Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longe...Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.展开更多
Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships w...Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.展开更多
Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxida...Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known.This study was designed to investigate the effects of FA on growth performance and antioxi-dant capacity in piglets with diquat challenge.Methods Thirty-two healthy DLY(Duroc×Landrace×Yorkshire)piglets(13.24±0.19 kg)were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d.On d 15,all pigs were intraperitoneally injected diquat or sterile saline.Results Dietary supplementation with ferulic acid(FA)significantly improved the average daily gain(ADG)and decreased feed-gain ratio(F/G)of piglets.Here,dietary FA supplementation reduced serum aspartate aminotrans-ferase(AST),alanine aminotransferase(ALT)activities in diquat challenged piglets.Furthermore,diquat infusion increased reactive oxygen radicals(ROS)level in liver,decreased the activities of total superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px),total antioxidant capacity(T-AOC)and increased malondialdehyde(MDA)con-tent in the liver and serum.Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels.FA down-regulated gene and protein expression of Keap1,and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge.Importantly,diquat challenge increased the ratio of late apoptosis,increased serum levels of IL-1β,IL-18 and lactate dehydrogenase(LDH),and up-regulated pyroptosis-related genes in the liver.FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1.Accordingly,FA addition reduced concentration of IL-1β,IL-18,and LDH under diquat challenge.Conclusions Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets.Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis,thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets.展开更多
The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a block...The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.展开更多
This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ra...This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.展开更多
In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways Hi...In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.展开更多
Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to...Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.展开更多
To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concret...To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.展开更多
To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by...To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by the Qingdao Municipal People’s Government and co-organized by the International Standardization Training Base(Qingdao),Qingdao University,International Standardization Outstanding Contribution Foundation,and Shandong National Standards Center of Technical Evaluation,which was expected to inject new vitality into the industrial development and provide new ideas for improving the talent cultivation system.展开更多
Following the work of Li-Shi-Qing, we propose the definition of the relative volume function for an AH manifold. It is not a constant function in general and we study the regularity of this function. We use this funct...Following the work of Li-Shi-Qing, we propose the definition of the relative volume function for an AH manifold. It is not a constant function in general and we study the regularity of this function. We use this function to provide an accurate characterization of the height of the geodesic defining function for the AH manifold with a given boundary metric. Furthermore, it is shown that such functions are uniformly bounded from below at infinity and the bound only depends on the dimension. In the end, we apply this function to study the capacity of balls in AH manifolds and demonstrate that the “relative p—capacity function” coincides with the relative volume function under appropriate curvature conditions.展开更多
Heart failure(HF)is characterized by unbalanced oxygen demand and supply and impaired exercise capacity,which substantially affects the quality of life and prognosis of patients with HF.Cardiac rehabilitation is an ef...Heart failure(HF)is characterized by unbalanced oxygen demand and supply and impaired exercise capacity,which substantially affects the quality of life and prognosis of patients with HF.Cardiac rehabilitation is an effective intervention for improving exercise intolerance in patients with cardiovascular diseases,including HF.However,cardiac rehabilitation is not always accessible to these patients because a restricted number of hospitals offer cardiac rehabilitation,and access to these hospitals is limited to those who require rehabilitation.Although pharmacological interventions may help improve exercise capacity in patients with HF,evidence for this intervention is scarce.This mini-review summarizes the available research on the effects of pharmacological therapies on improving exercise capacity.展开更多
