期刊文献+
共找到84篇文章
< 1 2 5 >
每页显示 20 50 100
Integrating field images and microclimate data to realize multi-day ahead forecasting of maize crop coverage using CNN-LSTM
1
作者 Xin Wang Yu Yang +2 位作者 Xin Zhao Min Huang Qibing Zhu 《International Journal of Agricultural and Biological Engineering》 SCIE 2023年第2期199-206,共8页
Crop coverage(CC)is an important parameter to represent crop growth characteristics,and the ahead forecasting of CC is helpful to track crop growth trends and guide agricultural management decisions.In this study,a no... Crop coverage(CC)is an important parameter to represent crop growth characteristics,and the ahead forecasting of CC is helpful to track crop growth trends and guide agricultural management decisions.In this study,a novel CNN-LSTM model that combined the advantages of convolutional neural network(CNN)in feature extraction and long short-term memory(LSTM)in time series processing was proposed for multi-day ahead forecasting of maize CC.Considering the influence of climate change on maize growth,five microclimatic factors were combined with historical maize CC estimated from field images as the input variables of the forecasting model.The field experimental data of four observation points for more than three years were used to evaluate the performance of CNN-LSTM at the forecasting horizon of three to seven days ahead and compared the forecasting results to CNN and LSTM.The results demonstrated that CNN-LSTM obtained the lowest RMSE and the highest R2 at all forecasting horizons.Subsequently,the performance of CNN-LSTM under univariate(historical maize CC)and multivariate(historical maize CC+microclimatic factors)input was compared,and the results indicated that additional microclimatic factors were effective in improving the forecasting performance.Furthermore,the 3-day ahead forecasting results of CNN-LSTM in different growth stages of maize were also analyzed,and the results showed that the highest forecasting accuracy was obtained in the seven leaves stage.Therefore,CNN-LSTM can be considered a useful tool to forecast maize CC. 展开更多
关键词 maize crop coverage multi-day ahead forecasting CNN-LSTM field images microclimatic factors
原文传递
Strategies for multi-step-ahead available parking spaces forecasting based on wavelet transform 被引量:6
2
作者 JI Yan-jie GAO Liang-peng +1 位作者 CHEN Xiao-shi GUO Wei-hong 《Journal of Central South University》 SCIE EI CAS CSCD 2017年第6期1503-1512,共10页
