Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications,yet it remains challenging to do so on the surface of multimetallic nanocrystals.Herein,we presen...Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications,yet it remains challenging to do so on the surface of multimetallic nanocrystals.Herein,we present the multifactorial engineering(size,shape,phase,and composition)of the fully ordered PtBi nanoplates at atomic level,achieving a unique catalyst surface where the face-centered cubic(fcc)Pt edges are modified by the isolated Pd atoms and BiO_(x)adatoms.This Pd_(1)/Pt-BiO_(x)electrocatalyst exhibits an ultrahigh mass activity of 16.01 A mg^(-1)Pt+Pd toward ethanol oxidation in alkaline electrolyte and enables a direct ethanol fuel cell of peak power density of 56.7 mW cm^(−2).The surrounding BiO_(x)adatoms are critical for mitigating CO-poisoning on the Pt surface,and the Pd_(1)/Pt single-atom alloy further facilitates the electrooxidation of CH_(3)CH_(2)OH.This work offers new insights into the rational design and construction of sophisticated catalyst surface at single-atomic sites for highly efficient electrocatalysis.展开更多
Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely bee...Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts.展开更多
Platinum group alloys have an excellent electronic structure for oxidation of alcohols,but the active sites are more susceptible to deactivation by CO adsorbates(CO_(ads)).The precise integration of single-atom and al...Platinum group alloys have an excellent electronic structure for oxidation of alcohols,but the active sites are more susceptible to deactivation by CO adsorbates(CO_(ads)).The precise integration of single-atom and alloy structures is highly attractive for energy conversion but still a challenge.Here,we report an ionexchange coupled in situ reduction strategy to fabricate hollow PtPdTe alloy nanoreactors loaded with atomically dispersed Cu sites(Cu_(SA)/h-PtPdTe NRs).The planted oxyphilic Cu single sites and resulted compressive strains are conductive to modulating the electronic structure of the active sites,which changes the rate-determining step of the reaction while inhibiting the formation of CO_(ads)and modulating the adsorption of intermediates,resulting in the improved activity and stability.Specifically,the obtained Cu_(SA)/h-PtPdTe NRs exhibit an excellent oxidation performance of multiple alcohols,especially for methanol and ethanol,with 8.0 and 10.3 times of the mass activity higher than Pt/C,and the activity could be recovered by refreshing the electrolyte and could be sustained for 72,000 and 36,000 s,respectively.Meanwhile,Cu_(SA)/h-PtPdTe NRs show superior oxidation performance and durability to ethylene glycol and glycerol.This work pioneers the realization of precise modulation of catalytic sites using single atoms and provides an encouraging pathway for the design of efficient and stable electrocatalysts for the oxidation of multiple alcohols,which could broaden the range of options and sources of fuel cells.展开更多
Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles...Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications.展开更多
Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic...Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic mesoporous silica(FDU-12) as a function of pore entrance size.Simple adjustments to the type of organic template and reaction temperature enable the successful synthesis of FDU-12 with controllable entrance sizes( 3,3-5 and 7 nm).Excellent anti-sintering properties are observed for FDU-12 with a sub-5-nm entrance size(3-5 nm) over a wide loading concentration(1.0-8.3 wt%) and the AuNPs can be stabilized within a 4.5-5.0-nm range after calcination at 550 ℃in air for 5 h.Smaller entrance size( 3 nm) prevents ingress of 3-nm AuNPs to the mesopores and results in low loading capacity and sintering.Conversely,FDU-12 possessing a larger entrance size(7 nm) shows promising anti-sintering properties at high loading concentrations,although catalytic performance is significantly lost at lower concentrations(e.g.2.1 wt%,14.2 ± 5.5 nm).Different anti-sintering mechanisms are proposed for each of the different FDU-12 entrance sizes.Additionally,catalytic data indicates that the obtained 4.5-nm AuNPs supported on FDU-12 with a sub-5-nm entrance size exhibit excellent mass-specific activity(1544 mmol g_(Au)^(-1) h^(-1)) and selectivity( 99%)at 230 ℃ for the gas-phase selective oxidation of cyclohexanol.展开更多
lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synt...lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synthesized by a low-temperature hydrothermal method using a tai-lored diquaternary ammonium surfactant as the structure-directing agent.Introducing Ni^2+cationsat the ion-exchange sites of the TS-1 NS framework significantly enhanced its photoactivity in aero-bic alcohol oxidation.The optimized Ni cation-functionalized TS-1 NS(Ni/TS-1 NS)provide impres-sive photoactivity,with a benzyl alcohol(BA)conversion of 78.9%and benzyl aldehyde(BAD)se-lectivity of 98.8%using O as the only oxidant under full light irradiation;this BAD yield is approx-imately six times greater than that obtained for bulk TS-1,and is maintained for five runs.The ex-cellent photoactivity of Ni/TS-1 NS is attributed to the significantly enlarged surface area of thetwo-dimensional morphology TS-1 NS,extra mesopores,and greatly improved charge separation.Compared with bulk TS-1,Ni/TS-1 NS has a much shorter charge transfer distance.Theas-introduced Ni species could capture the photoelectrons to further improve the charge separa-tion.This work opens the way to a class of highly selective,robust,and low-cost titanosilicate mo-lecular sieve-based photocatalysts with industrial potential for selective oxidative transformationsand pollutant degradation.展开更多
Selective aerobic oxidation of alcohols under mild conditions is of great importance yet challenging,with the activation of molecular oxygen(O2)as a crucial capability of the catalysts.Herein,we demonstrate that an Al...Selective aerobic oxidation of alcohols under mild conditions is of great importance yet challenging,with the activation of molecular oxygen(O2)as a crucial capability of the catalysts.Herein,we demonstrate that an Al2O3-supported Pd single-atom catalyst leads to higher activity and selectivity compared to Pd nanoparticles for the oxidation of cinnamyl alcohol.The Al2O3 support used in this study is rich in coordinately unsaturated Al3+sites,which are apt for binding to Pd atoms through oxygen bridges and present a distinct metal-support interaction(MSI).The suitable MSI then leads to a unique electronic characteristic of the Pd single atoms,which can be confirmed via X-ray photoelectron spectroscopy,normalized X-ray absorption near-edge structure,and diffuse reflectance Fourier transform infrared spectroscopy.Moreover,this unique electronic state is proposed to be responsible for its high catalytic activity.With the help of in-situ UV-vis spectra and electron spin resonance spectra,a specific alcohol oxidation route with O2 activation mechanism is then identified.Active oxygen species behaving chemically like singlet-O2 are generated from the interaction of O2 with Pd1/Al2O3,and then oxidize the partially dehydrogenated intermediates produced by the adsorbed allylic alcohols and Pd atoms to the desired alkenyl aldehyde.This work provides a promising path for the design and development of high-activity catalysts for aerobic oxidation reactions.展开更多
