
关键词 数值模拟 FLUENT CatBoost算法 贝叶斯优化算法 代理模型
在线阅读 下载PDF
MOCBOA:Multi-Objective Chef-Based Optimization Algorithm Using Hybrid Dominance Relations for Solving Engineering Design Problems
2
作者 Nour Elhouda Chalabi Abdelouahab Attia +4 位作者 Abdulaziz S.Almazyad Ali Wagdy Mohamed Frank Werner Pradeep Jangir Mohammad Shokouhifar 《Computer Modeling in Engineering & Sciences》 2025年第4期967-1008,共42页
Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Op... Multi-objective optimization is critical for problem-solving in engineering,economics,and AI.This study introduces the Multi-Objective Chef-Based Optimization Algorithm(MOCBOA),an upgraded version of the Chef-Based Optimization Algorithm(CBOA)that addresses distinct objectives.Our approach is unique in systematically examining four dominance relations—Pareto,Epsilon,Cone-epsilon,and Strengthened dominance—to evaluate their influence on sustaining solution variety and driving convergence toward the Pareto front.Our comparison investigation,which was conducted on fifty test problems from the CEC 2021 benchmark and applied to areas such as chemical engineering,mechanical design,and power systems,reveals that the dominance approach used has a considerable impact on the key optimization measures such as the hypervolume metric.This paper provides a solid foundation for determining themost effective dominance approach and significant insights for both theoretical research and practical applications in multi-objective optimization. 展开更多
关键词 Multi-objective optimization chef-based optimization algorithm(Cboa) pareto dominance epsilon dominance cone-epsilon dominance strengthened dominance
在线阅读 下载PDF
Combining the genetic algorithms with artificial neural networks for optimization of board allocating 被引量:2
3
作者 曹军 张怡卓 岳琪 《Journal of Forestry Research》 SCIE CAS CSCD 2003年第1期87-88,共2页
This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in boa... This paper introduced the Genetic Algorithms (GAs) and Artificial Neural Networks (ANNs), which have been widely used in optimization of allocating. The combination way of the two optimizing algorithms was used in board allocating of furniture production. In the experiment, the rectangular flake board of 3650 mm 1850 mm was used as raw material to allocate 100 sets of Table Bucked. The utilizing rate of the board reached 94.14 % and the calculating time was only 35 s. The experiment result proofed that the method by using the GA for optimizing the weights of the ANN can raise the utilizing rate of the board and can shorten the time of the design. At the same time, this method can simultaneously searched in many directions, thus greatly in-creasing the probability of finding a global optimum. 展开更多
关键词 Artificial neural network Genetic algorithms Back propagation model (BP model) OPTIMIZATION
在线阅读 下载PDF
结合不均衡样本生成及BOA-DRSN的扬声器异常声分类 被引量:1
4
作者 周静雷 李振业 +1 位作者 路昌 李丽敏 《西安工程大学学报》 2025年第4期37-45,共9页
扬声器生产过程中,其正常数据与故障数据比例可能会严重失调,从而导致样本分布不均匀,进而影响故障诊断模型的准确率及可靠性。因此,文中根据样本生成扩增和优化深度学习网络的理念提出了一种新的扬声器异常声分类方法。首先,考虑到原... 扬声器生产过程中,其正常数据与故障数据比例可能会严重失调,从而导致样本分布不均匀,进而影响故障诊断模型的准确率及可靠性。因此,文中根据样本生成扩增和优化深度学习网络的理念提出了一种新的扬声器异常声分类方法。首先,考虑到原始数据特征过于复杂而导致生成样本的质量较差,对扬声器异常声响应信号进行变分模态分解(variational mode decomposition,VMD)突出原始样本的局部特征;其次,从扩增样本角度出发提升模型故障诊断精度,使用最小二乘生成对抗网络(least squares generative adversarial networks,LSGAN)进行对抗训练,生成具有真实样本特征的虚拟样本;最后,选用蝴蝶优化算法(butterfly optimization algorithm,BOA)在大规模权重空间中高效寻优以加速模型收敛,利用深度残差收缩网络(deep residual shrinkage network,DRSN)模型进行扬声器异常声分类,从而提升在样本不均衡情况下的分类准确率及诊断稳定性。实验结果表明:该方法能有效降低误判率,在样本不均衡情况下有效提高故障诊断准确率以及分类诊断的稳定性,其分类平均准确率可达0.9912。 展开更多
关键词 故障诊断 数据不均衡 异常声分类 深度残差收缩网络(DRSN) 蝴蝶优化算法(boa) 最小二乘生成对抗网络(LSGAN)
在线阅读 下载PDF
基于BOA-SVM的冷源系统温度传感器偏差故障检测
5
作者 周璇 闫学成 +1 位作者 闫军威 梁列全 《控制理论与应用》 北大核心 2025年第5期921-930,共10页
针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性... 针对当前因温度传感器偏差故障识别率低,严重影响冷源系统节能可靠运行的问题,提出一种基于贝叶斯优化支持向量机BOA-SVM组合优化算法的偏差故障检测方法.该方法融合了贝叶斯优化算法(BOA)和支持向量机(SVM)技术,适用于小样本、非线性故障数据,同时克服了SVM算法对核函数参数与惩罚因子强敏感性的问题.论文建立了广州市某办公建筑冷源系统Trnsys仿真模型,对室外干球、冷冻供水与冷却进水3种温度传感器不同程度的偏差故障进行模拟.仿真结果表明,与本文提出的其他方法相比,该方法准确率高,泛化能力及鲁棒性强,能够满足冷源系统温度传感器偏差故障的检测需求,保障空调系统的安全、高效与稳定运行. 展开更多