A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of avail... A new methodology for multi-step-ahead forecasting was proposed herein which combined the wavelet transform(WT), artificial neural network(ANN) and forecasting strategies based on the changing characteristics of available parking spaces(APS). First, several APS time series were decomposed and reconstituted by the wavelet transform. Then, using an artificial neural network, the following five strategies for multi-step-ahead time series forecasting were used to forecast the reconstructed time series: recursive strategy, direct strategy, multi-input multi-output(MIMO) strategy, DIRMO strategy(a combination of the direct and MIMO strategies), and newly proposed recursive multi-input multi-output(RECMO) strategy which is a combination of the recursive and MIMO strategies. Finally, integrating the predicted results with the reconstructed time series produced the final forecasted available parking spaces. Three findings appear to be consistently supported by the experimental results. First, applying the wavelet transform to multi-step ahead available parking spaces forecasting can effectively improve the forecasting accuracy. Second, the forecasting resulted from the DIRMO and RECMO strategies is more accurate than that of the other strategies. Finally, the RECMO strategy requires less model training time than the DIRMO strategy and consumes the least amount of training time among five forecasting strategies. 展开更多
关键词 available PARKING SPACES MULTI-STEP ahead time series forecasting wavelet transform forecasting STRATEGIES recursive multi-input MULTI-OUTPUT strategy
在线阅读 下载PDF
基于相似日筛选与组合深度学习模型的日前电价预测方法 被引量:2
3
作者 艾雨 贾燕冰 韩肖清 《电网技术》 北大核心 2025年第1期242-251,I0088,共11页
准确的日前电价预测是市场运行和政策规划的基础,而市场披露信息是电价预测的重要依据。提出了引入Self-attention机制的CNN-GRU组合深度学习电价预测模型。首先,针对山西电力现货市场交易流程及日前电价形成机制,采用最大互信息系数法... 准确的日前电价预测是市场运行和政策规划的基础,而市场披露信息是电价预测的重要依据。提出了引入Self-attention机制的CNN-GRU组合深度学习电价预测模型。首先,针对山西电力现货市场交易流程及日前电价形成机制,采用最大互信息系数法对市场披露的日前边界条件等信息数据进行特征提取,以确定电价关键影响因素及其权重系数。其次,基于加权灰色关联度的历史相似日筛选方法生成电价预测历史数据集,并挖掘电价及其特征的内部变化规律。然后,基于历史数据集,采用引入Self-attention机制的CNN-GRU模型得到预测电价。最后,通过算例验证了所提预测方法的有效性及准确性。 展开更多
关键词 日前电价预测 边界条件 最大互信息系数 相似日筛选 Self-attention机制
原文传递
Deep learning for time series forecasting:The electric load case 被引量:11
4
作者 Alberto Gasparin Slobodan Lukovic Cesare Alippi 《CAAI Transactions on Intelligence Technology》 SCIE EI 2022年第1期1-25,共25页
Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep le... Management and efficient operations in critical infrastructures such as smart grids take huge advantage of accurate power load forecasting,which,due to its non-linear nature,remains a challenging task.Recently,deep learning has emerged in the machine learning field achieving impressive performance in a vast range of tasks,from image classification to machine