This study focuses on the preparation,and optimization of the nanoemulsions coorporating with pumpkin seed oil,grape seed oil,and grapefruit essential oil using the phase inversion temperature(PIT)technique.The resear...This study focuses on the preparation,and optimization of the nanoemulsions coorporating with pumpkin seed oil,grape seed oil,and grapefruit essential oil using the phase inversion temperature(PIT)technique.The research investigated the impact of surfactant types and concentrations on critical nanoemulsion properties,including droplet size,polydispersity index(PDI),and zeta potential.Using a Box-Behnken Design(BBD)model,the formulation was optimized containing 6.0%plant oils,10.0%Tween 80,2.0%Span 80,and 1.0%lecithin to achieve nano-sized droplets(33.52 nm),with a low PDI(0.205),and a stable zeta potential(15.49 mV).The antioxidant activity,was evaluated through 2,2-diphenyl-1-picrylhydrazyl(DPPH)radical scavenging assays,demonstrating its outstanding efficacy.And the optimized nanoemulsion showed a radical-scavenging capacity exceeding 2250μg ascorbic acid equivalents/g,significantly outperforming non-nanoemulsified oils.Stability testing under various environmental conditions highlighted exceptional robustness,with refrigerated samples maintaining structural integrity,minimal particle size growth,and consistent physicochemical properties over a 30-day storage period.The results suggest that the plant oil-based nanoemulsions exhibit strong antioxidant potential,offering a promising natural treatment for their application in cosmeceutical and therapeutic formulations.展开更多
Background:Cardiovascular rehabilitation(CR)enhances the functional capacity of patients with heart failure(HF),but its effectiveness remains understudied in low-resource settings such as Cameroon.This study aimed to ...Background:Cardiovascular rehabilitation(CR)enhances the functional capacity of patients with heart failure(HF),but its effectiveness remains understudied in low-resource settings such as Cameroon.This study aimed to evaluate the impact of CR on the functional capacity of HF patients at YaoundéGeneral Hospital(YGH).Methods:A mixed retrospective and prospective cohort study was conducted at the Cardiovascular and Metabolic Rehabilitation Unit(CMRU)of YGH from February 2024 to May 2025.It included adults(≥21 years)diagnosed with HF according to the 2021 ESC criteria,who completed at least 10 CR sessions.The primary outcome was 6-minute walk test(6 MWT)distance.Secondary outcomes included VO_(2)max estimated from 6 MWT(VO_(2)max_6 MWT=distance×0.1+3.5;the most objective VO_(2)max estimate),VO_(2)max estimated from the Duke Activity Status Index(DASI)questionnaire(VO_(2)max_DASI=0.43×DASI+9.6),Metabolic Equivalents(METs),and DASI score.These functional parameters were assessed before and after CR,and factors associated with changes(delta)in outcomes post CR were identified via linear regression.Results:Thirty-three patients(mean age 59±12 years;60.6%male)were included.CR significantly improved 6 MWT distance(456 to 571 m),VO_(2)max_6 MWT(11.02 to 13.02 mL/kg/min),VO_(2)max_DASI(15.7 to 22.3 mL/kg/min),METs(5.08 to 8.6),and DASI score(13.3 to 29.5)(all p<0.001).Reductions in resting heart rate and systolic blood pressure,as well as improvements in dyspnoea(100%NYHA stage I post-CR),were also observed.Older age was associated with less improvement in VO_(2)max_DASI,while higher baseline heart rate and a greater number of sessions were linked to better 6 MWT performance.Conclusion:CR significantly improves functional capacity and haemodynamic parameters in HF patients in a low-resource setting.Integrating CR into universal health coverage and tailoring programmes for older patients could optimise outcomes.展开更多
Although numerousfindings show that people experience both positive and negative experiences with regards to solitude,the relationship between solitude capacity and emotional experience remains unclear.The current stud...Although numerousfindings show that people experience both positive and negative experiences with regards to solitude,the relationship between solitude capacity and emotional experience remains unclear.The current study investigated the extent to which emotion regulation may play a suppressive role in the relationship between solitude capacity and emotional experience.Questionnaires on solitude capacity,emotion regulation,and emotional experience were completed by a sample of Chinese college students(n=844;432 females;Meanage=19.79 years,SD=1.43 years).The results of the indirect effect test showed that cognitive reappraisal suppresses the prediction of solitude capacity on positive emotions,while the solitude capacity prediction of negative emotions was suppressed by both cognitive reappraisal and expressive suppression.This suggests that solitude capacity does not predict emotional experience directly,but instead is realized through an antagonistic system consisting of adaptive and nonadaptive emotion regulation strategies.Thesefindings provide cross-sectional empirical support for the ecological niche hypothesis of solitude,and are of theoretical significance in clarifying the role of internal mechanisms of solitude capacity on the human emotional experience.展开更多