Efficient catalytic system with low energy consumption exhibits increasing importance due to the upcoming energy crisis.Given this situation,it should be an admirable strategy for reducing energy input by effectively ...Efficient catalytic system with low energy consumption exhibits increasing importance due to the upcoming energy crisis.Given this situation,it should be an admirable strategy for reducing energy input by effectively utilizing incident solar energy as a heat source during catalytic reactions.Herein,aza-fused7 r-conjugated microporous polymer(aza-CMP)with broad light absorption and high photothermal conversion efficiency was synthesized and utilized as a support for bimetallic AuPd nanocatalysts in light-driven benzyl alcohol oxidation.The AuPd nanoparticles anchored on aza-CMP(aza-CM P/Au_xPdy)exhibited excellent catalytic performance for benzyl alcohol oxidation under 50 mW/cm^2 light irradiation.The improved catalytic performance by the aza-CMP/Au_xPdy is attributed to the unique photothermal effect induced by aza-CMP,which can promote the catalytic benzyl alcohol oxidation occurring at Au Pd.This work presents a novel approach to effectively utilize solar energy for conventional catalytic reactions through photothermal effect.展开更多
The development of efficient photocatalysts for selective organic transformations under visible light remains a major challenge in sustainable chemistry.In this study,we present a straightforward solvothermal strategy...The development of efficient photocatalysts for selective organic transformations under visible light remains a major challenge in sustainable chemistry.In this study,we present a straightforward solvothermal strategy for fabricating a defect-engineered ZrO_(2)/UiO-66-NH_(2)hybrid material with abundant oxygen vacancies,enabling the visible-light-driven oxidation of benzyl alcohol to benzaldehyde.By optimizing the solvothermal treatment duration,the composite(UiO-66-NH_(2)-2h)achieves a 74.1%conversion of benzyl alcohol with>99%selectivity toward benzaldehyde under mild conditions,substantially out-performing pristine UiO-66-NH_(2).Structural and mechanistic studies reveal that the solvothermal process induces the in situ formation of ultrasmall,uniformly dispersed ZrO_(2)nanoparticles(~2.3 nm)within the MOF matrix,while simultaneously generating abundant oxygen vacancies,as confirmed by XPS,EPR,and HRTEM analyses.The defect-mediated electronic structure of the ZrO_(2)/UiO-66-NH_(2)hybrid enhances visible-light absorption,facilitates charge carrier separation,and pro-motes efficient activation of O_(2)into superoxide radicals(·O_(2)^(−)),the primary reactive species.Transient photocurrent measure-ments and electrochemical impedance spectroscopy further verify the improved charge separation efficiency.The synergistic interplay between oxygen vacancies and the intimate ZrO_(2)/UiO-66-NH_(2)interface provides a unique defect-mediated charge transfer pathway,distinguishing this system from conventional heterojunctions.This study demonstrates a facile,one-step approach to integrate defect engineering with interfacial hybridization in MOF-based photocatalysts,off ering a scalable route for solar-driven organic synthesis.展开更多
Photocatalytic H_(2) production has been regarded as a charming strategy for harvesting solar energy to chemical energy yet remains a great challenge due to the weak light absorption in visible range,low charge transf...Photocatalytic H_(2) production has been regarded as a charming strategy for harvesting solar energy to chemical energy yet remains a great challenge due to the weak light absorption in visible range,low charge transfer,and fast recombination of photogenerated carriers.Here,we integrate solar-driven water splitting with benzyl alcohol(BA)oxidation,a typical platform chemical from biomass,for producing H_(2) and benzaldehyde(BAD)over ZnIn_(2)S_(4) nanosheets doped with Ni and N(Ni-N/ZIS).Mechanism studies show that Ni-N/ZIS provides a fast charge channel(i.e.,Ni-N)for separating photogenerated electrons and holes,as a result of significantly enhanced photocatalytic performance.Impressively,Ni-N/ZIS displays a H_(2) productivity of 18.7 mmol g^(-1) h^(-1) with an apparent quantum yield(AQE)of 29.1% at 420 nm,which is 37.4,10.6 and 2.8 times higher than that of pristine ZIS,N/ZIS and Ni/ZIS,surpassing all the reported noble metal-free catalysts.Besides,the productivity of BAD reaches 17.5 mmol g^(-1) h^(-1) under the irradiation of visible light(λ≥420 nm).This work integrates two significant processes(i.e.,solar-driven water splitting with benzyl alcohol oxidation)for producing H_(2) and BAD,respectively,which will contribute to alleviating the current energy and environmental crisis.展开更多
Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex...Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex/alcohol molar ratio to optimize reaction conditions and to evaluate the catalytic efficiency of new cobalt Schiff base complexes.Under obtained optimum conditions,various alcohols were oxidized to corresponding aldehydes and ketones.展开更多
Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and ...Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-MIL-125 MOFs with crystalline and porous covalent organic frameworks(COFs)materials and form a range of NH2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield(94.7%)of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis.展开更多
Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion ap...Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion approaches via photo-,electro-,and photoelectro-catalysis to oxidize alcohols into high value-added corresponding carbonyl compounds as well as the possible simultaneous production of clean fuel hydrogen(H_(2))under mild conditions are promising to substitute the traditional approach to form greener and sustainable reaction systems and thus have aroused tremendous investigations.In this review,the state-of-the-art photocatalytic,electrocatalytic,and photoelectrocatalytic strategies for selective oxidation of different types of alcohols(aromatic and aliphatic alcohols,single alcohol,and polyols,etc.)as well as the simultaneous production of H_(2) in certain systems are discussed.The design of photocatalysts,electrocatalysts,and photoelectrocatalysts as well as reaction mechanism is summarized and discussed in detail.In the end,current challenges and future research directions are proposed.It is expected that this review will not only deepen the understanding of environmentally friendly catalytic systems for alcohol conversion as well as H_(2) production,but also enlighten significance and inspirations for the follow-up study of selective oxidation of various types of organic molecules to value-added chemicals.展开更多
MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Further...MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Furthermore, this catalyst was also effective towards alcohol oxidation using water as solvent instead of toluene.展开更多
Metallenes are an emerging class of two-dimensional(2D)material with outstanding potential in electrocatalysis.Herein,we present a new PdMoSb trimetallene produced by a facile wet-chemistry procedure and tested for th...Metallenes are an emerging class of two-dimensional(2D)material with outstanding potential in electrocatalysis.Herein,we present a new PdMoSb trimetallene produced by a facile wet-chemistry procedure and tested for the alcohol oxidation reaction.PdMoSb shows an extremely high Pd utilization and superior performance toward ethanol,methanol,and glycerol electro-oxidation compared with PdMo and commercial Pd/C catalysts.Experimental results and density functional theory calculations reveal that the enhanced activity relies not only on the high surface area that characterizes the ultrathin 2D metallene structure,but also on the particular electronic configuration of Sb.Sb facilitates OH−adsorption in the reactive-intermediate pathway and strongly enhances the CO tolerance in the poisoning-intermediate pathway for alcohol oxidation.The excellent alcohol oxidation performance of PdMoSb trimetallene demonstrates the high potential of multimetallenes in the field of electrocatalysis.展开更多
Noble-metal-free photocatalysts with high and stable performance provide an environmentally-friendly and cost-efficient route for green organic synthesis.In this work,CdS nanoparticles with small particle size and dif...Noble-metal-free photocatalysts with high and stable performance provide an environmentally-friendly and cost-efficient route for green organic synthesis.In this work,CdS nanoparticles with small particle size and different amount were successfully deposited on the surface of covalent organic frameworks(COFs).The deposition of suitable content of CdS on COFs could not only modify the light adsorption ability and the intrinsic electronic properties,but also enhance the photocatalytic activity and cycling performance of CdS for the selective oxidation of aromatic alcohols under visible light.Especially,COF/CdS-3 exhibited the highest yield(97.1%)of benzalde hyde which is approximately 2.5 and 15.9 times as that of parental CdS and COF,respectively.The results show that the combination of CdS and COF can improve the utilization of visible light and the separation of photo-generated charge carriers,and COF with theπ-conjugated system as supports for CdS nanoparticles could provide efficient electron transport channels and improve the photocatalytic performance.Therefore,this kind of COF-supported photocatalysts with accelerated photo-induced electrons and charge-carrier separation between semiconductors possesses great potentials in future green organic synthesis.展开更多
Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO sup...Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO supports were characterized by a series of analytical techniques including X-ray photoelectron spectroscopy, temperature-programmed desorption and Raman spectroscopy. The results show that thermal and chemical treatments have large influence on the presence of surface oxygenated groups and the crystalline structure of GO supports. A strong support effect was observed on the catalytic activity of Au/GO catalysts in the liquid phase aerobic oxidation of benzyl alcohol. Compared to the amount and the type of surface oxygen functional groups, the ordered structure of GO supports may play a more important role in determining the catalytic performance of Au/GO catalysts.展开更多
The water promotion effects,where water can provide a solution-mediated reaction pathway in various heterogeneous chemical catalysis,have been presented and attracted wide attention recently,yet,the rational design of...The water promotion effects,where water can provide a solution-mediated reaction pathway in various heterogeneous chemical catalysis,have been presented and attracted wide attention recently,yet,the rational design of catalysts with a certain ability of enhancing water-induced reaction process is full of challenges and difficulties.Here,we show that by incorporating alkali(Na,K)cations as an electronic and/or structural promoter into Pd/rGO-ZnCr_(2)O_(4)(r GO,reduced graphene oxide),the obtained Pd(Na)/rGO-ZnCr_(2)O_(4)as a representative example demonstrates an outstanding benzyl alcohol oxidation activity in the Pickering emulsion system in comparison to the alkali-free counterpart.The response experiments of water injection confirm the enhanced activity,and the Na-modified catalyst can further enhance the promotion effects of water on the reaction.The effects of alkali cations for Pd nanoparticles are identified and deciphered by a series of experimental characterizations(XPS,in situ CO-DRIFTS,and CO-TPR coupled with MS),showing that there is abundant-OH on the surface of the catalyst,which is stabilized by the formation of Pd-OH_(x).The alkali-stabilized Pd-OH_(x)is helpful to enhance the waterinduced reaction process.According to the results of in situ Raman as well as UV-vis absorption spectra,the Na-modulated Pd(Na)/rGO-ZnCr_(2)O_(4)enables the beneficial characteristics for distorting the benzyl alcohol structure and enhancing the adsorption of benzyl alcohol.Further,the mechanism for enhanced water promotion effects is rationally proposed.The strategy of alkali cations-modified catalysts can provide a new direction to effectively enhance the chemical reaction involving small molecule water.展开更多
Photocatalytic oxidation of alcohols has received more and more attention in recent years following the numerous studies on the degradation of pollutants, hydrogen evolution, and CO_(2) reduction by photocatalysis. In...Photocatalytic oxidation of alcohols has received more and more attention in recent years following the numerous studies on the degradation of pollutants, hydrogen evolution, and CO_(2) reduction by photocatalysis. Instead of the total oxidation of organics in the degradation process, the photo-oxidation of alcohols aims at the selective conversion of alcohols to produce carbonyl/acid compounds. Promising results have been achieved in designing the catalysts and reaction system, as well as in the mechanistic investigations in the past few years. This review summarizes the state-of-the-art progress in the photo-oxidation of alcohols, including the development of photocatalysts and cocatalysts, reaction conditions including the solvent and the atmosphere, and the exploration of mechanisms with scavengers experiment, electron paramagnetic resonance (EPR) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The challenges and outlook for the further research in this field are also discussed.展开更多