translation.Applications of deep learning models to the electric load forecasting problem are gaining interest among researchers as well as the industry,but a comprehensive and sound comparison among different-also traditional-architectures is not yet available in the literature.This work aims at filling the gap by reviewing and experimentally evaluating four real world datasets on the most recent trends in electric load forecasting,by contrasting deep learning architectures on short-term forecast(oneday-ahead prediction).Specifically,the focus is on feedforward and recurrent neural networks,sequence-to-sequence models and temporal convolutional neural networks along with architectural variants,which are known in the signal processing community but are novel to the load forecasting one. 展开更多
关键词 deep learning electric load forecasting multi-step ahead forecasting smart grid time-series prediction
在线阅读 下载PDF
地区分布式光伏发电量日前预测方法探究 被引量:1
5
作者 刘诗 王宇飞 李宇龙 《东北电力技术》 2025年第4期35-38,43,共5页
为探寻地区电网调度分布式光伏发电量预测的实用方法和提高预测的准确性,提出了一种结合数值天气预报和历史数据统计模型的地区分布式光伏发电量日前预测方法。首先,利用机器人流程自动化(robot process automation, RPA)技术和气象服... 为探寻地区电网调度分布式光伏发电量预测的实用方法和提高预测的准确性,提出了一种结合数值天气预报和历史数据统计模型的地区分布式光伏发电量日前预测方法。首先,利用机器人流程自动化(robot process automation, RPA)技术和气象服务平台,自动获取光伏发电数据和天气预报信息。其次,通过分析各县域历史发电数据与天气因素之间的关系,建立预测模型,该模型考虑了辐射温度、湿度和风速等主要影响因素,通过回归分析方法进行建立和验证。最后,仿真分析结果表明,该方法相比传统方法有显著改进,能有效提高预测的准确性和可靠性,自动化的数据收集与处理流程不仅提升了工作效率,还降低了人为错误率。该方法对于电网调度优化发电计划,提高可再生能源利用率具有一定的实用价值。 展开更多
关键词 分布式光伏发电 日前预测 RPA 数值天气预报
在线阅读 下载PDF
基于变分贝叶斯卷积单控记忆网络的径流概率预报研究
6
作者 张振东 戴会超 +1 位作者 张清 余意 《水文》 北大核心 2025年第5期20-28,35,共10页
可靠高精度的径流长预见期概率预报可为水库调度和决策提供信息。围绕仅采用历史降雨、蒸发和径流数据完成长预见期预报、提高径流预报精度、量化预报不确定性等开展研究。采用最大平移相关系数法分析上游站点流量演进到下游站点的传播... 可靠高精度的径流长预见期概率预报可为水库调度和决策提供信息。围绕仅采用历史降雨、蒸发和径流数据完成长预见期预报、提高径流预报精度、量化预报不确定性等开展研究。采用最大平移相关系数法分析上游站点流量演进到下游站点的传播时间;然后将上游、下游、支流历史流量以及区间历史降雨与蒸发变量构建为三维张量形式;提出基于卷积单控记忆神经网络(ConvSCM)的确定性预报模型,并结合变分贝叶斯推理框架构建径流概率预报模型BConvSCM。将提出的模型应用于长江流域中下游径流预报。结果表明:(1)在缺少降雨预报数据时,概念水文预报模型仅能完成1个时段预见期的预报,而BConvSCM模型可完成径流的长预见期预报;(2)BConvSCM模型的均值预报结果确定性系数比传统概念水文模型平均提高约2.86%,比现有深度学习模型平均提高0.68%,且获取了合适的径流预报概率密度函数。研究成果可为径流长预见期概率预报提供参考。 展开更多
关键词 径流预报 概率预报 长预见期 深度学习
在线阅读 下载PDF
基于ForecastNet的径流模拟及多步预测 被引量:3
7
作者 刘昱 闫宝伟 +2 位作者 刘金华 穆冉 王浩 《中国农村水利水电》 北大核心 2022年第5期152-156,共5页
径流过程呈现出的强非线性,使得现有水文模型的预测性能受到制约,深度学习等人工智能方法具有较强的非线性拟合能力,一定程度上可以突破现有瓶颈。为有效提取径流序列的非线性时变特征信息,提高径流模拟精度和多步预测性能,以雅砻江上... 径流过程呈现出的强非线性,使得现有水文模型的预测性能受到制约,深度学习等人工智能方法具有较强的非线性拟合能力,一定程度上可以突破现有瓶颈。为有效提取径流序列的非线性时变特征信息,提高径流模拟精度和多步预测性能,以雅砻江上游雅江流域为研究对象,建立了基于具有时变结构的ForecastNet径流预测模型,并与传统水文模型SWAT(Soil and Water Assessnent Teol)和神经网络模型RNN(Recurrent Neural Network)、LSTM(Long Short-Term Memory)及其组合进行对比分析。结果表明,ForcastNet模型在长预见期径流预测中有较强的适用性,能有效提高径流模拟及多步预测精度,为高精度实时径流预测提供了一种技术支撑。 展开更多