BACKGROUND The primary issue in managing edentulous patients is the severely resorbed mandibular ridge,particularly in older individuals with diminished adaptive capacities.This compromised situation leads to the fabr...BACKGROUND The primary issue in managing edentulous patients is the severely resorbed mandibular ridge,particularly in older individuals with diminished adaptive capacities.This compromised situation leads to the fabrication of inadequate dentures that lack retention and stability,potentially causing psychosocial issues.AIM To determine the difference in retentive capacity between three attachment systems in implant-retained overdentures.METHODS Three edentulous mandibular models were fabricated using heat-cured polymethacrylate resin,with two implant replicas placed in the intra-foraminal region of each model.30 acrylic resin mandibular overdentures were fabricated with provisions for three different overdenture attachment systems:A prefabricated ball/O-ring attachment,a locator attachment system,and an equator attachment system.Each model was subjected to 15000 pulls using a universal testing machine to remove the overdenture from the acrylic model and the force data were recorded.RESULTS The ball/O-ring attachment system demonstrated superior retentive capacity for 15 years,while the locator and equator attachment systems maintained excellent retentive capacity for 5 years.CONCLUSION The ball/O-ring attachment system outperformed better than the other two attachment systems regarding retentive capacity.The locator and equator attachment systems presented sufficient retentive abilities until 15000 cycles.After 7500 cycles,significant differences in retentive force between the systems evolved.展开更多
The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε...The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε-martensite introduction.The yield strength can be greatly raised to around 700 MPa by refining grain size from 88.4 to 1.8μm.Although there exist numerous stacking faults in the fine-grained alloy,the damping capacity is strongly deteriorated due to the suppression of thermally activated ε-martensite.We demonstrate that the stacking faults cannot provide effective contribution to damping capacity and hence introduce a considerable volume fraction of stress/strain-induced ε-martensite to raise damping sources,including ε-martensite and γ/ε interfaces,etc.,by a small pre-strain.From this,the damping capacity can be improved,and the yield strength can be further enhanced from nearly 700 MPa to around 800 MPa.Thus,the combination of high yield strength and good damping capacity is realized.展开更多
The properties of direct reduced iron(DRI)smelting slag are important in the DRI melting process for molten iron production to ensure the slag-iron separation and quality of molten iron.The influence of binary basicit...The properties of direct reduced iron(DRI)smelting slag are important in the DRI melting process for molten iron production to ensure the slag-iron separation and quality of molten iron.The influence of binary basicity on the viscosity and sulfide capacity of CaO-SiO_(2)-MgO-Al_(2)O_(3)-FeO slag was investigated by the high-temperature experiments,structural analysis and thermodynamic calculation.The viscosity of the slag decreased rapidly with an increase in basicity from 0.4 to 0.8,and this trend became slow as the basicity further increased to 1.2.For the acidic slag with basicity of 0.4 and 0.6,the viscosity at 1500℃ was higher than 0.6 Pa s,which was harmful for the fluidity of slag melt.The slags with basicity of 0.8,1.0 and 1.2 at 1500℃ showed the low viscosity of less than 0.6 Pa s.For the basic slag with basicity of 1.0 and 1.2,the rapid precipitation of melilite led to the abrupt increase behavior of the viscosity,and the acidic slag showed the gentle temperature-viscosity curves.The Raman analysis revealed that the conversion from Q^(3) to Q^(2),Q^(1) and Q^(0) mainly occurred with the basicity increasing from 0.4 to 0.8,and the conversion from Q^(2) to Q^(1) and Q^(0) was dominant with further increase in basicity to 1.2,decreasing the degree of polymerization.The sulfide capacity was improved with the increasing basicity due to the increase in O^(2-)ions,and CaS could be formed dominantly for S^(2-)stabilization in present slag.The sulfur partition ratio was derived from sulfide capacity,and the values of sulfur partition ratio at basicity of 0.4 and 0.6 were much smaller than those at basicity of 0.8,1.0 and 1.2,indicating a weak desulfurization ability of the slag with a low basicity.展开更多
