In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary ...In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary integer larger than or equal to 3. They share most optimal properties as those of the Bézier basis and B-Spline basis respectively and can represent exactly some remarkable curves and surfaces such as the hyperbola, catenary, hyperbolic spiral and the hyperbolic paraboloid. The generation of tensor product surfaces of the AH B-Spline basis have two forms: AH B-Spline surface and AH T-Spline surface.展开更多
In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transform...In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.展开更多
Algebraic immunity is a new cryptographic criterion proposed against algebraic attacks. In order to resist algebraic attacks, Boolean functions used in many stream ciphers should possess high algebraic immunity. This ...Algebraic immunity is a new cryptographic criterion proposed against algebraic attacks. In order to resist algebraic attacks, Boolean functions used in many stream ciphers should possess high algebraic immunity. This paper presents one main result to find balanced rotation symmetric Boolean functions with maximum algebraic immunity. Through swapping the values of two orbits of rotation class of the majority function, a class of 4k+l variable Boolean functions with maximum algebraic immu- nity is constructed. The function f(x) we construct always has terms of degree n-2 independence of what ever n is. And the nonlinearity off(x) is relatively good for large n.展开更多
Algebraic reflexivity introduced by Hadwin is related to linear interpolation.In this paper,the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolat...Algebraic reflexivity introduced by Hadwin is related to linear interpolation.In this paper,the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced.Some properties of them are obtained and some relations between them revealed展开更多
In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where ...In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.展开更多
Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component V...Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed.By using this dual source cumulative rotation technique in the frequency-domain(DCTF),anisotropic parameters,including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves,can be estimated for each frequency component in the frequency domain.It avoids the possible error which comes from using a narrow-band filter in the current commonly used method.By using synthetic seismograms,the feasibility and validity of the technique was tested and a comparison with the currently used method was also given.The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF.In the presence of larger scale fractures,substantial frequency dependence would be found in the seismic frequency range,which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.展开更多
The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theore...The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.展开更多
An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harm...An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harmonic oscillator operators. It showed that the algebraic model can better reproduce the data than the conventional model by fitting the observed data of HCP.展开更多
In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained ...In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.展开更多
This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class...This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class, or some periodic functions. We prove that the EulerΓ-function and the function F cannot satisfy any nontrivial algebraic differential equations whose coefficients are meromorphic functions Ø with ρ(Ø) < 1.展开更多
As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph...As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph theory,on the other hand,provides a sufficient and cost-effective method of investigating chemical structures and networks.M-polynomial is a relatively new method for studying chemical networks and structures in molecular graph theory.It displays numerical descriptors in algebraic form and highlights molecular features in the form of a polynomial function.We present a polynomials display of magnesium iodide structure and calculate several M-polynomials in this paper,particularly the M-polynomials of the augmented Zagreb index,inverse sum index,hyper Zagreb index and for the symmetric division index.展开更多
In accordance to the anisotropic feature of turbulent flow, ananisotropic algebraic stress model is adopted to predict theturbulent flow field and turbulent characteristics generated by aRushton disc turbine with the ...In accordance to the anisotropic feature of turbulent flow, ananisotropic algebraic stress model is adopted to predict theturbulent flow field and turbulent characteristics generated by aRushton disc turbine with the improved inner-outer iterativeprocedure. The predicted turbulent flow is compared with experimentaldata and the simulation by the standard k-ε turbulence model. Theanisotropic algebraic stress model is found to give better predictionthan the standard k-ε turbulence model. The predicted turbulent flowfield is in accordance to experimental data and the trend of theturbulence intensity can be effectively reflected in the simulation.展开更多
We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations...We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.展开更多
To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an und...To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.展开更多
Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was...Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .展开更多
An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential e...An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.展开更多
An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentrati...An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentration and temperature in a simulated combustion flame.This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy.It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid,and after that point,the number of projection rays has little influence on reconstruction accuracy.It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method.In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed,and the capability of this new method is evaluated by using appropriate assessment parameters.By using this new approach,not only the concentration reconstruction accuracy is greatly improved,but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation.Finally,a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method.Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles.This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices.展开更多
This paper give the algebraic criteria for all delay stability of two dimensional degenerate differential systems with delays and give two examples to illustrate the use of them.
Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which ma...The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.展开更多
基金Projects supported by the National Natural Science Foundation of China (No. 10371110) and the National Basic Research Program (973) of China (No.G2002CB312101)
文摘In this paper, two new kinds of B-basis functions called algebraic hyperbolic (AH) Bézier basis and AH B-Spline basis are presented in the space Гk=span{ l,t ……f^k-3,sinht,cosht}, in which K is an arbitrary integer larger than or equal to 3. They share most optimal properties as those of the Bézier basis and B-Spline basis respectively and can represent exactly some remarkable curves and surfaces such as the hyperbola, catenary, hyperbolic spiral and the hyperbolic paraboloid. The generation of tensor product surfaces of the AH B-Spline basis have two forms: AH B-Spline surface and AH T-Spline surface.
基金Supported by the Optimisation Theory and Algorithm Research Team(Grant No.23kytdzd004)University Science Research Project of Anhui Province(Grant No.2024AH050631)the General Programs for Young Teacher Cultivation of Educational Commission of Anhui Province(Grant No.YQYB2023090).
文摘In this paper,we propose a new full-Newton step feasible interior-point algorithm for the special weighted linear complementarity problems.The proposed algorithm employs the technique of algebraic equivalent transformation to derive the search direction.It is shown that the proximity measure reduces quadratically at each iteration.Moreover,the iteration bound of the algorithm is as good as the best-known polynomial complexity for these types of problems.Furthermore,numerical results are presented to show the efficiency of the proposed algorithm.
基金Supported by the National Natural Science Foundation of China(61272434)the Natural Science Foundation of Shandong Province(ZR 2012FM004,ZR2013FQ021)the Foundation of Science and Technology on Information Assume Laboratory(KJ-13-004)
文摘Algebraic immunity is a new cryptographic criterion proposed against algebraic attacks. In order to resist algebraic attacks, Boolean functions used in many stream ciphers should possess high algebraic immunity. This paper presents one main result to find balanced rotation symmetric Boolean functions with maximum algebraic immunity. Through swapping the values of two orbits of rotation class of the majority function, a class of 4k+l variable Boolean functions with maximum algebraic immu- nity is constructed. The function f(x) we construct always has terms of degree n-2 independence of what ever n is. And the nonlinearity off(x) is relatively good for large n.
基金Supported in part by the National Natural Science Foundation of China(1 9771 0 72 ) .
文摘Algebraic reflexivity introduced by Hadwin is related to linear interpolation.In this paper,the concepts of weakly algebraic reflexivity and strongly algebraic reflexivity which are also related to linear interpolation are introduced.Some properties of them are obtained and some relations between them revealed
文摘In this paper, we investigate the growth of transcendental entire solutionsof the following algebraic differential equation a(z)f'~2 +(b_2(z)f^2 +b_1(z)f +b_0(z))f'=d_3(z)f^3+d_2(z)f^2 +d_1(z)f +d_0(z), where a(z), b_i(z) (0<- i <=2) and d_j (z) (0<=j<= 3) are allpolynomials, and this equation relates closely to the following well-known algebraic differentialequation C(z,w)w'~2 + B(z,w)w' + A(z,w) =0, where G(z,w)not ident to 0, B(z,w) and A(z,w) are threepolynomials in z and w. We give relationships between the growth of entire solutions and the degreesof the above three polynomials in detail.
基金supported by the National Natural Science Foundation of China (No. 41004055)
文摘Based on the dual source cumulative rotation technique in the time-domain proposed by Zeng and MacBeth(1993),a new algebraic processing technique for extracting shear-wave splitting parameters from multi-component VSP data in frequency-dependent medium has been developed.By using this dual source cumulative rotation technique in the frequency-domain(DCTF),anisotropic parameters,including polarization direction of the shear-waves and timedelay between the fast and slow shear-waves,can be estimated for each frequency component in the frequency domain.It avoids the possible error which comes from using a narrow-band filter in the current commonly used method.By using synthetic seismograms,the feasibility and validity of the technique was tested and a comparison with the currently used method was also given.The results demonstrate that the shear-wave splitting parameters frequency dependence can be extracted directly from four-component seismic data using the DCTF.In the presence of larger scale fractures,substantial frequency dependence would be found in the seismic frequency range,which implies that dispersion would occur at seismic frequencies.Our study shows that shear-wave anisotropy decreases as frequency increases.