关键词 径流模拟 多步预测 时变结构 forecastNet SWAT
在线阅读 下载PDF
Long-term forecasting of hourly retail customer flow on intermittent time series with multiple seasonality
8
作者 Martim Sousa Ana Maria Tomé José Moreira 《Data Science and Management》 2022年第3期137-148,共12页
In this study,we address a demanding time series forecasting problem that deals simultaneously with the following:(1)intermittent time series,(2)multi-step ahead forecasting,(3)time series with multiple seasonal perio... In this study,we address a demanding time series forecasting problem that deals simultaneously with the following:(1)intermittent time series,(2)multi-step ahead forecasting,(3)time series with multiple seasonal periods,and(4)performance measures for model selection across multiple time series.Current literature deals with these types of problems separately,and no study has dealt with all these characteristics simultaneously.To fill this knowledge gap,we begin by reviewing all the necessary existing literature relevant to this case study with the goal of proposing a framework capable of achieving adequate forecast accuracy for such a complex problem.Several adaptions and innovations have been conducted,which are marked as contributions to the literature.Specifically,we proposed a weighted average forecast combination of many cutting-edge models based on their out-of-sample performance.To gather strong evidence that our ensemble model works in practice,we undertook a large-scale study across 98 time series,rigorously assessed with unbiased performance measures,where a week seasonal naïve was set as a benchmark.The results demonstrate that the proposed ensemble model achieves eyecatching forecasting accuracy. 展开更多
关键词 Multi-step ahead forecasting Scale-independent performance measures Neural networks TBATS Weighted average ensemble PROPHET
在线阅读 下载PDF
基于高斯混合模型和CNN-BiLSTM-Attn的日前风功率预测
9
作者 杨明玥 《电气应用》 2025年第5期86-96,共11页
随着风电装机占比不断增加,准确预测风力发电机输出功率对于保证电能质量、提升电力系统的稳定性具有重要意义。针对风电场风机数据存在的多模式特性、非线性特征及时序相关问题,引入了基于高斯混合模型(Gaussian Mixture Model,GMM)的... 随着风电装机占比不断增加,准确预测风力发电机输出功率对于保证电能质量、提升电力系统的稳定性具有重要意义。针对风电场风机数据存在的多模式特性、非线性特征及时序相关问题,引入了基于高斯混合模型(Gaussian Mixture Model,GMM)的分组方案,并构建了融合卷积神经网络(Convolutional Neural Network,CNN)、双向长短期记忆网络(Bidirectional Long Short-Term Memory,BiLSTM)和注意力机制(Attention,Attn)的组合日前风功率预测模型。首先,使用GMM依据历史风机数据特征将风电机组分成若干机组类型;随后,针对各子机组群建立分组预测的CNNBiLSTM-Attn神经网络模型并进行日前风功率预测,其中CNN负责提取风电机组非线性数据的局部特征,BiLSTM用于捕捉长期依赖关系,Attention机制对BiLSTM提取的特征进行加权处理。通过某风电场数据的验证结果显示,该预测方法优于传统的单一预测算法和其他分组预测方法,为日前风功率预测提供了一种准确且高效的解决方案。 展开更多
关键词 日前风功率预测 高斯混合模型 分组预测 CNN-BiLSTM-Attn神经网络
原文传递
基于IMIFS-VMD和ROA-LSTM的日前电价预测方法