This study aims to determine the variation and controlling factors of shale gas adsorption capacity in reservoirs in the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation(also referred to as ...This study aims to determine the variation and controlling factors of shale gas adsorption capacity in reservoirs in the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation(also referred to as the WF-LMX formations),South China.Based on data obtained using scanning helium ion microscopy(HIM)and nitrogen(N_(2))and methane(CH_(4))adsorption experiments,this study analyzed the organic pore heterogeneity of shales in the WF-LMX formations in well A and its effect on shale gas adsorption.Using the Frenkel-Halsey-Hill(FHH)model,data from N_(2) adsorption experiments were converted into fractal dimensions,which can reflect the complexity and heterogeneity of organic pores while also serving as a novel indicator for quantitatively assessing the pore structure complexity.The results indicate that shales in the WF-LMX formations in well A can be divided into two sections:(Ⅰ)the Wufeng Formation and the lower Longmaxi Formation(depths:ca.2871.0-2898.6 m),and(Ⅱ)the upper Longmaxi Formation(depths:<2871.0 m).Organic pores in Section Ⅰ typically exhibit complex internal structures,coarse surfaces,and interconnectivity,whereas those in Section Ⅱ are simple,smooth,and isolated.Moreover,the former possesses larger specific surface areas(SSAs)than the latter.A fractal analysis reveals that organic pores in the shale sequence can be classified into micropores(<2 nm),mesopores(2-10 nm),and macropores(>10 nm).The calculated fractal dimensions show greater heterogeneity of organic pores,especially macropores,in Section Ⅰ compared to Section Ⅱ.The results also reveal that organic macropores are the primary pores controlling the SSAs of organic pores in shale reservoirs in the WF-LMX formations.Organic pores in Section Ⅰ manifest a superior shale gas adsorption capacity compared to Section Ⅱ.The heterogeneity of organic pores might affect the adsorption capacity of shales in the formations.Generally,organic macropores in Section Ⅰ of the shale sequence exhibit more complex structures and larger SSAs,leading to a stronger absorption capacity of shale reservoirs in Section Ⅰ compared to Section Ⅱ.展开更多
Currently,China's express delivery industry is developing rapidly and has become an important part of modern service industry.However,the industry faces challenges such as a large market scale but high fragmentati...Currently,China's express delivery industry is developing rapidly and has become an important part of modern service industry.However,the industry faces challenges such as a large market scale but high fragmentation and low concentration.For express delivery enterprises to achieve development,they should focus on improving their operating capacity.As a leading enterprise in China's express delivery industry,SF Holding Co.,Ltd.(hereinafter referred to as"SF Holding")embodies both industry-wide commonalities and unique characteristics,thus having high research value.This paper aims to analyze the operating capacity of SF Holding by examining its operating indicators disclosed from 2019 to 2023 and comparing them with peer enterprises.It identifies issues in SF Holding's operating capacity,including excessive accounts receivable,inventory backlogs,and low total asset turnover.Corresponding improvement suggestions are proposed:improving credit systems,strengthening inventory management,and rationalizing asset allocation.It is hoped that this study can effectively help SF Holding optimize its operating capacity,enhance market competitiveness,and provide references for other enterprises in the express delivery industry to promote sustainable and collective development of the industry.展开更多
The phase constitution,microstructure,damping capacity,and mechanical properties of as-cast AlxCrFe3Ni(x=0.5,0.52,0.54,and 0.56,respectively)medium entropy alloys were investigated.It is found that the volume fraction...The phase constitution,microstructure,damping capacity,and mechanical properties of as-cast AlxCrFe3Ni(x=0.5,0.52,0.54,and 0.56,respectively)medium entropy alloys were investigated.It is found that the volume fraction of BCC phase increases while that of FCC decreases with increasing the Al content.When the content of Al is 0.54,the alloy is composed of 82.1vol.%BCC matrix and 17.9vol.%FCC phase.Wherein the FCC phase is distributed on the BCC matrix,forming a structure where the hard BCC matrix is surrounded by soft FCC phase.This results in a hindering effect on the propagation process of vibration waves.The damping performance of Al0.54CrFe_(3)Ni alloy,characterized by an internal friction of Q^(-1) is as high as 0.059,is higher than that of most FeCr damping alloys.The volume fraction of the BCC phase and the peculiar distribution of the FCC phase are identified as the key factors affecting the damping capacity.In addition,the Al0.54CrFe3Ni alloy exhibits a high yield strength of 811.16 MPa.展开更多
基金supported by a Horizontal Project on the Development of a Hybrid Energy Storage Simulation Model for Wind Power Based on an RT-LAB Simulation System(PH2023000190)the Inner Mongolia Natural Science Foundation Project and the Optimization of Exergy Efficiency of a Hybrid Energy Storage System with Crossover Control for Wind Power(2023JQ04).
