期刊文献+
共找到284,252篇文章
< 1 2 250 >
每页显示 20 50 100
基于多维度特征和LightGBM-AdaBoost的WebShell检测方法
1
作者 高见 何俊鹏 苗青青 《信息网络安全》 北大核心 2025年第8期1231-1239,共9页
针对传统文本检测方法在WebShell文件检测中的准确率较低、现有机器学习或深度学习算法多聚焦于PHP类型的WebShell检测,同时特征选取存在一定局限性,文章提出构建涵盖文件本体特征、官方标准特征以及BERT语义特征的高维度特征空间,并设... 针对传统文本检测方法在WebShell文件检测中的准确率较低、现有机器学习或深度学习算法多聚焦于PHP类型的WebShell检测,同时特征选取存在一定局限性,文章提出构建涵盖文件本体特征、官方标准特征以及BERT语义特征的高维度特征空间,并设计了LightGBM-AdaBoost集成检测模型,以解决复杂语言下简单特征难以区分正常文件和WebShell的问题,实现了PHP与JSP类型WebShell的高效区分。实验结果表明,基于多维度特征和LightGBM-AdaBoost的WebShell检测方法,在PHP与JSP类型WebShell检测任务中准确率分别高达99.81%和98.93%。相比于现有方法,文章所提方法显著提升了检测准确率,并扩展了检测类型。 展开更多
关键词 WebShell检测 多维度特征 LightGBM算法 adaboost算法
在线阅读 下载PDF
AdaBoost算法优化BP神经网络的横波时差预测及应用
2
作者 赵军 裴浩辰 +3 位作者 罗谋兵 彭宇 石新 何宣 《地球物理学进展》 北大核心 2025年第5期2085-2096,共12页
受制于研究区横波时差资料的缺乏以及煤层井径扩径导致常规横波时差预测方法精度较差的问题,引入AdaBoost算法优化BP神经网络的方法预测横波时差,通过优选敏感测井曲线和设定最佳模型参数建立横波时差预测模型,以提高横波时差的预测准确... 受制于研究区横波时差资料的缺乏以及煤层井径扩径导致常规横波时差预测方法精度较差的问题,引入AdaBoost算法优化BP神经网络的方法预测横波时差,通过优选敏感测井曲线和设定最佳模型参数建立横波时差预测模型,以提高横波时差的预测准确度.同时,对比了多元线性回归法、BP神经网络法以及AdaBoost优化BP神经网络法三种方法对横波时差的预测效果.通过预测的横波时差对煤层岩石力学参数及脆性特性进行了评价,并利用脆性指数与杨氏模量之间的关系对煤体结构类型进行了划分.结果表明,基于AdaBoost算法优化BP神经网络的回归预测模型能够有效地预测横波时差,验证井预测结果的平均相对误差为2.7%,通过预测的横波时差计算脆性指数并划分煤体结构类型,划分结果与岩心描述一致性较高.该方法有效提高了横波时差的预测精度并为煤层脆性评价及煤体结构识别提供可靠的数据支撑. 展开更多
关键词 adaboost BP神经网络 横波时差 脆性 煤体结构
原文传递
多尺度2D-Adaboost的中药材粉末显微图像识别算法
3
作者 王一丁 王泽浩 +2 位作者 李耀利 蔡少青 袁媛 《计算机应用》 北大核心 2025年第4期1325-1332,共8页
针对中药材粉末的显微图像中含有大量细微特征和背景干扰因素导致的同一类药材的变化过大(类内差异大)和多种药材之间特征过于相似(类间差异小)的问题,提出一种多尺度2D-Adaboost算法。首先,构建一个全局-局部特征融合的主干网络架构,... 针对中药材粉末的显微图像中含有大量细微特征和背景干扰因素导致的同一类药材的变化过大(类内差异大)和多种药材之间特征过于相似(类间差异小)的问题,提出一种多尺度2D-Adaboost算法。首先,构建一个全局-局部特征融合的主干网络架构,以更好地提取多尺度特征,该架构通过结合Transformer和卷积神经网络(CNN)的优势能有效提取并融合各个尺度的全局和局部特征,从而显著提高主干网络的特征捕捉能力;其次,将Adaboost的单尺度输出拓展到多尺度,并构建2D-Adaboost结构的背景抑制模块,该模块将主干网络各个尺度的输出特征图划分为前景和背景,从而有效抑制背景区域的特征值,并增加判别性特征的强度;最后,在2D-Adaboost结构的每个尺度上额外添加一个分类器以构建特征细化模块,该模块通过控制温度参数协调分类器间的协作学习,从而逐步细化不同尺度的特征图,帮助网络学习更合适的特征尺度,并丰富细节特征的表示。实验结果表明,所提算法的识别准确率达到了96.85%,与ConvNeXt-L、ViT-L、Swin-L和Conformer-L模型相比分别上升了7.56、5.26、3.79和2.60个百分点。高准确率和分类效果的稳定性验证了所提算法在中药材粉末显微图像分类任务中的有效性。 展开更多
关键词 深度学习 中药材 显微图像识别 特征融合 2D-adaboost
在线阅读 下载PDF
基于YDSE-AdaBoost.M2算法的岩爆等级预测研究
4
作者 朱建国 熊有为 郭钦鹏 《有色金属(矿山部分)》 2025年第3期77-85,共9页
我国很多硬岩矿山正逐步进入深部开采,岩爆灾害预防是其面临的关键问题之一。为准确的对岩爆进行预测,提出了一种基于杨氏双缝实验优化器(YDSE)优化多分类自适应增强算法(AdaBoost.M2)的新型岩爆预测模型。该模型以最大切向应力、单轴... 我国很多硬岩矿山正逐步进入深部开采,岩爆灾害预防是其面临的关键问题之一。为准确的对岩爆进行预测,提出了一种基于杨氏双缝实验优化器(YDSE)优化多分类自适应增强算法(AdaBoost.M2)的新型岩爆预测模型。该模型以最大切向应力、单轴抗压强度、单轴抗拉强度、应力系数、脆性系数和弹性能量指数6个指标为输入参数,以岩爆等级为输出参数,利用234组岩爆实例进行训练。在训练过程中通过随即抽取20%的实例进行内部验证,以防止产生过拟合或欠拟合。通过与建立的其他5种新型岩爆预测模型综合对比,证明了YDSE-AdaBoost.M2模型的先进性,并将其用于某深部矿山,验证了该模型的泛化能力,为岩爆的高精度预测提供了新的解决方案。 展开更多