关键词 冷源系统 温度传感器 贝叶斯优化 支持向量机 故障检测 TRNSYS
在线阅读 下载PDF
Evaluation of the Hydrodynamic Performance of Planing Boat with Trim Tab and Interceptor and Its Optimization Using Genetic Algorithm 被引量:1
6
作者 Abdollah Sakaki Hassan Ghassemi Shayan Keyvani 《Journal of Marine Science and Application》 CSCD 2019年第2期131-141,共11页
Nowadays,several stern devices are attracting a great deal of attention.The control surface is an effective apparatus for improving the hydrodynamic performance of planing hulls and is considered an important element ... Nowadays,several stern devices are attracting a great deal of attention.The control surface is an effective apparatus for improving the hydrodynamic performance of planing hulls and is considered an important element in the design of planing hulls.Control surfaces produce forces and a pitching moment due to the pressure distribution that they cause,which can be used to change the running state of high-speed marine boats.This work elaborates a new study to evaluate the hydrodynamic performance of a planing boat with a trim tab and an interceptor,and optimizes them by using an optimization algorithm.The trim tab and the interceptor have been used to optimize the running trim and motion control of semi-planing and planing boats at various speeds and sea conditions for many years.In this paper,the usage of trim tab is mathematically verified and experimental equations are utilized to optimize the performance of a planing boat at a specificd trim angle by using an optimization algorithm.The genetic algorithm(GA)is one of the most useful optimizing methods and is used in this study.The planing boat equations were programmed according to Savitsky’s equations and then analyzed in the framework of the GA-based optimization for performance improvement of theplaning hull.The optimal design of trim tab and interceptor for planing boat can be considered a multiobjective problem.The input data of GA include different parameters,such as speed,longitudinal center of gravity,and deadrise angle.We can extract the best range of forecasting the planing boat longitudinal center of gravity,the angle of the trim,and the least drag force at the best trim angle of the boat. 展开更多
关键词 Trimtab INTERCEPTOR Drag force Genetic algorithm OPTIMIZATION algorithm
在线阅读 下载PDF
Distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm 被引量:4
7
作者 Yaozhong Zhang Lei Zhang Zhiqiang Du 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2015年第6期1236-1243,共8页
A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple... A distributed blackboard decision-making framework for collaborative planning based on nested genetic algorithm (NGA) is proposed. By using blackboard-based communication paradigm and shared data structure, multiple decision-makers (DMs) can collaboratively solve the tasks-platforms allocation scheduling problems dynamically through the coordinator. This methodo- logy combined with NGA maximizes tasks execution accuracy, also minimizes the weighted total workload of the DM which is measured in terms of intra-DM and inter-DM coordination. The intra-DM employs an optimization-based scheduling algorithm to match the tasks-platforms assignment request with its own platforms. The inter-DM coordinates the exchange of collaborative request information and platforms among DMs using the blackboard architecture. The numerical result shows that the proposed black- board DM framework based on NGA can obtain a near-optimal solution for the tasks-platforms collaborative planning problem. The assignment of platforms-tasks and the patterns of coordination can achieve a nice trade-off between intra-DM and inter-DM coordination workload. 展开更多
关键词 distributed collaborative planning BLACKboaRD decision maker (DM) nested genetic algorithm (NGA).