基金Supported by Guangdong Natural Science Foundation(2015A030313628,S2012010010376)Training plan for Distinguished Young Teachers in Higher Education of Guangdong(Yqgdufe1405)+1 种基金Guangdong Education Science Planning Project(2014GXJK091,GDJG20142304)the National Natural Science Foundation of China(11301140,11101096)
文摘The main purpose of this paper is to study the problems on the existence of algebraic solutions for some second-order complex differential equations with entire algebraic function element coeifficients. Several theorems on the existence of solutions are obtained, which perfect the solution theory of linear complex differential equations.
文摘An algebraic Harniltonian for the two coupled nonlinear vibrations of highly excited nonrigid molecule HCP was presented. The Hamiltonian reduces to the conventional one in a limit which was expressed in terms of harmonic oscillator operators. It showed that the algebraic model can better reproduce the data than the conventional model by fitting the observed data of HCP.
文摘In this paper, by using the matrix representation of the generalized quaternion algebra, we discussed solution problem for two classes of the first_degree algebraic equation of the generalized quaternion and obtained critical conditions on existence of a unique solution, infinitely many solutions or nonexistence any solution for the two classes algebraic equation.
基金by Basic and Advanced Research Project of CQCSTC(cstc2019jcyj-msxmX0107)Fundamental Research Funds of Chongqing University of Posts and Telecommunications(CQUPT:A2018-125).
文摘This article investigates the algebraic differential independence concerning the Euler Γ-function and the function F in a certain class F which contains Dirichlet L-functions,L-functions in the extended Selberg class, or some periodic functions. We prove that the EulerΓ-function and the function F cannot satisfy any nontrivial algebraic differential equations whose coefficients are meromorphic functions Ø with ρ(Ø) < 1.
文摘As an inorganic chemical,magnesium iodide has a significant crystalline structure.It is a complex and multifunctional substance that has the potential to be used in a wide range of medical advancements.Molecular graph theory,on the other hand,provides a sufficient and cost-effective method of investigating chemical structures and networks.M-polynomial is a relatively new method for studying chemical networks and structures in molecular graph theory.It displays numerical descriptors in algebraic form and highlights molecular features in the form of a polynomial function.We present a polynomials display of magnesium iodide structure and calculate several M-polynomials in this paper,particularly the M-polynomials of the augmented Zagreb index,inverse sum index,hyper Zagreb index and for the symmetric division index.
基金the National Natural Science Foundation of China (No. 29792074).
文摘In accordance to the anisotropic feature of turbulent flow, ananisotropic algebraic stress model is adopted to predict theturbulent flow field and turbulent characteristics generated by aRushton disc turbine with the improved inner-outer iterativeprocedure. The predicted turbulent flow is compared with experimentaldata and the simulation by the standard k-ε turbulence model. Theanisotropic algebraic stress model is found to give better predictionthan the standard k-ε turbulence model. The predicted turbulent flowfield is in accordance to experimental data and the trend of theturbulence intensity can be effectively reflected in the simulation.
基金supported by the Natural Science Foundationof China (10471065)the Natural Science Foundation of Guangdong Province (N04010474)
文摘We investigate the problem of growth order of solutions of a type of systems of non-linear algebraic differential equations, and extend some results of the growth order of solutions of algebraic differential equations to systems of algebraic differential equations.
基金National Natural Science Foundation of China(Grant Nos.51925502,51575150).
文摘To avoid impacts and vibrations during the processes of acceleration and deceleration while possessing flexible working ways for cable-suspended parallel robots(CSPRs),point-to-point trajectory planning demands an under-constrained cable-suspended parallel robot(UCPR)with variable angle and height cable mast as described in this paper.The end-effector of the UCPR with three cables can achieve three translational degrees of freedom(DOFs).The inverse kinematic and dynamic modeling of the UCPR considering the angle and height of cable mast are completed.The motion trajectory of the end-effector comprising six segments is given.The connection points of the trajectory segments(except for point P3 in the X direction)are devised to have zero instantaneous velocities,which ensure that the acceleration has continuity and the planned acceleration curve achieves smooth transition.The trajectory is respectively planned using three algebraic methods,including fifth degree polynomial,cycloid trajectory,and double-S velocity curve.The results indicate that the trajectory planned by fifth degree polynomial method is much closer to the given trajectory of the end-effector.Numerical simulation and experiments are accomplished for the given trajectory based on fifth degree polynomial planning.At the points where the velocity suddenly changes,the length and tension variation curves of the planned and unplanned three cables are compared and analyzed.The OptiTrack motion capture system is adopted to track the end-effector of the UCPR during the experiment.The effectiveness and feasibility of fifth degree polynomial planning are validated.