Photocatalytic anaerobic organic oxidation coupled with H_(2)evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals.To achieve a high conversion effici...Photocatalytic anaerobic organic oxidation coupled with H_(2)evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals.To achieve a high conversion efficiency,the smart design of efficient catalysts by the right combination of semiconductor light harvesters and cocatalyst is highly required.Herein,we report a composite photocatalyst composed of noble metal-free transition metal nitride Ni_(3)FeN decorated on 2D ultrathin ZnIn_(2)S_(4)(ZIS)nanosheets for selective oxidation of aromatic alcohols to aldehydes pairing with H_(2)production.In the composite,ultrathin ZIS serves as a light harvester that greatly shortens the diffusion length of photogenerated charges,while the metallic nitride Ni_(3)FeN acts as an advanced cocatalyst which not only captures the photoelectrons generated from the ultrathin ZIS to promote the charge separation,but also provides active sites to lower the overpotential and accelerate the H_(2)reduction.The best photocatalytic performance is found on ZIS/1.5%M-Ni_(3)FeN,which shows a H_(2)generation rate of 2427.9μmol g^(^(-1))h^(-1)and a benzaldehyde(BAD)production rate of 2460μmol g^(-1)h^(-1),about 7.8-fold as high as that of bare ZIS.This work is anticipated to endorse the exploration of transition metal nitrides as high-performance cocatalysts to promote the coupled photocatalytic organic transformation and H_(2)production.展开更多
基金supported by the National Natural Science Foundation of China(NSFC)(Grant Nos.22475132 and 52101259)the Shenzhen Science and Technology Innovation Committee(Grant No.JCYJ20210324105008022)financially supported by the Shenzhen Science and Technology Innovation Program(Nos.KQTD20190929173914967 and ZDSYS20220527171401003).
文摘Engineering nanomaterials at single-atomic sites could enable unprecedented catalytic properties for broad applications,yet it remains challenging to do so on the surface of multimetallic nanocrystals.Herein,we present the multifactorial engineering(size,shape,phase,and composition)of the fully ordered PtBi nanoplates at atomic level,achieving a unique catalyst surface where the face-centered cubic(fcc)Pt edges are modified by the isolated Pd atoms and BiO_(x)adatoms.This Pd_(1)/Pt-BiO_(x)electrocatalyst exhibits an ultrahigh mass activity of 16.01 A mg^(-1)Pt+Pd toward ethanol oxidation in alkaline electrolyte and enables a direct ethanol fuel cell of peak power density of 56.7 mW cm^(−2).The surrounding BiO_(x)adatoms are critical for mitigating CO-poisoning on the Pt surface,and the Pd_(1)/Pt single-atom alloy further facilitates the electrooxidation of CH_(3)CH_(2)OH.This work offers new insights into the rational design and construction of sophisticated catalyst surface at single-atomic sites for highly efficient electrocatalysis.
文摘Although bimetallic phosphide cocatalysts have attracted considerable interest in photocatalysis research owing to their advantageous thermodynamic characteristics,superstable and efficient cocatalysts have rarely been produced through the modulation of their structure and composition.In this study,a series of bimetallic nickel-iron phosphide(Ni_(x)Fe_(2-x)P,where 0<x<2)cocatalysts with controllable structures and overpotentials were designed by adjusting the atomic ratio of Ni/Fe onto nonmetallic elemental red phosphorus(RP)for the photocatalytic selective oxidation of benzyl alcohol(BA)coupled with hydrogen production.The catalysts exhibited an outstanding photocatalytic activity for benzaldehyde and a high H_(2)yield.The RP regulated by bimetallic phosphide cocatalysts(Ni_(x)Fe_(2-x)P)demonstrated higher photocatalytic oxidation-reduction activity than that regulated by monometallic phosphide cocatalysts(Ni_(2)P and Fe2P).In particular,the RP regulated by Ni_(1.25)Fe_(0.75)P exhibited the best photocatalytic performance.In addition,experimental and theoretical calculations further illustrated that Ni_(1.25)Fe_(0.75)P,with the optimized electronic structure,possessed good electrical conductivity and provided strong adsorption and abundant active sites,thereby accelerating electron migration and lowering the reaction energy barrier of RP.This finding offers valuable insights into the rational design of highly effective cocatalysts aimed at optimizing the photocatalytic activity of composite photocatalysts.
基金supported by the National Natural Science Foundation of China(22102132)the Funds for Basic Scientific Research in Central Universities+2 种基金the Scientific Research Foundation of Qingdao UniversityTaishan Scholar Program(NO.tsqnz20231213)sponsored by the Innovation Foundation for Doctor Dissertation of Northwestern Polytechnical University(CX2024101)。
文摘Platinum group alloys have an excellent electronic structure for oxidation of alcohols,but the active sites are more susceptible to deactivation by CO adsorbates(CO_(ads)).The precise integration of single-atom and alloy structures is highly attractive for energy conversion but still a challenge.Here,we report an ionexchange coupled in situ reduction strategy to fabricate hollow PtPdTe alloy nanoreactors loaded with atomically dispersed Cu sites(Cu_(SA)/h-PtPdTe NRs).The planted oxyphilic Cu single sites and resulted compressive strains are conductive to modulating the electronic structure of the active sites,which changes the rate-determining step of the reaction while inhibiting the formation of CO_(ads)and modulating the adsorption of intermediates,resulting in the improved activity and stability.Specifically,the obtained Cu_(SA)/h-PtPdTe NRs exhibit an excellent oxidation performance of multiple alcohols,especially for methanol and ethanol,with 8.0 and 10.3 times of the mass activity higher than Pt/C,and the activity could be recovered by refreshing the electrolyte and could be sustained for 72,000 and 36,000 s,respectively.Meanwhile,Cu_(SA)/h-PtPdTe NRs show superior oxidation performance and durability to ethylene glycol and glycerol.This work pioneers the realization of precise modulation of catalytic sites using single atoms and provides an encouraging pathway for the design of efficient and stable electrocatalysts for the oxidation of multiple alcohols,which could broaden the range of options and sources of fuel cells.