在线阅读 下载PDF
基于BOA-SVR算法的弹射起飞安全性预测方法研究 被引量:1
8
作者 田煜 刘苗鑫 刘涛 《飞行力学》 北大核心 2025年第4期83-88,共6页
为保证舰载机弹射起飞的顺利实施,需要对弹射起飞进行安全性评估和预测。以大数据和机器学习评估技术入手,研究了基于蝴蝶优化算法的支持向量回归(BOA-SVR)弹射起飞安全性评估方法。首先梳理弹射起飞安全性影响因素和指标参数,明确评估... 为保证舰载机弹射起飞的顺利实施,需要对弹射起飞进行安全性评估和预测。以大数据和机器学习评估技术入手,研究了基于蝴蝶优化算法的支持向量回归(BOA-SVR)弹射起飞安全性评估方法。首先梳理弹射起飞安全性影响因素和指标参数,明确评估算法的输入和输出;其次研究BOA-SVR算法的实现,并利用仿真数据进行算法的回归分析和性能比较,结果表明所提出的算法比传统SVR算法具有更高的性能;最后使用弹射起飞安全性评估回归模型实现弹射起飞的安全性预测,并用于工况调整,对飞行试验和部队训练具有很好的实用性。 展开更多
关键词 弹射起飞 安全性预测 蝴蝶优化算法 支持向量回归
原文传递
Fault Reconfiguration of Shipboard Power System Based on Triple Quantum Differential Evolution Algorithm 被引量:5
9
作者 王丛佼 王锡淮 +2 位作者 肖健梅 陈晶 张思全 《Journal of Shanghai Jiaotong university(Science)》 EI 2016年第4期433-442,共10页
Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the r... Fault reconfiguration of shipboard power system is viewed as a typical nonlinear and multi-objective combinatorial optimization problem. A comprehensive reconfiguration model is presented in this paper, in which the restored loads, switch frequency and generator efficiency are taken into account. In this model, analytic hierarchy process(AHP) is proposed to determine the coefficients of these objective functions. Meanwhile, a quantum differential evolution algorithm with triple quantum bit code is proposed. This algorithm aiming at the characteristics of shipboard power system is different from the normal quantum bit representation. The individual polymorphic expression is realized, and the convergence performance can be further enhanced in combination with the global parallel search capacity of differential evolution algorithm and the superposition properties of quantum theory. The local optimum can be avoided by dynamic rotation gate. The validity of algorithm and model is verified by the simulation examples. 展开更多
关键词 quantum differential evolution algorithm ternary coding dynamic rotation gate shipboard power system fault reconfiguration
原文传递
Onboard GRB trigger algorithms of SVOM-GRM 被引量:2
10
作者 Dong-Hua Zhao Bo-Bing Wu +4 位作者 Li-Ming Song Yong-Wei Dong Stphane Schanne Bertrand Cordier Jiang-Tao Liu 《Research in Astronomy and Astrophysics》 SCIE CAS CSCD 2013年第11期1381-1396,共16页
The Gamma-Ray Monitor (GRM) is a high energy detector onboard the future Chinese-French satellite named the Space-based multi-band astronomical Variable Object Monitor which is dedicated to studies of gamma-ray burs... The Gamma-Ray Monitor (GRM) is a high energy detector onboard the future Chinese-French satellite named the Space-based multi-band astronomical Variable Object Monitor which is dedicated to studies of gamma-ray bursts (GRBs). This paper presents an investigation of the algorithms that look for GRBs by searching for a significant increase in the photon count rate for the computer onboard GRM. The trigger threshold and trigger efficiency, which are based on a given sample of GRBs, are calculated with the algorithms. The trigger characteristics of onboard instruments GRM and ECLAIRs are also analyzed. In addition, the impact of solar flares on GRM is estimated, and a method to distinguish solar flares from GRBs is investigated. 展开更多