关键词 岩石力学 岩爆预测 adaboost.M2 YDSE 超参数优化
在线阅读 下载PDF
基于MLP-AdaBoost模型的混凝土抗压强度预测研究 被引量:2
5
作者 赵佳亮 达列雄 +1 位作者 郭鸿 王婷 《混凝土》 北大核心 2025年第6期17-22,共6页
针对传统机器学习模型对混凝土抗压强度预测方面的局限性,提出了采用集成MLP和AdaBoost算法的融合模型。结合影响混凝土抗压强度共8个特征,以MLP和AdaBoost两种算法作为基模型,加权线性回归作为元模型,构建MLP-Adaboost融合模型,然后采... 针对传统机器学习模型对混凝土抗压强度预测方面的局限性,提出了采用集成MLP和AdaBoost算法的融合模型。结合影响混凝土抗压强度共8个特征,以MLP和AdaBoost两种算法作为基模型,加权线性回归作为元模型,构建MLP-Adaboost融合模型,然后采用贝叶斯优化技术来确定最优的超参数组合,以确保模型预测的准确性。试验表明:五折交叉验证确定系数指标(R^(2))达到0.957,均方根误差指标(RMSE)为3.798,平均绝对误差指标(MAE)为2.769。将MLP-AdaBoost融合模型与其他模型的预测结果作比较分析,得到MLP-AdaBoost融合模型的预测精度更高。最后通过SHAP库对混凝土数据集的组合预测模型进行可解释性分析,得到模型的预测逻辑与工程领域的实际操作一致,证明了该模型的合理性,为混凝土抗压强度的准确预测提供了一种有效的新方法。 展开更多
关键词 混凝土抗压强度预测 adaboost 贝叶斯优化 MLP 融合模型 SHAP值
在线阅读 下载PDF
Prediction method of restoring force based on online AdaBoost regression tree algorithm in hybrid test 被引量:1
6
作者 Wang Yanhua Lü Jing +1 位作者 Wu Jing Wang Cheng 《Journal of Southeast University(English Edition)》 EI CAS 2020年第2期181-187,共7页
In order to solve the poor generalization ability of the back-propagation(BP)neural network in the model updating hybrid test,a novel method called the AdaBoost regression tree algorithm is introduced into the model u... In order to solve the poor generalization ability of the back-propagation(BP)neural network in the model updating hybrid test,a novel method called the AdaBoost regression tree algorithm is introduced into the model updating procedure in hybrid tests.During the learning phase,the regression tree is selected as a weak regression model to be trained,and then multiple trained weak regression models are integrated into a strong regression model.Finally,the training results are generated through voting by all the selected regression models.A 2-DOF nonlinear structure was numerically simulated by utilizing the online AdaBoost regression tree algorithm and the BP neural network algorithm as a contrast.The results show that the prediction accuracy of the online AdaBoost regression algorithm is 48.3%higher than that of the BP neural network algorithm,which verifies that the online AdaBoost regression tree algorithm has better generalization ability compared to the BP neural network algorithm.Furthermore,it can effectively eliminate the influence of weight initialization and improve the prediction accuracy of the restoring force in hybrid tests. 展开更多
关键词 hybrid test restoring force prediction generalization ability adaboost regression tree
在线阅读 下载PDF
Recommendation Algorithm Based on Probabilistic Matrix Factorization with Adaboost 被引量:3