10
作者 陈逸嘉 陶力 +1 位作者 李凯 刘镇杨 《自动化技术与应用》 2025年第9期23-28,共6页
为了深度挖掘电价序列中所蕴含的特征与信息,进一步提升日前电价的预测准确率,提出一种基于改进互信息特征选取(improve mutual information feature selection,IMIFS)、变分模态分解(variational mode decomposition,VMD)和红鸢优化算... 为了深度挖掘电价序列中所蕴含的特征与信息,进一步提升日前电价的预测准确率,提出一种基于改进互信息特征选取(improve mutual information feature selection,IMIFS)、变分模态分解(variational mode decomposition,VMD)和红鸢优化算法(red kite optimization algorithm,ROA)优化长短记忆网络(long short term memory,LSTM)相结合的混合日前电价预测模型。首先,通过IMIFS对原始多元特征集进行降维,提取出包含维度最小且电价信息丰富的特征集,同时,利用VMD对电价序列进行有效分解,减轻电价序列的波动性;其次,引入ROA对LSTM中阈值与权重进行优化,提升算法的全局搜索与局部寻优能力;最后,通过算例验证IMIFS-VMD和ROA-LSTM日前电价预测模型效果,结果表明所提模型X_(RMSE)、X_(MAE)和R^(2)分别为2.532元/(MW·h)、1.956元/(MW·h)和98.06%,较其他电价预测模型具有较高的预测准确率。 展开更多
关键词 日前电价预测 改进互信息特征选取 变分模态分解 长短记忆网络 红鸢优化算法
在线阅读 下载PDF
Decision Technique of Solar Radiation Prediction Applying Recurrent Neural Network for Short-Term Ahead Power Output of Photovoltaic System 被引量:3
11
作者 Atsushi Yona Tomonobu Senjyu +2 位作者 Toshihisa Funabashi Paras Mandal Chul-Hwan Kim 《Smart Grid and Renewable Energy》 2013年第6期32-38,共7页
In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. I... In recent years, introduction of a renewable energy source such as solar energy is expected. However, solar radiation is not constant and power output of photovoltaic (PV) system is influenced by weather conditions. It is difficult for getting to know accurate power output of PV system. In order to forecast the power output of PV system as accurate as possible, this paper proposes a decision technique of forecasting model for short-term-ahead power output of PV system based on solar radiation prediction. Application of Recurrent Neural Network (RNN) is shown for solar radiation prediction in this paper. The proposed method in this paper does not require complicated calculation, but mathematical model with only useful weather data. The validity of the proposed RNN is confirmed by comparing simulation results of solar radiation forecasting with that obtained from other 展开更多
关键词 Neural Network Short-Term-ahead forecasting Power OUTPUT for PV System Solar Radiation forecasting
暂未订购
Very Short-Term Generating Power Forecasting for Wind Power Generators Based on Time Series Analysis
12
作者 Atsushi Yona Tomonobu Senjyu +1 位作者 Funabashi Toshihisa Chul-Hwan Kim 《Smart Grid and Renewable Energy》 2013年第2期181-186,共6页