关键词 trigger algorithms -- gamma-rays: bursts -- Sun: flares
在线阅读 下载PDF
mLBOA:A Modified Butterfly Optimization Algorithm with Lagrange Interpolation for Global Optimization 被引量:5
11
作者 Sushmita Sharma Sanjoy Chakraborty +2 位作者 Apu Kumar Saha Sukanta Nama Saroj Kumar Sahoo 《Journal of Bionic Engineering》 SCIE EI CSCD 2022年第4期1161-1176,共16页
Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its... Though the Butterfly Bptimization Algorithm(BOA)has already proved its effectiveness as a robust optimization algorithm,it has certain disadvantages.So,a new variant of BOA,namely mLBOA,is proposed here to improve its performance.The proposed algorithm employs a self-adaptive parameter setting,Lagrange interpolation formula,and a new local search strategy embedded with Levy flight search to enhance its searching ability to make a better trade-off between exploration and exploitation.Also,the fragrance generation scheme of BOA is modified,which leads for exploring the domain effectively for better searching.To evaluate the performance,it has been applied to solve the IEEE CEC 2017 benchmark suite.The results have been compared to that of six state-of-the-art algorithms and five BOA variants.Moreover,various statistical tests,such as the Friedman rank test,Wilcoxon rank test,convergence analysis,and complexity analysis,have been conducted to justify the rank,significance,and complexity of the proposed mLBOA.Finally,the mLBOA has been applied to solve three real-world engineering design problems.From all the analyses,it has been found that the proposed mLBOA is a competitive algorithm compared to other popular state-of-the-art algorithms and BOA variants. 展开更多
关键词 Butterfly optimization algorithm Lagrange interpolation Levy flight search IEEE CEC 2017 functions Engineering design problems
在线阅读 下载PDF
Optimization of jamming formation of USV offboard active decoy clusters based on an improved PSO algorithm 被引量:3
12
作者 Zhaodong Wu Yasong Luo Shengliang Hu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期529-540,共12页
Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for t... Offboard active decoys(OADs)can effectively jam monopulse radars.However,for missiles approaching from a particular direction and distance,the OAD should be placed at a specific location,posing high requirements for timing and deployment.To improve the response speed and jamming effect,a cluster of OADs based on an unmanned surface vehicle(USV)is proposed.The formation of the cluster determines the effectiveness of jamming.First,based on the mechanism of OAD jamming,critical conditions are identified,and a method for assessing the jamming effect is proposed.Then,for the optimization of the cluster formation,a mathematical model is built,and a multi-tribe adaptive particle swarm optimization algorithm based on mutation strategy and Metropolis criterion(3M-APSO)is designed.Finally,the formation optimization problem is solved and analyzed using the 3M-APSO algorithm under specific scenarios.The results show that the improved algorithm has a faster convergence rate and superior performance as compared to the standard Adaptive-PSO algorithm.Compared with a single OAD,the optimal formation of USV-OAD cluster effectively fills the blind area and maximizes the use of jamming resources. 展开更多