7
作者 Hongtao Bai Xuan Li +3 位作者 Lili He Longhai Jin Chong Wang Yu Jiang 《Computers, Materials & Continua》 SCIE EI 2020年第11期1591-1603,共13页
A current problem in diet recommendation systems is the matching of food preferences with nutritional requirements,taking into account individual characteristics,such as body weight with individual health conditions,s... A current problem in diet recommendation systems is the matching of food preferences with nutritional requirements,taking into account individual characteristics,such as body weight with individual health conditions,such as diabetes.Current dietary recommendations employ association rules,content-based collaborative filtering,and constraint-based methods,which have several limitations.These limitations are due to the existence of a special user group and an imbalance of non-simple attributes.Making use of traditional dietary recommendation algorithm researches,we combine the Adaboost classifier with probabilistic matrix factorization.We present a personalized diet recommendation algorithm by taking advantage of probabilistic matrix factorization via Adaboost.A probabilistic matrix factorization method extracts the implicit factors between individual food preferences and nutritional characteristics.From this,we can make use of those features with strong influence while discarding those with little influence.After incorporating these changes into our approach,we evaluated our algorithm’s performance.Our results show that our method performed better than others at matching preferred foods with dietary requirements,benefiting user health as a result.The algorithm fully considers the constraint relationship between users’attributes and nutritional characteristics of foods.Considering many complex factors in our algorithm,the recommended food result set meets both health standards and users’dietary preferences.A comparison of our algorithm with others demonstrated that our method offers high accuracy and interpretability. 展开更多
关键词 RECOMMENDATION probabilistic matrix factorization adaboost characteristics correlation
在线阅读 下载PDF
Using AdaBoost Meta-Learning Algorithm for Medical News Multi-Document Summarization 被引量:1
8
作者 Mahdi Gholami Mehr 《Intelligent Information Management》 2013年第6期182-190,共9页
Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss abo... Automatic text summarization involves reducing a text document or a larger corpus of multiple documents to a short set of sentences or paragraphs that convey the main meaning of the text. In this paper, we discuss about multi-document summarization that differs from the single one in which the issues of compression, speed, redundancy and passage selection are critical in the formation of useful summaries. Since the number and variety of online medical news make them difficult for experts in the medical field to read all of the medical news, an automatic multi-document summarization can be useful for easy study of information on the web. Hence we propose a new approach based on machine learning meta-learner algorithm called AdaBoost that is used for summarization. We treat a document as a set of sentences, and the learning algorithm must learn to classify as positive or negative examples of sentences based on the score of the sentences. For this learning task, we apply AdaBoost meta-learning algorithm where a C4.5 decision tree has been chosen as the base learner. In our experiment, we use 450 pieces of news that are downloaded from different medical websites. Then we compare our results with some existing approaches. 展开更多
关键词 MULTI-DOCUMENT SUMMARIZATION Machine Learning Decision Trees adaboost C4.5 MEDICAL Document SUMMARIZATION
在线阅读 下载PDF
Yarn Quality Prediction for Small Samples Based on AdaBoost Algorithm 被引量:1
9
作者 刘智玉 陈南梁 汪军 《Journal of Donghua University(English Edition)》 CAS 2023年第3期261-266,共6页
In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBo... In order to solve the problems of weak prediction stability and generalization ability of a neural network algorithm model in the yarn quality prediction research for small samples,a prediction model based on an AdaBoost algorithm(AdaBoost model) was established.A prediction model based on a linear regression algorithm(LR model) and a prediction model based on a multi-layer perceptron neural network algorithm(MLP model) were established for comparison.The prediction experiments of the yarn evenness and the yarn strength were implemented.Determination coefficients and prediction errors were used to evaluate the prediction accuracy of these models,and the K-fold cross validation was used to evaluate the generalization ability of these models.In the prediction experiments,the determination coefficient of the yarn evenness prediction result of the AdaBoost model is 76% and 87% higher than that of the LR model and the MLP model,respectively.The determination coefficient of the yarn strength prediction result of the AdaBoost model is slightly higher than that of the other two models.Considering that the yarn evenness dataset has