文摘Present of wind power is sporadically and cannot be utilized as the only fundamental load of energy sources.This paper proposes a wind-solar hybrid energy storage system(HESS)to ensure a stable supply grid for a longer period.A multi-objective genetic algorithm(MOGA)and state of charge(SOC)region division for the batteries are introduced to solve the objective function and configuration of the system capacity,respectively.MATLAB/Simulink was used for simulation test.The optimization results show that for a 0.5 MW wind power and 0.5 MW photovoltaic system,with a combination of a 300 Ah lithium battery,a 200 Ah lead-acid battery,and a water storage tank,the proposed strategy reduces the system construction cost by approximately 18,000 yuan.Additionally,the cycle count of the electrochemical energy storage systemincreases from4515 to 4660,while the depth of discharge decreases from 55.37%to 53.65%,achieving shallow charging and discharging,thereby extending battery life and reducing grid voltage fluctuations significantly.The proposed strategy is a guide for stabilizing the grid connection of wind and solar power generation,capability allocation,and energy management of energy conservation systems.
文摘Fatty acids are the main constituents of vegetable oils.To determine the fatty acid compositions of small trade vegetable oils and some less well studied beneficial vegetable oils,and investigate their relationships with antioxidant activity and oxidative stability,gas chromatography-mass spectrometry was performed to characterize the associated fatty acid profiles.The antioxidant activity of vegetable oils,based on their DPPH-scavenging capacity(expressed as IC_(50) values),was used to assess their impact on human health,and their oxidative stability was characterized by performing lipid oxidation analysis to determine the oxidative induction time of fats and oils.In addition,correlation analyses were performed to examine associations between the fatty acid composition of the oils and DPPH-scavenging capacity and oxidative stability.The results revealed that among the assessed oils,coffee seed oil has the highest saturated fatty acid content(355.10 mg/g),whereas Garddenia jaminoides oil has the highest unsaturated fatty acid content(844.84 mg/g).Coffee seed oil was also found have the lowest DPPH IC_(50) value(2.30 mg/mL)and the longest oxidation induction time(17.09 h).Correlation analysis revealed a significant linear relationship(P<0.05)between oxidative stability and unsaturated fatty acid content,with lower contents tending to be associated with better oxidative stability.The findings of this study provide reference data for the screening of functional edible vegetable oils.
基金Sichuan Science and Technology Program(No.2021ZDZX0009).