关键词 Electronic countermeasure Offboard active decoy USV cluster Jamming formation optimization Improved PSO algorithm
在线阅读 下载PDF
基于BOA-BP神经网络的四旋翼飞行器路径优化 被引量:1
13
作者 王舒玮 李嘉 +1 位作者 冯健 岳彩宾 《现代防御技术》 北大核心 2025年第3期74-81,共8页
针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了... 针对四旋翼飞行器在多障碍物环境中飞行时容易出现路径规划不准确的问题,提出了基于蝴蝶算法(BOA)的BP神经网络优化方法。将四旋翼飞行器在设定路径中的所有途经点作为神经网络的训练样本,通过BOA-BP算法对神经网络进行训练,从而确定了最佳飞行路径。仿真结果表明,与传统的BOA算法相比,所提出的BOA-BP算法模型可以有效减小四旋翼飞行器路径的误差,均方根误差可从1.60%降低到0.003%。 展开更多
关键词 四旋翼 飞行器 蝴蝶优化算法 BP神经网络 路径优化 训练样本 误差处理
在线阅读 下载PDF
基于IBOA-DKF算法的锂电池SOC估计
14
作者 刘意期 王聪 黄建宇 《自动化仪表》 2025年第3期30-37,共8页
应用传统卡尔曼滤波(KF)算法估计锂电池荷电状态(SOC)时,噪声往往假设为一个固定值的零均值白噪声,从而导致锂电池SOC估计值误差随着迭代次数的增加而不断增大。对此,提出了一种改进蝴蝶优化算法-双卡尔曼滤波(IBOA-DKF)算法。将反向学... 应用传统卡尔曼滤波(KF)算法估计锂电池荷电状态(SOC)时,噪声往往假设为一个固定值的零均值白噪声,从而导致锂电池SOC估计值误差随着迭代次数的增加而不断增大。对此,提出了一种改进蝴蝶优化算法-双卡尔曼滤波(IBOA-DKF)算法。将反向学习策略及动态调整转换概率策略引入蝴蝶优化算法(BOA),可以提高收敛速度、均衡全局搜索及局部开发能力,从而对KF算法的噪声协方差矩阵进行迭代更新。在二阶电阻电容(RC)等效电路模型基础上,利用IBOA-DKF算法分别对内阻Rs与锂电池SOC进行估计。同时,通过两种动态工况测试数据进行仿真,验证了IBOA-DKF算法对锂电池SOC估计绝对值误差在1%以内,因而具备更高的精度、更好的收敛性及鲁棒性。该研究为锂电池SOC更高精度的估计提供了理论依据。 展开更多
关键词 锂电池 荷电状态 卡尔曼滤波 蝴蝶优化算法 等效电路模型
在线阅读 下载PDF
An Improved Randomized Circle Detection Algorithm Using in Printed Circuit Board Locating Mark 被引量:2
15
作者 Jingkun Liu Qi Fan 《Applied Mathematics》 2019年第10期848-861,共14页
This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transfo... This paper presents an improved Randomized Circle Detection (RCD) algorithm with the characteristic of circularity to detect randomized circle in images with complex background, which is not based on the Hough Transform. The experimental results denote that this algorithm can locate the circular mark of Printed Circuit Board (PCB). 展开更多
关键词 Circle Detection Randomized algorithm Characteristic of Circularity Printed Circuit board
在线阅读 下载PDF
基于BOA‑VMD‑SVD的MEMS陀螺仪信号降噪方法研究
16
作者 马星河 闫崇威 《武汉大学学报(工学版)》 北大核心 2025年第7期1130-1138,共9页
针对微机电系统(micro-electro-mechanical system,MEMS)加速度计输出信号中随机噪声较大的问题,提出一种基于蝴蝶优化算法(butterfly optimization algorithm,BOA)的变分模态分解(variational mode decomposition,VMD)联合奇异值分解(s... 针对微机电系统(micro-electro-mechanical system,MEMS)加速度计输出信号中随机噪声较大的问题,提出一种基于蝴蝶优化算法(butterfly optimization algorithm,BOA)的变分模态分解(variational mode decomposition,VMD)联合奇异值分解(singular value decomposition,SVD)的随机噪声降噪方法。首先应用BOA-VMD算法将加速度计信号分解为K个最优的IMF(intrinsic mode function)分量;其次计算分解后的各IMF分量的排列熵值,并将其划分为加速度计信号主导的IMF分量、噪声主导的IMF分量以及噪声信号3种类型;再对噪声主导的IMF分量进行SVD分解降噪,舍弃噪声分量;最后将加速度计信号主导分量与降噪后的噪声主导分量进行重构,得到最终信号。仿真与实验数据表明:相较于VMD联合小波阈值方法,BOA-VMD-SVD算法的信噪比提高了19.8%,均方根误差下降了44.5%;相较于VMD-SVD算法,BOA-VMD-SVD算法的信噪比提高了15.6%,均方根误差下降了19.5%。这表明所提算法在处理MEMS加速度计信号中的随机噪声时具有更好的去噪效果,进而证明了所提方法的有效性。 展开更多
关键词 微机电系统 蝴蝶优化算法 奇异值分解 随机噪声 去噪
原文传递
Method for Estimating the State of Health of Lithium-ion Batteries Based on Differential Thermal Voltammetry and Sparrow Search Algorithm-Elman Neural Network 被引量:1
17
作者 Yu Zhang Daoyu Zhang TiezhouWu 《Energy Engineering》 EI 2025年第1期203-220,共18页
Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,curr... Precisely estimating the state of health(SOH)of lithium-ion batteries is essential for battery management systems(BMS),as it plays a key role in ensuring the safe and reliable operation of battery systems.However,current SOH estimation methods often overlook the valuable temperature information that can effectively characterize battery aging during capacity degradation.Additionally,the Elman neural network,which is commonly employed for SOH estimation,exhibits several drawbacks,including slow training speed,a tendency to become trapped in local minima,and the initialization of weights and thresholds using pseudo-random numbers,leading to unstable model performance.To address these issues,this study addresses the challenge of precise and effective SOH detection by proposing a method for estimating the SOH of lithium-ion batteries based on differential thermal voltammetry(DTV)and an SSA-Elman neural network.Firstly,two health features(HFs)considering temperature factors and battery voltage are extracted fromthe differential thermal voltammetry curves and incremental capacity curves.Next,the Sparrow Search Algorithm(SSA)is employed to optimize the initial weights and thresholds of the Elman neural network,forming the SSA-Elman neural network model.To validate the performance,various neural networks,including the proposed SSA-Elman network,are tested using the Oxford battery aging dataset.The experimental results demonstrate that the method developed in this study achieves superior accuracy and robustness,with a mean absolute error(MAE)of less than 0.9%and a rootmean square error(RMSE)below 1.4%. 展开更多
关键词 Lithium-ion battery state of health differential thermal voltammetry Sparrow Search algorithm
在线阅读 下载PDF
Robustness Optimization Algorithm with Multi-Granularity Integration for Scale-Free Networks Against Malicious Attacks 被引量:1
18
作者 ZHANG Yiheng LI Jinhai 《昆明理工大学学报(自然科学版)》 北大核心 2025年第1期54-71,共18页
Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently... Complex network models are frequently employed for simulating and studyingdiverse real-world complex systems.Among these models,scale-free networks typically exhibit greater fragility to malicious attacks.Consequently,enhancing the robustness of scale-free networks has become a pressing issue.To address this problem,this paper proposes a Multi-Granularity Integration Algorithm(MGIA),which aims to improve the robustness of scale-free networks while keeping the initial degree of each node unchanged,ensuring network connectivity and avoiding the generation of multiple edges.The algorithm generates a multi-granularity structure from the initial network to be optimized,then uses different optimization strategies to optimize the networks at various granular layers in this structure,and finally realizes the information exchange between different granular layers,thereby further enhancing the optimization effect.We propose new network refresh,crossover,and mutation operators to ensure that the optimized network satisfies the given constraints.Meanwhile,we propose new network similarity and network dissimilarity evaluation metrics to improve the effectiveness of the optimization operators in the algorithm.In the experiments,the MGIA enhances the robustness of the scale-free network by 67.6%.This improvement is approximately 17.2%higher than the optimization effects achieved by eight currently existing complex network robustness optimization algorithms. 展开更多