a weaker linear relationship with the cotton dataset than that of the yarn strength dataset in this paper,the AdaBoost model has the best adaptability for the nonlinear dataset among the three models.In addition,the AdaBoost model shows generally better results in the cross-validation experiments and the series of prediction experiments at eight different training set sample sizes.It is proved that the AdaBoost model not only has good prediction accuracy but also has good prediction stability and generalization ability for small samples. 展开更多
关键词 stability and generalization ability for small samples.Key words:yarn quality prediction adaboost algorithm small sample generalization ability
在线阅读 下载PDF
基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器故障诊断技术 被引量:3
10
作者 姚翔曦 张英 +2 位作者 张国治 刘君 王明伟 《南方电网技术》 北大核心 2025年第6期14-25,共12页
针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器... 针对传统油中溶解气体分析(dissolved gas analysis,DGA)在油浸变压器故障诊断过程中不能够有效地利用故障信息,以及变压器故障样本类型不平衡致使模型诊断结果较差的情况,提出了基于数据扩充和故障特征优化的SCNGO-SVM-AdaBoost变压器故障诊断技术。首先,针对不平衡样本数据集利用安全级别合成少数过采样技术(safelevel synthetic minority over-sampling technique,Safe-Level SMOTE)对原始的变压器故障样本集进行了数据扩充,然后利用核主成分分析(kernel principal component analysis,K-PCA)算法对比值化后的油色谱数据进行故障特征优化提取。其次在北方苍鹰优化算法(northern goshawk optimization,NGO)中融合了正余弦和折射反向学习策略,利用测试函数验证该算法的稳定性和利用SCNGO优化算法提高其寻优能力。最后通过实际的对未扩充样本诊断和其他方法诊断进行对比分析,结果证明该方法能够有效地提高变压器故障诊断的性能。 展开更多
关键词 油浸式变压器故障诊断 数据扩充 特征优选 支持向量机 SCNGO优化算法 adaboost算法
在线阅读 下载PDF
基于Adaboost回归的6061铝合金单点增量成形最大成形深度预测
11
作者 梁智凯 张志超 +1 位作者 胡蓝 庞秋 《材料工程》 北大核心 2025年第4期23-34,共12页
单点增量成形是一种柔性工艺,在航空航天领域有着广泛应用,尤其适用于定制化、小批量生产的构件。然而针对不同模型,适宜加工的工艺参数区间尚未明确,需要测试不同的参数。采用正交实验,进行多因素方差分析,讨论板材厚度、角度、层进量... 单点增量成形是一种柔性工艺,在航空航天领域有着广泛应用,尤其适用于定制化、小批量生产的构件。然而针对不同模型,适宜加工的工艺参数区间尚未明确,需要测试不同的参数。采用正交实验,进行多因素方差分析,讨论板材厚度、角度、层进量、进给速度和自转速度等参数对最大成形深度的影响。根据实验结果搭建基于Adaboost算法的回归模型,对6061铝合金薄板在100 mm成形直径下的成形深度进行预测。结果表明:单因素对最大成形深度的影响由大到小分别为:厚度、层进量、角度量、进给速度、自转速度,且在最快成形速度下获得的最大成形角度为70°,板料厚度为1 mm,层进量为0.2 mm,进给速度为2000 mm/min,自转速度为2000 r/min。此外,依据正交实验创建的回归模型具有高准确度,与Abaqus仿真结果及实际实验结果均对应,4组测试与仿真最大误差为4.24%,与实际成形最大误差值为-2.45%。 展开更多
关键词 单点增量成形 工艺参数 6061铝合金 adaboost算法 回归模型
在线阅读 下载PDF
基于时间加权和AdaBoost集成的动态多因子选股模型 被引量:1
12
作者 杨园园 鲁统宇 +1 位作者 任婷婷 许文甫 《系统工程》 北大核心 2025年第1期124-135,共12页
本文重点研究了如何有效地构建动态的量化选股模型。考虑到股票数据中存在的概念漂移现象,构建一种基于时间加权和AdaBoost支持向量机集成的动态选股模型——ADASVM-TW^(*)。该模型通过将时间权重嵌入ADASVM中,根据样本的新旧以及是否... 本文重点研究了如何有效地构建动态的量化选股模型。考虑到股票数据中存在的概念漂移现象,构建一种基于时间加权和AdaBoost支持向量机集成的动态选股模型——ADASVM-TW^(*)。该模型通过将时间权重嵌入ADASVM中,根据样本的新旧以及是否错分更新样本权重。考虑到因子的时变性,采用随机森林算法进行动态因子选择。以2011年至2020年上证50各成分股为研究对象进行实证研究。研究发现,ADASVM-TW^(*)模型的平均准确率和平均精度分别达到了53.24%和56.10%,基于预测结果构建的投资组合实现了29.86%的年化收益率,远高于其他投资组合和基准,并且该模型同时通过了显著性检验和稳健性检验。 展开更多