In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to cont... In recent years, there has been introduction of alternative energy sources such as wind energy. However, wind speed is not constant and wind power output is proportional to the cube of the wind speed. In order to control the power output for wind power generators as accurately as possible, a method of wind speed estimation is required. In this paper, a technique considers that wind speed in the order of 1 - 30 seconds is investigated in confirming the validity of the Auto Regressive model (AR), Kalman Filter (KF) and Neural Network (NN) to forecast wind speed. This paper compares the simulation results of the forecast wind speed for the power output forecast of wind power generator by using AR, KF and NN. 展开更多
关键词 Very SHORT-TERM ahead forecasting WIND Power Generation WIND SPEED forecasting Time SERIES Analysis
在线阅读 下载PDF
计及工况预测误差的主动配电网日前无功优化调度策略 被引量:3
13
作者 张旭 刘伯文 王怡 《华北电力大学学报(自然科学版)》 CAS 北大核心 2024年第2期31-40,共10页
为解决工况预测误差较大时,日前无功优化调度方案优化效果不佳的问题,提出了计及工况预测误差的主动配电网日前无功优化调度策略。首先,使用轻量级梯度提升机算法建立日前工况功率预测模型;其次,考虑大规模高比例分布式电源接入主动配电... 为解决工况预测误差较大时,日前无功优化调度方案优化效果不佳的问题,提出了计及工况预测误差的主动配电网日前无功优化调度策略。首先,使用轻量级梯度提升机算法建立日前工况功率预测模型;其次,考虑大规模高比例分布式电源接入主动配电网,以调度时段内所有时间断面的多目标加权累加和为目标函数建立日前无功优化调度模型;最后,设计了一种变寻优粒子空间的改进引力搜索算法对日前无功优化调度模型进行求解,该算法根据历史工况预测误差评价指标调整寻优粒子空间各维度的上下限矩阵,从而抑制了当无功区域内工况预测误差较大时可控设备调度异常的缺陷。最后采用拓展的IEEE 33节点系统算例进行有效性验证。 展开更多
关键词 主动配电网 日前无功优化调度 工况预测 分布式电源 轻量级梯度提升机 改进引力搜索算法
在线阅读 下载PDF
基于网格型数值天气预报的风电集群日前功率预测方法 被引量:3
14
作者 邓韦斯 车建峰 +4 位作者 汪明清 鲁聪 王皓怀 田伟达 乔宽龙 《南方电网技术》 CSCD 北大核心 2024年第6期51-57,78,共8页
风电集群日前功率预测是省级及以上电网调控中心制定发电计划、促进风电消纳的重要基础之一。风电日前功率预测(次日0时至24时)本质上是构建数值天气预报与实际功率之间的映射模型。充分挖掘数值天气预报气象信息与功率之间的深层映射... 风电集群日前功率预测是省级及以上电网调控中心制定发电计划、促进风电消纳的重要基础之一。风电日前功率预测(次日0时至24时)本质上是构建数值天气预报与实际功率之间的映射模型。充分挖掘数值天气预报气象信息与功率之间的深层映射关系是提升风电功率预测精度的重要途径。利用网格型的数值天气预报并采用残差网络建立风电集群预测模型,挖掘风电集群所属空间三维网格型的气象分布与功率的关联关系。以实际运行数据进行仿真,结果显示所提方法在先进性和适应性两个方面均优于现有成熟方法。 展开更多
关键词 网格型数值天气预报 离散型数值天气预报 风电集群 日前功率预测
在线阅读 下载PDF
考虑时序二维变化的日前市场电价预测模型 被引量:11
15
作者 陈宇聪 白晓清 《电力系统及其自动化学报》 CSCD 北大核心 2024年第7期22-29,共8页
电价预测对电力市场参与者的运营决策及电力系统安全稳定运行关系重大。针对日前市场电价预测问题,本文提出一种考虑时序二维变化的日前市场电价预测模型和方法。首先采用改进的带自适应噪声的完全集成经验模式分解对日前市场电价历史... 电价预测对电力市场参与者的运营决策及电力系统安全稳定运行关系重大。针对日前市场电价预测问题,本文提出一种考虑时序二维变化的日前市场电价预测模型和方法。首先采用改进的带自适应噪声的完全集成经验模式分解对日前市场电价历史数据进行分解,然后对其高、低频子序列分别采用考虑时序二维变化的Ti⁃mesNet和基于统计分析的差分自回归移动平均进行预测,二者结果之和构成日前市场电价的预测值。仿真结果表明,所提方法相较于现有单一或组合模型具有较高的预测精度。 展开更多
关键词 日前市场电价预测 完全集成经验模式分解 差分自回归移动平均 TimesNet 时序二维变化
在线阅读 下载PDF
基于改进LSTM神经网络的风电功率短期预报算法 被引量:11
16
作者 高盛 许沛华 +1 位作者 陈正洪 成驰 《南方能源建设》 2024年第1期112-121,共10页
[目的]风能的波动性和间歇性给大规模的风电并网提出了挑战,解决这一问题的有效途径是能够提供准确的风电功率预报。[方法]针对这一挑战,提出了一种新的基于改进LSTM(长短期记忆)架构的深度学习神经网络的风功率预报模型,包含自主研制... [目的]风能的波动性和间歇性给大规模的风电并网提出了挑战,解决这一问题的有效途径是能够提供准确的风电功率预报。[方法]针对这一挑战,提出了一种新的基于改进LSTM(长短期记忆)架构的深度学习神经网络的风功率预报模型,包含自主研制的数据异常检测与处理、风速特征提取、超参数调优于一体的风电功率预报方法。为了使神经网络模型能更加准确地学习风速特征对风电功率的影响,还定义了一种使用特征筛选以及特征倍增相结合的特征工程方法。[结果]仿真结果表明:所提出的数据清洗及数据增强算法在各种机器学习算法上可以将准确率提升约5%。提出的改进LSTM神经网络模型在数据清洗后与传统算法以及业内主流神经网络算法进行对比,可以将准确率提升2.5%。[结论]改进的方法不但具有较好的噪声数据清洗能力,而且在所有的试验中,改进模型在预报准确性方面优于其他所有算法,可以为实际应用提供指导。 展开更多