关键词 complex network model MULTI-GRANULARITY scale-free networks ROBUSTNESS algorithm integration
原文传递
Short-TermWind Power Forecast Based on STL-IAOA-iTransformer Algorithm:A Case Study in Northwest China 被引量:2
19
作者 Zhaowei Yang Bo Yang +5 位作者 Wenqi Liu Miwei Li Jiarong Wang Lin Jiang Yiyan Sang Zhenning Pan 《Energy Engineering》 2025年第2期405-430,共26页
Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,th... Accurate short-term wind power forecast technique plays a crucial role in maintaining the safety and economic efficiency of smart grids.Although numerous studies have employed various methods to forecast wind power,there remains a research gap in leveraging swarm intelligence algorithms to optimize the hyperparameters of the Transformer model for wind power prediction.To improve the accuracy of short-term wind power forecast,this paper proposes a hybrid short-term wind power forecast approach named STL-IAOA-iTransformer,which is based on seasonal and trend decomposition using LOESS(STL)and iTransformer model optimized by improved arithmetic optimization algorithm(IAOA).First,to fully extract the power data features,STL is used to decompose the original data into components with less redundant information.The extracted components as well as the weather data are then input into iTransformer for short-term wind power forecast.The final predicted short-term wind power curve is obtained by combining the predicted components.To improve the model accuracy,IAOA is employed to optimize the hyperparameters of iTransformer.The proposed approach is validated using real-generation data from different seasons and different power stations inNorthwest China,and ablation experiments have been conducted.Furthermore,to validate the superiority of the proposed approach under different wind characteristics,real power generation data fromsouthwestChina are utilized for experiments.Thecomparative results with the other six state-of-the-art prediction models in experiments show that the proposed model well fits the true value of generation series and achieves high prediction accuracy. 展开更多
关键词 Short-termwind power forecast improved arithmetic optimization algorithm iTransformer algorithm SimuNPS
在线阅读 下载PDF
基于CIBOA-LSSVM的超短期风电功率预测
20
作者 史彭珍 魏霞 +1 位作者 张国桢 谢丽蓉 《计算机仿真》 2025年第9期144-148,454,共6页
为了提升超短期风电功率预测精度,提出一种基于疯狂改进蝴蝶优化算法(Crazy Improvement Butterfly Optimization Algorithm, CIBOA)优化最小二乘支持向量机的组合风电功率预测模型。引入自适应权重和疯狂因子来改进蝴蝶优化算法从而提... 为了提升超短期风电功率预测精度,提出一种基于疯狂改进蝴蝶优化算法(Crazy Improvement Butterfly Optimization Algorithm, CIBOA)优化最小二乘支持向量机的组合风电功率预测模型。引入自适应权重和疯狂因子来改进蝴蝶优化算法从而提高算法的寻优能力,对比同类不同的群智能优化算法验证改进后算法性能;CIBOA对LSSVM模型中超参数寻优,得到最优的参数情况下,构建CIBOA-LSSVM风电功率预测模型。为了提高对风电功率的预测的真实性,充分考虑外界环境的影响(如风速、风向、温度和湿度等),引入评价指标,通过CIBOA-LSSVM与其它5种不同组合预测模型作对比仿真来验证其性能。仿真验证:CIBOA具有较好的寻优能力和收敛性,CIBOA-LSSVM组合模型较高的预测精度,有效提高超短期风电功率预测精度。 展开更多
关键词 预测精度 蝴蝶优化算法 群智能优化算法 组合预测模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部