关键词 动态选股 概念漂移 adaboost 支持向量机 集成算法
原文传递
基于PSO-SVM-AdaBoost的超短期风电功率预测 被引量:2
13
作者 范斌 李豫明 +2 位作者 郭强强 白云龙 吴志勇 《内蒙古农业大学学报(自然科学版)》 北大核心 2025年第3期54-61,共8页
超短期风电功率预测对电力系统正常运转至关重要,针对超短期风电功率的复杂性与多样性这一问题,本文通过分析目标风电场测风塔在不同高度的风速数据,提出对风电场的所有风机进行超短期功率预测的组合模型。首先,采用残差的孤立森林离群... 超短期风电功率预测对电力系统正常运转至关重要,针对超短期风电功率的复杂性与多样性这一问题,本文通过分析目标风电场测风塔在不同高度的风速数据,提出对风电场的所有风机进行超短期功率预测的组合模型。首先,采用残差的孤立森林离群值检测方法对采集的数据进行预处理。然后,通过粒子群(particle swarm optimization,PSO)来优化支持向量机(support vector machine,SVM)中的参数。随后使用训练好的SVM作为弱回归器之一参与到AdaBoost的过程中,AdaBoost会迭代训练多个SVM回归器并调整权重,最终集成一个强回归器。最后,通过对内蒙古某风电场的数据在不同模型下的预测结果进行分析,本文提出的PSO-SVM-AdaBoost模型较单一的SVM模型、经过PSO优化的SVM模型(PSO-SVM),以及结合了SVM与AdaBoost机制的模型(SVM-AdaBoost),在预测精度上有较大的提升。 展开更多
关键词 测风塔数据 超短期功率 孤立森林 PSO-SVM adaboost
原文传递
The Study of Multi-Expression Classification Algorithm Based on Adaboost and Mutual Independent Feature
14
作者 Liying Lang Zuntao Hu 《Journal of Signal and Information Processing》 2011年第4期270-273,共4页
In the paper conventional Adaboost algorithm is improved and local features of face such as eyes and mouth are separated as mutual independent elements for facial feature extraction and classification. The multi-expre... In the paper conventional Adaboost algorithm is improved and local features of face such as eyes and mouth are separated as mutual independent elements for facial feature extraction and classification. The multi-expression classification algorithm which is based on Adaboost and mutual independent feature is proposed. In order to effectively and quickly train threshold values of weak classifiers of features, Sample of training is carried out simple improvement. We obtain a good classification results through experiments. 展开更多
关键词 adaboost Multi-Expression Classification algorithm Local FEATURE FEATURE Extraction SAMPLE Training
在线阅读 下载PDF
基于CNN-LSTM-Adaboost模型的TBM掘进参数和隧洞围岩等级预测 被引量:1
15
作者 戴明健 焦玉勇 +3 位作者 裴成元 贾运甫 梁峰 张鹏 《安全与环境工程》 北大核心 2025年第2期160-170,共11页
硬岩隧道掘进机(TBM)在现今隧洞建设中的应用日益广泛,但是TBM深埋于地下,对地下围岩状况和掘进参数的感知能力不高,精准预测掘进参数和围岩等级对于保证TBM掘进安全具有重要意义。基于新疆某引水工程的TBM现场掘进参数和隧洞围岩地质数... 硬岩隧道掘进机(TBM)在现今隧洞建设中的应用日益广泛,但是TBM深埋于地下,对地下围岩状况和掘进参数的感知能力不高,精准预测掘进参数和围岩等级对于保证TBM掘进安全具有重要意义。基于新疆某引水工程的TBM现场掘进参数和隧洞围岩地质数据,选择TBM掘进稳定段的推力、扭矩、转速、净掘进速度、施工速度、开挖比能作为模型输入参数,建立了卷积神经网络优化的长短时时序-自适应提升(CNN-LSTM-Adaboost)模型,预测各等级围岩条件下的掘进参数,并依据掘进参数数据集训练模型预测了隧洞围岩等级。结果表明:CNN-LSTM-Adaboost模型具有较高的预测精度,大部分数据的预测相对误差率(Er)在10%以内,均方根误差(RMSE)在5以内,平均绝对百分比误差(MAPE)在10%以内,拟合优度(R^(2))在0.9以上;同时,CNN-LSTM-Adaboost模型对基于掘进参数对隧洞围岩等级的识别准确率较高,综合准确率(ACC)达90%,可以应用于指导工程实践。 展开更多