关键词 风功率日前预报 LSTM神经网络 深度学习 异常检测与处理 风速波动特征
在线阅读 下载PDF
基于EMD-MLP组合模型的用电负荷日前预测 被引量:6
17
作者 刘璐瑶 陈志刚 +2 位作者 沈欣炜 吴劲松 廖霄 《南方能源建设》 2024年第1期143-156,共14页
[目的]用电负荷的精准预测是电力系统运行优化的基础,是电力系统能量管理中不可或缺的组成部分。针对传统数据分解技术与机器学习模型结合预测存在的精准度低、计算量大等问题,提出一种将经验模态分解与多层感知机结合(EMD-MLP)的新方... [目的]用电负荷的精准预测是电力系统运行优化的基础,是电力系统能量管理中不可或缺的组成部分。针对传统数据分解技术与机器学习模型结合预测存在的精准度低、计算量大等问题,提出一种将经验模态分解与多层感知机结合(EMD-MLP)的新方法对用电负荷进行日前预测。[方法]首先基于EMD将原始负荷时间序列信号分解为多个本征模函数(Intrinsic Mode Function,IMF)分量,然后采用极值点划分法将多IMF分量进行重构形成高频和低频两个成分以精简预测对象,最后对重构的新分量分别建模预测,并将它们的预测结果叠加作为用电负荷预测值。[结果]采用澳大利亚电力市场2018年、2019年的实测用电负荷数据进行试验。[结论]将建立的EMD-MLP组合模型与持续性模型、单一MLP模型以及传统EMD组合模型进行外推预测效果的对比,验证了所建模型在提高预测精度上的有效性。此外,所提出的EMD-MLP组合新方法在保证精度的同时简化了模型复杂度,提高了预测效率,可以方便地应用于实际中的用电负荷日前与实时预测。 展开更多
关键词 用电负荷预测 日前预测 经验模态分解 分量重构 EMD-MLP
在线阅读 下载PDF
基于机器学习的风电场风速多模式集合预报 被引量:5
18
作者 高盛 许沛华 陈正洪 《南方能源建设》 2024年第1期85-95,共11页
[目的]随着大量风电场的兴建,组合研究不同的机器学习算法和气象预报模式已成为研究焦点。[方法]文章以湖北省风能资源的空间分布特征为基础,通过选取代表站点结合实验数据分析对结果进行深入探讨。[结果]在湖北省,已建和在建的风电场... [目的]随着大量风电场的兴建,组合研究不同的机器学习算法和气象预报模式已成为研究焦点。[方法]文章以湖北省风能资源的空间分布特征为基础,通过选取代表站点结合实验数据分析对结果进行深入探讨。[结果]在湖北省,已建和在建的风电场主要集中在“三带一区”的区域,具体包括:位于湖北省中部,从荆门至荆州的南北向风带;位于鄂北,从枣阳至英山的东西向风带;部分湖岛和沿湖地带;以及鄂西南和鄂东南的部分高山地区。该研究采用4种不同的数值预报产品,包括CMA-WSP、CMA-GD、WHMM和EC,与实测风速对比深入探究这些数值模式的适用范围。[结论]通过分析基于机器学习的5种集合预报方法及均值法在湖北省各地区的表现确定了适合的算法和预报模式组合,为提高集合预报的准确性提供了参考。 展开更多
关键词 风功率预测 机器学习算法 随机森林 LightGBM ADABOOST GRU LSTM 集合预报
在线阅读 下载PDF
基于特征筛选的综合能源系统多元负荷日前-日内预测 被引量:3
19
作者 徐聪 胡永锋 +1 位作者 张爱平 由长福 《综合智慧能源》 CAS 2024年第3期45-53,共9页
负荷预测是指导综合能源系统调度与运行的前提。为更加经济高效地实施系统日前计划、日内优化,提出一种基于特征筛选的多元负荷日前-日内预测方法。首先,结合特征工程中3类特征筛选方法筛选预测模型输入特征,简化模型的同时能够保存下... 负荷预测是指导综合能源系统调度与运行的前提。为更加经济高效地实施系统日前计划、日内优化,提出一种基于特征筛选的多元负荷日前-日内预测方法。首先,结合特征工程中3类特征筛选方法筛选预测模型输入特征,简化模型的同时能够保存下最重要的特征,针对日前-日内预测策略分别确立输入特征集;然后通过多任务学习硬共享机制,采用长短期记忆神经网络建立预测模型,实现不同子任务信息共享,并通过随机搜索方法优化网络参数以提高预测精度;最后以北京某产业园区供暖季电、热负荷为案例进行分析,日前、日内预测综合精度分别达到91.3%和95.2%。分析结果表明,该预测方法能够为系统日前调度和日内运行优化提供良好支撑,且预测结果优于未经特征筛选预测和单独负荷预测,证明了该预测方法具有更高的预测精度。 展开更多
关键词 综合能源系统 多元负荷 特征筛选 日前-日内预测 多任务学习 长短期记忆神经网络
在线阅读 下载PDF
考虑遮挡因素的分布式屋顶光伏日前母线功率预测 被引量:1
20
作者 胡文丽 吴汉斌 +2 位作者 尹瑞 郭德华 张沛 《河北电力技术》 2024年第2期41-47,共7页
针对分布式屋顶光伏装机受到遮挡问题导致分布式光伏用户的出力特性存在差异的情况,提出考虑遮挡因素的变电站母线级分布式屋顶光伏功率日前预测模型。首先根据变电站的经纬度计算出每日光伏出力的起始时间和截止时间;其次根据每个光伏... 针对分布式屋顶光伏装机受到遮挡问题导致分布式光伏用户的出力特性存在差异的情况,提出考虑遮挡因素的变电站母线级分布式屋顶光伏功率日前预测模型。首先根据变电站的经纬度计算出每日光伏出力的起始时间和截止时间;其次根据每个光伏用户的历史功率数据分析周围建筑物对光伏遮挡造成的影响,采用形状距离作为度量指标进行凝聚层次聚类;然后利用辐照度数据对每一类分布式光伏用户建立BP功率预测模型,将功率预测值通过LSTM神经网络修正得到最终预测值;最后将每一类分布式屋顶预测结果相加,获得变电站母线级分布式屋顶光伏日前功率预测值。实例分析表明,所提出的预测方法精度高,与不考虑遮挡因素的预测方法相比,均方根误差显著降低。 展开更多
关键词 日前功率预测 遮挡因素 凝聚层次聚类 形状距离 BP-LSTM预测模型
在线阅读 下载PDF
上一页 1 2 5 下一页 到第
使用帮助 返回顶部