文摘Atomically-dispersed metal-based materials represent an emerging class of photocatalysts attributed to their high catalytic activity,abundant surface active sites,and efficient charge separation.Nevertheless,the roles of different forms of atomically-dispersed metals(i.e.,single-atoms and atomic clusters)in photocatalytic reactions remain ambiguous.Herein,we developed an ethylenediamine(EDA)-assisted reduction method to controllably synthesize atomically dispersed Au in the forms of Au single atoms(Au_(SA)),Au clusters(Au_(C)),and a mixed-phase of Au_(SA)and Au_(C)(Au_(SA+C))on CdS.In addition,we elucidate the synergistic effect of Au_(SA)and Au_(C)in enhancing the photocatalytic performance of CdS substrates for simultaneous CO_(2)reduction and aryl alcohol oxidation.Specifically,Au_(SA)can effectively lower the energy barrier for the CO_(2)→*COOH conversion,while Au_(C)can enhance the adsorption of alcohols and reduce the energy barrier for dehydrogenation.As a result,the Au_(SA)and Au_(C)co-loaded CdS show impressive overall photocatalytic CO_(2)conversion performance,achieving remarkable CO and BAD production rates of 4.43 and 4.71 mmol g^(−1)h^(−1),with the selectivities of 93%and 99%,respectively.More importantly,the solar-to-chemical conversion efficiency of Au_(SA+C)/CdS reaches 0.57%,which is over fivefold higher than the typical solar-to-biomass conversion efficiency found in nature(ca.0.1%).This study comprehensively describes the roles of different forms of atomically-dispersed metals and their synergistic effects in photocatalytic reactions,which is anticipated to pave a new avenue in energy and environmental applications.
基金supported by the National Natural Science Foundation of China(21222307,21373181,21403197,91545113,21503189)the Fundamental Research Funds for the Central Universities(2014XZZX003-02)+1 种基金Zhejiang Provincial Natural Science Foundation(LY15B030009)China Postdoctoral Science Foundation(2014M550333,2015T80636)~~
文摘Stabilizing gold nanoparticles(AuNPs) within a desired size range is critical to realize their promising catalytic performance in many important reactions.Herein,we investigate the anti-sintering properties of cubic mesoporous silica(FDU-12) as a function of pore entrance size.Simple adjustments to the type of organic template and reaction temperature enable the successful synthesis of FDU-12 with controllable entrance sizes( 3,3-5 and 7 nm).Excellent anti-sintering properties are observed for FDU-12 with a sub-5-nm entrance size(3-5 nm) over a wide loading concentration(1.0-8.3 wt%) and the AuNPs can be stabilized within a 4.5-5.0-nm range after calcination at 550 ℃in air for 5 h.Smaller entrance size( 3 nm) prevents ingress of 3-nm AuNPs to the mesopores and results in low loading capacity and sintering.Conversely,FDU-12 possessing a larger entrance size(7 nm) shows promising anti-sintering properties at high loading concentrations,although catalytic performance is significantly lost at lower concentrations(e.g.2.1 wt%,14.2 ± 5.5 nm).Different anti-sintering mechanisms are proposed for each of the different FDU-12 entrance sizes.Additionally,catalytic data indicates that the obtained 4.5-nm AuNPs supported on FDU-12 with a sub-5-nm entrance size exhibit excellent mass-specific activity(1544 mmol g_(Au)^(-1) h^(-1)) and selectivity( 99%)at 230 ℃ for the gas-phase selective oxidation of cyclohexanol.
文摘lmprovement of the charge separation of titanosilicate molecular sieves is critical to their use asphotocatalysts for oxidative organic transformations.In this work,MFI TS-1 molecular sievenanosheets(TS-1 NS)were synthesized by a low-temperature hydrothermal method using a tai-lored diquaternary ammonium surfactant as the structure-directing agent.Introducing Ni^2+cationsat the ion-exchange sites of the TS-1 NS framework significantly enhanced its photoactivity in aero-bic alcohol oxidation.The optimized Ni cation-functionalized TS-1 NS(Ni/TS-1 NS)provide impres-sive photoactivity,with a benzyl alcohol(BA)conversion of 78.9%and benzyl aldehyde(BAD)se-lectivity of 98.8%using O as the only oxidant under full light irradiation;this BAD yield is approx-imately six times greater than that obtained for bulk TS-1,and is maintained for five runs.The ex-cellent photoactivity of Ni/TS-1 NS is attributed to the significantly enlarged surface area of thetwo-dimensional morphology TS-1 NS,extra mesopores,and greatly improved charge separation.Compared with bulk TS-1,Ni/TS-1 NS has a much shorter charge transfer distance.Theas-introduced Ni species could capture the photoelectrons to further improve the charge separa-tion.This work opens the way to a class of highly selective,robust,and low-cost titanosilicate mo-lecular sieve-based photocatalysts with industrial potential for selective oxidative transformationsand pollutant degradation.