关键词 硬岩隧道掘进机(TBM) 掘进参数 掘进安全 CNN-LSTM-adaboost模型 围岩等级
在线阅读 下载PDF
基于Adaboost算法的油田值守站场进入人员身份自动化识别系统 被引量:1
16
作者 白宪丽 《自动化与仪表》 2025年第4期91-94,共4页
油田值守站场环境复杂嘈杂,导致对进入站场的人员身份识别存在困难。Adaboost算法具有较强的适应性,适用于复杂环境。为此,研究了基于Adaboost算法的油田值守站场进入人员身份自动化识别系统。该系统通过视频监控模块实时采集人员视频图... 油田值守站场环境复杂嘈杂,导致对进入站场的人员身份识别存在困难。Adaboost算法具有较强的适应性,适用于复杂环境。为此,研究了基于Adaboost算法的油田值守站场进入人员身份自动化识别系统。该系统通过视频监控模块实时采集人员视频图像,以Adaboost算法为核心的人脸检测模块检测人脸区域,再以SIFT算法为核心的身份识别模块提取人脸特征并与员工信息库比对,实现身份自动化识别。结果显示,该系统人脸检测、特征提取效果显著,能应对不同光照条件,精准识别人员身份,并在识别不通过时预警,有效避免油田风险事件。 展开更多
关键词 adaboost算法 油田值守站场 进入人员 身份识别 人脸检测 SIFT算法
在线阅读 下载PDF
基于BiLSTM-AdaBoost的集中供热换热站短期热负荷预测研究
17
作者 龚文杰 程宗平 +1 位作者 张春艳 马萍 《区域供热》 2025年第3期55-63,共9页
准确预测集中供热换热站热负荷是实现区域供热系统智慧供热和节能减碳的关键。以乌鲁木齐市某集中供热换热站为研究对象,提出基于BiLSTM-AdaBoost的供热负荷预测模型。引入BiLSTM网络综合考虑热负荷数据的正向和反向历史特征,提高了网... 准确预测集中供热换热站热负荷是实现区域供热系统智慧供热和节能减碳的关键。以乌鲁木齐市某集中供热换热站为研究对象,提出基于BiLSTM-AdaBoost的供热负荷预测模型。引入BiLSTM网络综合考虑热负荷数据的正向和反向历史特征,提高了网络捕捉时间序列特征联系的能力,应用AdaBoost集成算法获得准确性较高的强预测器。将所提模型与其他几种预测模型进行对比分析,结果表明,所提出的BiLSTM-AdaBoost供热负荷预测模型在热负荷预测中具有更高的预测精度,可以实现热力站供热负荷的准确预测。 展开更多
关键词 区域供热 热负荷预测 BiLSTM网络 adaboost集成算法
在线阅读 下载PDF
A retinal blood vessel extraction algorithm based on CART decision tree and improved AdaBoost
18
作者 DIWU Peng-peng HU Ya-qi 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第1期61-68,共8页
This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) t... This paper presents a supervised learning algorithm for retinal vascular segmentation based on classification and regression tree (CART) algorithm and improved adptive bosting (AdaBoost). Local binary patterns (LBP) texture features and local features are extracted by extracting,reversing,dilating and enhancing the green components of retinal images to construct a 17-dimensional feature vector. A dataset is constructed by using the feature vector and the data manually marked by the experts. The feature is used to generate CART binary tree for nodes,where CART binary tree is as the AdaBoost weak classifier,and AdaBoost is improved by adding some re-judgment functions to form a strong classifier. The proposed algorithm is simulated on the digital retinal images for vessel extraction (DRIVE). The experimental results show that the proposed algorithm has higher segmentation accuracy for blood vessels,and the result basically contains complete blood vessel details. Moreover,the segmented blood vessel tree has good connectivity,which basically reflects the distribution trend of blood vessels. Compared with the traditional AdaBoost classification algorithm and the support vector machine (SVM) based classification algorithm,the proposed algorithm has higher average accuracy and reliability index,which is similar to the segmentation results of the state-of-the-art segmentation algorithm. 展开更多