文摘Aim To study an algebraic of the dynamical equations of holonomic mechanical systems in relative motion. Methods The equations of motion were presented in a contravariant algebraic form and an algebraic product was determined. Results and Conclusion The equations a Lie algebraic structure if any nonpotential generalized force doesn't exist while while the equations possess a Lie-admissible algebraic structure if nonpotential generalized forces exist .
基金National Natural Science Foundation of China under Grant No.10672053
文摘An extended Fan's algebraic method is used for constructing exact traveling wave solution of nonlinearpartial differential equations.The key idea of this method is to introduce an auxiliary ordinary differential equationwhich is regarded as an extended elliptic equation and whose degree Υ is expanded to the case of r>4.The efficiency ofthe method is demonstrated by the KdV equation and the variant Boussinesq equations.The results indicate that themethod not only offers all solutions obtained by using Fu's and Fan's methods,but also some new solutions.
基金Project supported by the Young Scientists Fund of the National Natural Science Foundation of China(Grant No.61205151)the National Key Scientific Instrument and Equipment Development Project of China(Grant No.2014YQ060537)the National Basic Research Program,China(Grant No.2013CB632803)
文摘An improved algebraic reconstruction technique(ART) combined with tunable diode laser absorption spectroscopy(TDLAS) is presented in this paper for determining two-dimensional(2D) distribution of H2O concentration and temperature in a simulated combustion flame.This work aims to simulate the reconstruction of spectroscopic measurements by a multi-view parallel-beam scanning geometry and analyze the effects of projection rays on reconstruction accuracy.It finally proves that reconstruction quality dramatically increases with the number of projection rays increasing until more than 180 for 20 × 20 grid,and after that point,the number of projection rays has little influence on reconstruction accuracy.It is clear that the temperature reconstruction results are more accurate than the water vapor concentration obtained by the traditional concentration calculation method.In the present study an innovative way to reduce the error of concentration reconstruction and improve the reconstruction quality greatly is also proposed,and the capability of this new method is evaluated by using appropriate assessment parameters.By using this new approach,not only the concentration reconstruction accuracy is greatly improved,but also a suitable parallel-beam arrangement is put forward for high reconstruction accuracy and simplicity of experimental validation.Finally,a bimodal structure of the combustion region is assumed to demonstrate the robustness and universality of the proposed method.Numerical investigation indicates that the proposed TDLAS tomographic algorithm is capable of detecting accurate temperature and concentration profiles.This feasible formula for reconstruction research is expected to resolve several key issues in practical combustion devices.
文摘This paper give the algebraic criteria for all delay stability of two dimensional degenerate differential systems with delays and give two examples to illustrate the use of them.
基金The project Supported by NNSF of China(19971052)
文摘Using Nevanlinna theory of the value distribution of meromorphic functions, the author investigates the problem of the growth of solutions of two types of algebraic differential equation and obtains some results.
基金supported by the Chinese TMSR Strategic Pioneer Science and Technology Project(No.XDA02010000)the Frontier Science Key Program of the Chinese Academy of Sciences(No.QYZDY-SSW-JSC016)。
文摘The algebraic collapsing acceleration(ACA)technique maximizes the use of geometric flexibility of the method of characteristics(MOC).The spatial grids for loworder ACA are the same as the high-order transport,which makes the numerical solution of ACA equations costly,especially for large-size problems.To speed-up the MOC transport iterations effectively for general geometry,a coarse-mesh ACA method that involves selectively merging fine-mesh cells with identical materials,called material-mesh ACA(MMACA),is presented.The energy group batching(EGB)strategy in the tracing process is proposed to increase the parallel efficiency for microscopic crosssection problems.Microscopic and macroscopic crosssection benchmark problems are used to validate and analyse the accuracy and efficiency of the MMACA method.The maximum errors in the multiplication factor and pin power distributions are from the VERA-4 B-2 D case with silver-indium-cadmium(AIC)control rods inserted and are 104 pcm and 1.97%,respectively.Compared with the single-thread ACA solution,the maximum speed-up ratio reached 25 on 12 CPU cores for microscopic cross-section VERA-4-2 D problem.For the C5 G7-2 D and LRA-2 D benchmarks,the MMACA method can reduce the computation time by approximately one half.The present work proposes the MMACA method and demonstrates its ability to effectively accelerate MOC transport iterations.