文摘Selective aerobic oxidation of alcohols under mild conditions is of great importance yet challenging,with the activation of molecular oxygen(O2)as a crucial capability of the catalysts.Herein,we demonstrate that an Al2O3-supported Pd single-atom catalyst leads to higher activity and selectivity compared to Pd nanoparticles for the oxidation of cinnamyl alcohol.The Al2O3 support used in this study is rich in coordinately unsaturated Al3+sites,which are apt for binding to Pd atoms through oxygen bridges and present a distinct metal-support interaction(MSI).The suitable MSI then leads to a unique electronic characteristic of the Pd single atoms,which can be confirmed via X-ray photoelectron spectroscopy,normalized X-ray absorption near-edge structure,and diffuse reflectance Fourier transform infrared spectroscopy.Moreover,this unique electronic state is proposed to be responsible for its high catalytic activity.With the help of in-situ UV-vis spectra and electron spin resonance spectra,a specific alcohol oxidation route with O2 activation mechanism is then identified.Active oxygen species behaving chemically like singlet-O2 are generated from the interaction of O2 with Pd1/Al2O3,and then oxidize the partially dehydrogenated intermediates produced by the adsorbed allylic alcohols and Pd atoms to the desired alkenyl aldehyde.This work provides a promising path for the design and development of high-activity catalysts for aerobic oxidation reactions.
基金supported by National Key R&D Program of China (Nos.2017YFA0207301,2017YFA0207302)the National Natural Science Foundation of China (NSFC,Nos.21725102,21601173, U1832156,21881240040,21573212)+3 种基金CAS Key Research Program of Frontier Sciences (No.QYZDB-SSW-SLH018)CAS Interdisciplinary Innovation Team,and Chinese Universities Scientific Fund (No. WK2310000067)funded by Chinese Academy of Sciences President’s International Fellowship Initiative (No. 2019PC0114)support from USTC Center for Microand Nanoscale Research and Fabrication
文摘Efficient catalytic system with low energy consumption exhibits increasing importance due to the upcoming energy crisis.Given this situation,it should be an admirable strategy for reducing energy input by effectively utilizing incident solar energy as a heat source during catalytic reactions.Herein,aza-fused7 r-conjugated microporous polymer(aza-CMP)with broad light absorption and high photothermal conversion efficiency was synthesized and utilized as a support for bimetallic AuPd nanocatalysts in light-driven benzyl alcohol oxidation.The AuPd nanoparticles anchored on aza-CMP(aza-CM P/Au_xPdy)exhibited excellent catalytic performance for benzyl alcohol oxidation under 50 mW/cm^2 light irradiation.The improved catalytic performance by the aza-CMP/Au_xPdy is attributed to the unique photothermal effect induced by aza-CMP,which can promote the catalytic benzyl alcohol oxidation occurring at Au Pd.This work presents a novel approach to effectively utilize solar energy for conventional catalytic reactions through photothermal effect.
基金the National Natural Sci-ence Foundation of China(Nos.22271038,22378038,22172012)C.P.thanks Dalian Science and Technology Innovation Fund(No.2024JJ12CG033)+1 种基金C.P.and Z.S thank State Key Laboratory of Heavy Oil Processing(Nos.WX20230149,SKLHOP202402005)Y.-Y.L.thanks the Guangxi Key Laboratory of Information Materials,Guilin University of Electronic Technology(No.231019-K).
文摘The development of efficient photocatalysts for selective organic transformations under visible light remains a major challenge in sustainable chemistry.In this study,we present a straightforward solvothermal strategy for fabricating a defect-engineered ZrO_(2)/UiO-66-NH_(2)hybrid material with abundant oxygen vacancies,enabling the visible-light-driven oxidation of benzyl alcohol to benzaldehyde.By optimizing the solvothermal treatment duration,the composite(UiO-66-NH_(2)-2h)achieves a 74.1%conversion of benzyl alcohol with>99%selectivity toward benzaldehyde under mild conditions,substantially out-performing pristine UiO-66-NH_(2).Structural and mechanistic studies reveal that the solvothermal process induces the in situ formation of ultrasmall,uniformly dispersed ZrO_(2)nanoparticles(~2.3 nm)within the MOF matrix,while simultaneously generating abundant oxygen vacancies,as confirmed by XPS,EPR,and HRTEM analyses.The defect-mediated electronic structure of the ZrO_(2)/UiO-66-NH_(2)hybrid enhances visible-light absorption,facilitates charge carrier separation,and pro-motes efficient activation of O_(2)into superoxide radicals(·O_(2)^(−)),the primary reactive species.Transient photocurrent measure-ments and electrochemical impedance spectroscopy further verify the improved charge separation efficiency.The synergistic interplay between oxygen vacancies and the intimate ZrO_(2)/UiO-66-NH_(2)interface provides a unique defect-mediated charge transfer pathway,distinguishing this system from conventional heterojunctions.This study demonstrates a facile,one-step approach to integrate defect engineering with interfacial hybridization in MOF-based photocatalysts,off ering a scalable route for solar-driven organic synthesis.
基金supported by the National Key R&D Program of China(2022YFA1504500)National Natural Science Foundation of China(52472310,22025108,U21A20327,and 22121001)+4 种基金Gusu Leading Talent Program(ZXL2024347)Guangdong Provincial Natural Science Fund for Distinguished Young Scholars(2021B1515020081)Pioneer Hundred Talents Program of Chinese Academy of SciencesNatural Science Foundation of the Jiangsu Higher Education Institutions(22KJA430009)Science and Technology Development Plan of Suzhou(ZXL2022176).
文摘Photocatalytic H_(2) production has been regarded as a charming strategy for harvesting solar energy to chemical energy yet remains a great challenge due to the weak light absorption in visible range,low charge transfer,and fast recombination of photogenerated carriers.Here,we integrate solar-driven water splitting with benzyl alcohol(BA)oxidation,a typical platform chemical from biomass,for producing H_(2) and benzaldehyde(BAD)over ZnIn_(2)S_(4) nanosheets doped with Ni and N(Ni-N/ZIS).Mechanism studies show that Ni-N/ZIS provides a fast charge channel(i.e.,Ni-N)for separating photogenerated electrons and holes,as a result of significantly enhanced photocatalytic performance.Impressively,Ni-N/ZIS displays a H_(2) productivity of 18.7 mmol g^(-1) h^(-1) with an apparent quantum yield(AQE)of 29.1% at 420 nm,which is 37.4,10.6 and 2.8 times higher than that of pristine ZIS,N/ZIS and Ni/ZIS,surpassing all the reported noble metal-free catalysts.Besides,the productivity of BAD reaches 17.5 mmol g^(-1) h^(-1) under the irradiation of visible light(λ≥420 nm).This work integrates two significant processes(i.e.,solar-driven water splitting with benzyl alcohol oxidation)for producing H_(2) and BAD,respectively,which will contribute to alleviating the current energy and environmental crisis.