关键词 classification and regression tree (CART) improved adptive boosting (adaboost) retinal blood vessel local binary pattern (LBP) texture
在线阅读 下载PDF
Predicting Stock Closing Price with Stock Network Public Opinion Based on AdaBoost-AAFSA-Elman Model and CEEMDAN Algorithm
19
作者 朱昶胜 康亮河 冯文芳 《Journal of Shanghai Jiaotong university(Science)》 EI 2023年第6期809-821,共13页
To solve low prediction accuracy of Elman in predicting stock closing price,the model of adaptive boosting(AdaBoost)-improved artificial fish swarm algorithm(AAFSA)-Elman based on complete ensemble em-pirical mode dec... To solve low prediction accuracy of Elman in predicting stock closing price,the model of adaptive boosting(AdaBoost)-improved artificial fish swarm algorithm(AAFSA)-Elman based on complete ensemble em-pirical mode decomposition with adaptive noise(CEEMDAN)is proposed.By adding different white noise to the original data,CEEMDAN algorithm is used to decompose attributes serial selected by Boruta algorithm and text mining.To optimize the weight and threshold of Elman,self-adaption step length and view scope are used to improve artificial fish swarm algorithm(AFSA).AdaBoost algorithm is used to compose 5 weak AAFSA-Elman predictors into a strong predictor by continuous iteration.Experiments show that the mean absolute percentage error(MAPE)of AdaBoost-AAFSA-Elman model reduces from 4.9423%to 1.2338%.This study provides an experimental method for the prediction of stock closing price based on network public opinio. 展开更多
关键词 network public opinion CEEMDAN adaboost AFSA ELMAN
原文传递
基于Lasso⁃SSA⁃Adaboost组合模型的致密砂岩储层岩性识别
20
作者 孙婧 赵军龙 刘军锋 《录井工程》 2025年第1期41-48,共8页
为了提高利用测井资料识别致密砂岩储层岩性的精度和效率,基于文献调研,提出Lasso⁃SSA⁃Adaboost组合模型识别致密砂岩储层岩性。首先采用最小绝对收缩和选择算子(Lasso)模型对原始数据集特征值重要性进行排序及特征降维,进而把对于岩性... 为了提高利用测井资料识别致密砂岩储层岩性的精度和效率,基于文献调研,提出Lasso⁃SSA⁃Adaboost组合模型识别致密砂岩储层岩性。首先采用最小绝对收缩和选择算子(Lasso)模型对原始数据集特征值重要性进行排序及特征降维,进而把对于岩性识别分类精度更高的特征值送入自适应提升算法(Adaboost)模型进行训练学习;由于Adaboost在建模过程中使用较多超参数,因此采用麻雀优化搜索算法(SSA)对其进行超参寻优以获得最佳参数组合。以J研究区延8段致密砂岩储层测井及岩心数据为基础,训练构建Lasso⁃SSA⁃Adaboost组合模型。经Lasso模型特征提取后,Adaboost模型迭代误差率较未使用Lasso算法明显降低,岩性识别准确率提升明显;SSA算法全局优化搜索经较少次数迭代获得Adaboost最优超参数,提升了模型训练精度及效率。与K⁃近邻算法(KNN)模型和随机森林模型识别岩性效果进行对比,Lasso⁃SSA⁃Adaboost组合模型在测试集上预测准确率达到90%以上,表明了其在研究区应用效果较好。 展开更多
关键词 致密砂岩储层 岩性识别 Lasso SSA adaboost 组合模型
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部