文摘Background Oxidative stress significantly impacts growth performance and liver function in piglets.Ferulic acid(FA)works as an antioxidant,however,the role and mechanism of FA in the regulation of diquat-induced oxidative stress in piglets are less known.This study was designed to investigate the effects of FA on growth performance and antioxi-dant capacity in piglets with diquat challenge.Methods Thirty-two healthy DLY(Duroc×Landrace×Yorkshire)piglets(13.24±0.19 kg)were randomly divided into one of two diets including 0 or 4 g/kg FA for 14 d.On d 15,all pigs were intraperitoneally injected diquat or sterile saline.Results Dietary supplementation with ferulic acid(FA)significantly improved the average daily gain(ADG)and decreased feed-gain ratio(F/G)of piglets.Here,dietary FA supplementation reduced serum aspartate aminotrans-ferase(AST),alanine aminotransferase(ALT)activities in diquat challenged piglets.Furthermore,diquat infusion increased reactive oxygen radicals(ROS)level in liver,decreased the activities of total superoxide dismutase(T-SOD)and glutathione peroxidase(GSH-Px),total antioxidant capacity(T-AOC)and increased malondialdehyde(MDA)con-tent in the liver and serum.Supplementation with FA significantly increased T-AOC and T-SOD activities and decreased MDA and ROS levels.FA down-regulated gene and protein expression of Keap1,and up-regulated protein expression of Nrf2 and HO-1 in the liver of piglets with diquat challenge.Importantly,diquat challenge increased the ratio of late apoptosis,increased serum levels of IL-1β,IL-18 and lactate dehydrogenase(LDH),and up-regulated pyroptosis-related genes in the liver.FA supplementation reduced the ratio of late apoptosis and down-regulated mRNA expression of Caspase-1.Accordingly,FA addition reduced concentration of IL-1β,IL-18,and LDH under diquat challenge.Conclusions Diquat-induced oxidative stress reduced growth performance and impaired liver function in piglets.Dietary FA supplementation enhanced the antioxidant capacity and reduced the degree of hepatocyte pyroptosis,thereby alleviating the oxidative damage in the liver and mitigating the impact of diquat on growth performance of piglets.
基金supported in part by the National Natural Science Foundation of China(62273310)the Natural Science Foundation of Zhejiang Province of China(LY22F030006,LZ24F030009)
文摘The increased demand for personalized customization calls for new production modes to enhance collaborations among a wide range of manufacturing practitioners who unnecessarily trust each other.In this article,a blockchain-enabled manufacturing collaboration framework is proposed,with a focus on the production capacity matching problem for blockchainbased peer-to-peer(P2P)collaboration.First,a digital model of production capacity description is built for trustworthy and transparent sharing over the blockchain.Second,an optimization problem is formulated for P2P production capacity matching with objectives to maximize both social welfare and individual benefits of all participants.Third,a feasible solution based on an iterative double auction mechanism is designed to determine the optimal price and quantity for production capacity matching with a lack of personal information.It facilitates automation of the matching process while protecting users'privacy via blockchainbased smart contracts.Finally,simulation results from the Hyperledger Fabric-based prototype show that the proposed approach increases social welfare by 1.4%compared to the Bayesian game-based approach,makes all participants profitable,and achieves 90%fairness of enterprises.
基金supported by grants from the Natural Science Foundation of Fujian Province(2021J011062)Minjiang Scholars Funding(GY-633Z21067).
文摘This study investigates the bond performance at the interfacial region shared by Ultra-High Performance Concrete(UHPC)and steel tubes through push-out tests.This study examines how changes in steel fiber volumetric ratio and thickness of steel tube influence the bond strength characteristics.The results show that as the enhancement of the steel tube wall thickness,the ultimate bond strength at the interface improves significantly,whereas the initial bond strength exhibits only slight variations.The influence of steel fiber volumetric ratio presents a nonlinear trend,with initial bond strength decreasing at low fiber content and increasing significantly as fiber content rises.Additionally,finite element(FE)simulations were applied to replicate the experimental conditions,and the outcomes showed strong correlation with the experimental data,confirming the exactitude of the FE model in predicting the bond behavior at the UHPC-Steel interface.These findings provide valuable insights for optimizing the design of UHPC-Filled steel tubes in high-performance structure.
基金funded by the National Natural Science Foundation of China(52167013)the Key Program of Natural Science Foundation of Gansu Province(24JRRA225)Natural Science Foundation of Gansu Province(23JRRA891).