文摘Two cobalt(Ⅱ) complexes 1 and 2 of Schiff bases derived from amino acids were synthesized and used for oxidation of benzyl alcohol with molecular oxygen at different conditions of pH,solvent,temperature and complex/alcohol molar ratio to optimize reaction conditions and to evaluate the catalytic efficiency of new cobalt Schiff base complexes.Under obtained optimum conditions,various alcohols were oxidized to corresponding aldehydes and ketones.
基金the National Key Research and Development Program of China(No.2016YFB0701100)the National Natural Science Foundation of China(Nos.51802015 and 51890893)Fundamental Research Funds for the Central Universities(FRFTP-16-028A1)。
文摘Building a covalently connected structure with accelerated photo-induced electrons and charge-carrier separation between semiconductors could enhance the photocatalytic performance.In this work,we report a facile and novel seed growth method to coat NH2-MIL-125 MOFs with crystalline and porous covalent organic frameworks(COFs)materials and form a range of NH2-MIL-125@TAPB-PDA nanocomposites with different thicknesses of COF shell.The introduction of appropriate content of COF could not only modify the intrinsic electronic and optical properties,but also enhance the photocatalytic activity distinctly.Especially,NH2-MIL-125@TAPB-PDA-3 with COF shell thickness of around 20nm exhibited the highest yield(94.7%)of benzaldehyde which is approximately 2.5 and 15.5 times as that of parental NH2-MIL-125 and COF,respectively.The promoted photocatalytic performance of hybrid materials was mainly owing to the enhanced photo-induced charge carriers transfer between the MOF and COF through the covalent bond.In addition,a possible mechanism to elucidate the process of photocatalysis was explored.Therefore,this kind of MOF-based photocatalysts possesses great potentials in future green organic synthesis.
基金support from the National Natural Science Foundation of China(21976054,22176054)the Fundamental Research Funds for the Central Universities(2020MS036,FRF-TP-20-005A3)+1 种基金the Fundamental Research Funds for the Central Universities and the Youth Teacher International Exchange&Growth Program(QNXM20220026)MOE Key Laboratory of Resources and Environmental System Optimization,College of Environmental Science and Engineering,North China Electric Power University(KLRE-KF202201)。
文摘Traditional conversion of alcohols into carbonyl compounds exists a few drawbacks such as harsh reaction conditions,production of large amounts of hazardous wastes,and poor selectivity.The newly emerging conversion approaches via photo-,electro-,and photoelectro-catalysis to oxidize alcohols into high value-added corresponding carbonyl compounds as well as the possible simultaneous production of clean fuel hydrogen(H_(2))under mild conditions are promising to substitute the traditional approach to form greener and sustainable reaction systems and thus have aroused tremendous investigations.In this review,the state-of-the-art photocatalytic,electrocatalytic,and photoelectrocatalytic strategies for selective oxidation of different types of alcohols(aromatic and aliphatic alcohols,single alcohol,and polyols,etc.)as well as the simultaneous production of H_(2) in certain systems are discussed.The design of photocatalysts,electrocatalysts,and photoelectrocatalysts as well as reaction mechanism is summarized and discussed in detail.In the end,current challenges and future research directions are proposed.It is expected that this review will not only deepen the understanding of environmentally friendly catalytic systems for alcohol conversion as well as H_(2) production,but also enlighten significance and inspirations for the follow-up study of selective oxidation of various types of organic molecules to value-added chemicals.
文摘MnFe1.4Ru0.45Cu0.15O4 was an effective heterogeneous catalyst for the oxidation of various types of alcohols to the corresponding carbonyl compounds using atmospheric pressure of oxygen under mild conditions. Furthermore, this catalyst was also effective towards alcohol oxidation using water as solvent instead of toluene.
基金supported by the National Natural Science Foundation of China(No.22008091)the funding for scientific research startup of Jiangsu University(No.19JDG044)the Jiangsu Provincial Program for High-Level Innovative and Entrepreneurial Talents Introduction.A.C.thanks support from the project COMBENERGY(No.PID2019-105490RB-C32)of the Spanish Ministerio de Ciencia e Innovación.
文摘Metallenes are an emerging class of two-dimensional(2D)material with outstanding potential in electrocatalysis.Herein,we present a new PdMoSb trimetallene produced by a facile wet-chemistry procedure and tested for the alcohol oxidation reaction.PdMoSb shows an extremely high Pd utilization and superior performance toward ethanol,methanol,and glycerol electro-oxidation compared with PdMo and commercial Pd/C catalysts.Experimental results and density functional theory calculations reveal that the enhanced activity relies not only on the high surface area that characterizes the ultrathin 2D metallene structure,but also on the particular electronic configuration of Sb.Sb facilitates OH−adsorption in the reactive-intermediate pathway and strongly enhances the CO tolerance in the poisoning-intermediate pathway for alcohol oxidation.The excellent alcohol oxidation performance of PdMoSb trimetallene demonstrates the high potential of multimetallenes in the field of electrocatalysis.
基金supported by the National Natural Science Foundation of China(No.51802015)National Key Research and Development Program of China(No.2018YFB0605900)+1 种基金Fundamental Research Funds for the Central Universities(No.FRF-TP-20-005A3)Interdisciplinary Research Project for Young Teachers of USTB(Fundamental Research Funds for the Central Universities)(No.FRF-IDRY-19-020)。
文摘Noble-metal-free photocatalysts with high and stable performance provide an environmentally-friendly and cost-efficient route for green organic synthesis.In this work,CdS nanoparticles with small particle size and different amount were successfully deposited on the surface of covalent organic frameworks(COFs).The deposition of suitable content of CdS on COFs could not only modify the light adsorption ability and the intrinsic electronic properties,but also enhance the photocatalytic activity and cycling performance of CdS for the selective oxidation of aromatic alcohols under visible light.Especially,COF/CdS-3 exhibited the highest yield(97.1%)of benzalde hyde which is approximately 2.5 and 15.9 times as that of parental CdS and COF,respectively.The results show that the combination of CdS and COF can improve the utilization of visible light and the separation of photo-generated charge carriers,and COF with theπ-conjugated system as supports for CdS nanoparticles could provide efficient electron transport channels and improve the photocatalytic performance.Therefore,this kind of COF-supported photocatalysts with accelerated photo-induced electrons and charge-carrier separation between semiconductors possesses great potentials in future green organic synthesis.
