The static aeroelastic effect of aircraft ailerons with high aspect ratio at transonic velocity is investigated in this paper by the CFD/CSD fluid-structure coupling numerical simulation.The influences of wing static ...The static aeroelastic effect of aircraft ailerons with high aspect ratio at transonic velocity is investigated in this paper by the CFD/CSD fluid-structure coupling numerical simulation.The influences of wing static aeroelasticity and the‘scissor opening’gap width between aileron control surface and the main wing surface on aileron efficiency are mainly explored.The main purpose of this paper is to provide technical support for the wind tunnel experimental model of aileron static aeroelasticity.The results indicate that the flight dynamic pressure has a great influence on the static aeroelastic effect of ailerons,and the greater the dynamic pressure,the lower the aileron efficiency.Aileron deflection causes asymmetric elastic deformation of the main wing surfaces of the left and right wings.The torque difference caused by the load distribution on the main wing surface offsets the rolling torque generated by the aileron.This results in a significant reduction in aileron efficiency,and it is noticeable that it is not the elastic deformation of the aileron itself or the reduction in effective deflection that leads to the reduction in rolling control efficiency.Under typical transonic conditions,the rolling control torque of the aileron can be reduced by more than 25%,in the range of 2.5–10 mm,and the‘scissor opening’gap width of the aileron has almost no influence on its static aeroelastic effect.展开更多
The aeroelastic responses of a high-aspect-ratio wing are investigated based on nonlinear experimental aerodynamic forces. The influences of nonlinear experimental aerodynamic forces and dynamic pressures on the wing ...The aeroelastic responses of a high-aspect-ratio wing are investigated based on nonlinear experimental aerodynamic forces. The influences of nonlinear experimental aerodynamic forces and dynamic pressures on the wing loads are studied in the longitudinal and lateral maneuver states. The flight loads of the wing fixed at the root are calculated at different angles of attack. The aileron efficiency with respect to the dynamic pressures and aileron deflections are also studied. The results indicate that the flight loads of the wings vary nonlinearly with the angle of attack and dynamic pressure. Due to the high-lift aerofoil, elastic components are a large portion of the wing loads, especially for small angles of attack and high dynamic pressure condi-tions. The aileron efficiency is significantly affected by aileron deflections, dynamic pressures and angles of attack when the nonlinear experimental aerodynamic forces are used for calculation. In states with high dynamic pressures and large aileron deflections, aileron reversal can occur. The aileron deflection and angle of attack have a nonlinear effect on the aileron efficiency. An efficient method for analyzing the flight loads and structural design of high-aspect-ratio wings is derived in this study, and the analysis can provide insight into the distribution of flight loads for high-aspect-ratio wings.展开更多
文摘The static aeroelastic effect of aircraft ailerons with high aspect ratio at transonic velocity is investigated in this paper by the CFD/CSD fluid-structure coupling numerical simulation.The influences of wing static aeroelasticity and the‘scissor opening’gap width between aileron control surface and the main wing surface on aileron efficiency are mainly explored.The main purpose of this paper is to provide technical support for the wind tunnel experimental model of aileron static aeroelasticity.The results indicate that the flight dynamic pressure has a great influence on the static aeroelastic effect of ailerons,and the greater the dynamic pressure,the lower the aileron efficiency.Aileron deflection causes asymmetric elastic deformation of the main wing surfaces of the left and right wings.The torque difference caused by the load distribution on the main wing surface offsets the rolling torque generated by the aileron.This results in a significant reduction in aileron efficiency,and it is noticeable that it is not the elastic deformation of the aileron itself or the reduction in effective deflection that leads to the reduction in rolling control efficiency.Under typical transonic conditions,the rolling control torque of the aileron can be reduced by more than 25%,in the range of 2.5–10 mm,and the‘scissor opening’gap width of the aileron has almost no influence on its static aeroelastic effect.
基金supported by the National Natural Science Foundation of China (Grant Nos. 60736025, 90716006, 10902006)the Doctoral Pro-gram Foundation of Institutions of Higher Education of China (Grant No. 20091102110015)the Major Programs of China National Space Administration (Grant No. D2120060013)
文摘The aeroelastic responses of a high-aspect-ratio wing are investigated based on nonlinear experimental aerodynamic forces. The influences of nonlinear experimental aerodynamic forces and dynamic pressures on the wing loads are studied in the longitudinal and lateral maneuver states. The flight loads of the wing fixed at the root are calculated at different angles of attack. The aileron efficiency with respect to the dynamic pressures and aileron deflections are also studied. The results indicate that the flight loads of the wings vary nonlinearly with the angle of attack and dynamic pressure. Due to the high-lift aerofoil, elastic components are a large portion of the wing loads, especially for small angles of attack and high dynamic pressure condi-tions. The aileron efficiency is significantly affected by aileron deflections, dynamic pressures and angles of attack when the nonlinear experimental aerodynamic forces are used for calculation. In states with high dynamic pressures and large aileron deflections, aileron reversal can occur. The aileron deflection and angle of attack have a nonlinear effect on the aileron efficiency. An efficient method for analyzing the flight loads and structural design of high-aspect-ratio wings is derived in this study, and the analysis can provide insight into the distribution of flight loads for high-aspect-ratio wings.