基金This work was supported by the Natural Science Foundation of Anhui Province (No.11040606M39) and the Fundamental Research Funds for the Central Universities.
文摘Various Au/GO catalysts were prepared by depositing Au nanoparticles on thermally- and chemically-treated graphite oxide (GO) supports using a sol-immobilization method. The surface chemistry and structure of GO supports were characterized by a series of analytical techniques including X-ray photoelectron spectroscopy, temperature-programmed desorption and Raman spectroscopy. The results show that thermal and chemical treatments have large influence on the presence of surface oxygenated groups and the crystalline structure of GO supports. A strong support effect was observed on the catalytic activity of Au/GO catalysts in the liquid phase aerobic oxidation of benzyl alcohol. Compared to the amount and the type of surface oxygen functional groups, the ordered structure of GO supports may play a more important role in determining the catalytic performance of Au/GO catalysts.
基金supported by the National Natural Science Foundation of China(NSFC,Nos.51872035 and 22078052)the Innovation Program of Dalian City of Liaoning Province(No.2019RJ03)。
文摘The water promotion effects,where water can provide a solution-mediated reaction pathway in various heterogeneous chemical catalysis,have been presented and attracted wide attention recently,yet,the rational design of catalysts with a certain ability of enhancing water-induced reaction process is full of challenges and difficulties.Here,we show that by incorporating alkali(Na,K)cations as an electronic and/or structural promoter into Pd/rGO-ZnCr_(2)O_(4)(r GO,reduced graphene oxide),the obtained Pd(Na)/rGO-ZnCr_(2)O_(4)as a representative example demonstrates an outstanding benzyl alcohol oxidation activity in the Pickering emulsion system in comparison to the alkali-free counterpart.The response experiments of water injection confirm the enhanced activity,and the Na-modified catalyst can further enhance the promotion effects of water on the reaction.The effects of alkali cations for Pd nanoparticles are identified and deciphered by a series of experimental characterizations(XPS,in situ CO-DRIFTS,and CO-TPR coupled with MS),showing that there is abundant-OH on the surface of the catalyst,which is stabilized by the formation of Pd-OH_(x).The alkali-stabilized Pd-OH_(x)is helpful to enhance the waterinduced reaction process.According to the results of in situ Raman as well as UV-vis absorption spectra,the Na-modulated Pd(Na)/rGO-ZnCr_(2)O_(4)enables the beneficial characteristics for distorting the benzyl alcohol structure and enhancing the adsorption of benzyl alcohol.Further,the mechanism for enhanced water promotion effects is rationally proposed.The strategy of alkali cations-modified catalysts can provide a new direction to effectively enhance the chemical reaction involving small molecule water.
基金This research was funded by the National Natural Science Foundation of China(21976054)the Fundamental Research Funds for the Central Universities(2020MS036)the Deutsche Forschungsgemeinschaft(DFG,German Research Foundation)within the collaborative research centre/transregio 247"Heterogeneous Oxidation Catalysis in the Liquid Phase,f.
文摘Photocatalytic oxidation of alcohols has received more and more attention in recent years following the numerous studies on the degradation of pollutants, hydrogen evolution, and CO_(2) reduction by photocatalysis. Instead of the total oxidation of organics in the degradation process, the photo-oxidation of alcohols aims at the selective conversion of alcohols to produce carbonyl/acid compounds. Promising results have been achieved in designing the catalysts and reaction system, as well as in the mechanistic investigations in the past few years. This review summarizes the state-of-the-art progress in the photo-oxidation of alcohols, including the development of photocatalysts and cocatalysts, reaction conditions including the solvent and the atmosphere, and the exploration of mechanisms with scavengers experiment, electron paramagnetic resonance (EPR) and diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy. The challenges and outlook for the further research in this field are also discussed.
基金National Natural Science Foundation of China(21905049 and 22178057)Natural Science Foundation of Fujian Province(2020J01201 and 2021J01197)Award Program for Minjiang Scholar Professorship.S.Liu thanks the support from the Fundamental Research Funds for the Central Universities(Grant No.DUT21RC(3)114).
文摘Photocatalytic anaerobic organic oxidation coupled with H_(2)evolution represents an advanced solar energy utilization strategy for the coproduction of clean fuel and fine chemicals.To achieve a high conversion efficiency,the smart design of efficient catalysts by the right combination of semiconductor light harvesters and cocatalyst is highly required.Herein,we report a composite photocatalyst composed of noble metal-free transition metal nitride Ni_(3)FeN decorated on 2D ultrathin ZnIn_(2)S_(4)(ZIS)nanosheets for selective oxidation of aromatic alcohols to aldehydes pairing with H_(2)production.In the composite,ultrathin ZIS serves as a light harvester that greatly shortens the diffusion length of photogenerated charges,while the metallic nitride Ni_(3)FeN acts as an advanced cocatalyst which not only captures the photoelectrons generated from the ultrathin ZIS to promote the charge separation,but also provides active sites to lower the overpotential and accelerate the H_(2)reduction.The best photocatalytic performance is found on ZIS/1.5%M-Ni_(3)FeN,which shows a H_(2)generation rate of 2427.9μmol g^(^(-1))h^(-1)and a benzaldehyde(BAD)production rate of 2460μmol g^(-1)h^(-1),about 7.8-fold as high as that of bare ZIS.This work is anticipated to endorse the exploration of transition metal nitrides as high-performance cocatalysts to promote the coupled photocatalytic organic transformation and H_(2)production.