文摘In the context of the“dual carbon”goals,to address issues such as high energy consumption,high costs,and low power quality in the rapid development of electrified railways,this study focused on the China Railways High-Speed 5 Electric Multiple Unit and proposed a mathematical model and capacity optimization method for an onboard energy storage system using lithium batteries and supercapacitors as storage media.Firstly,considering the electrical characteristics,weight,and volume of the storage media,a mathematical model of the energy storage system was established.Secondly,to tackle problems related to energy consumption and power quality,an energy management strategy was proposed that comprehensively considers peak shaving and valley filling and power quality by controlling the charge/discharge thresholds of the storage system.Thecapacity optimization adopted a bilevel programming model,with the series/parallel number of storage modules as variables,considering constraints imposed by the Direct Current to Direct Current converter,train load,and space.An improved Particle Swarm Optimization algorithm and linear programming solver were used to solve specific cases.The results show that the proposed onboard energy storage system can effectively achieve energy savings,reduce consumption,and improve power qualitywhile meeting the load and space limitations of the train.
文摘Since the discovery of carbon dots(CDs)in 2004,the unique photoluminescence phenomenon of CDs has attracted widespread attention.However,the molecular weight of CDs has not been adequately quantified at present,due to CDs are atomically imprecise and their molecular weight distribution is broad.In this paper,a series of Pluronic-modified CDs were prepared and the structure of the CDs was briefly analyzed.Subsequently,a molecular weight measurement method based on colligative properties was developed,and the correction coefficient in the algorithm was briefly analyzed.The calculated molecular weight was applied to the determination of surface adsorption capacity.This work provided a method for averaging the molecular weight of atomically imprecise particulate materials,which is expected to provide new opportunities in related fields.
文摘To investigate the evolution of load-bearing characteristics of pre-stressed beams throughout their service life and to provide a basis for accurately assessing the actual working state of damaged pre-stressed concrete T-beams,destructive tests were conducted on full-scale pre-stressed concrete beams.Based on the measurement and ana-lysis of beam deflection,strain,and crack development under various loading levels during the research tests,combined with the verification coefficient indicators specified in the codes,the verification coefficients of bridges at different stages of damage can be examined.The results indicate that the T-beams experience complete,incom-plete linear,and non-linear stages during the destructive test process.In the complete linear elastic stage,both the deflection and bottom strain verification coefficients comply with the specifications,indicating a good structural load-bearing capacity no longer adheres to the code’s requirements.In the non-linear stage,both coefficients exhi-bit a sharp increase,resulting in a further decrease in the structure’s load-bearing capacity.According to the pro-visions of the current code,the beam can be in the incomplete linear stage when both values fall within the code’s specified range.The strain verification coefficient sourced from the compression zone at the bottom of theflange is not recommended for assessing the bridge’s load-bearing capacity.
文摘To exchange experiences and progress in standardization capacity building at home and abroad,the sub-forum on capacity building and creating leadership in standardization was held on July 9.The sub-forum was hosted by the Qingdao Municipal People’s Government and co-organized by the International Standardization Training Base(Qingdao),Qingdao University,International Standardization Outstanding Contribution Foundation,and Shandong National Standards Center of Technical Evaluation,which was expected to inject new vitality into the industrial development and provide new ideas for improving the talent cultivation system.
文摘Following the work of Li-Shi-Qing, we propose the definition of the relative volume function for an AH manifold. It is not a constant function in general and we study the regularity of this function. We use this function to provide an accurate characterization of the height of the geodesic defining function for the AH manifold with a given boundary metric. Furthermore, it is shown that such functions are uniformly bounded from below at infinity and the bound only depends on the dimension. In the end, we apply this function to study the capacity of balls in AH manifolds and demonstrate that the “relative p—capacity function” coincides with the relative volume function under appropriate curvature conditions.
文摘Heart failure(HF)is characterized by unbalanced oxygen demand and supply and impaired exercise capacity,which substantially affects the quality of life and prognosis of patients with HF.Cardiac rehabilitation is an effective intervention for improving exercise intolerance in patients with cardiovascular diseases,including HF.However,cardiac rehabilitation is not always accessible to these patients because a restricted number of hospitals offer cardiac rehabilitation,and access to these hospitals is limited to those who require rehabilitation.Although pharmacological interventions may help improve exercise capacity in patients with HF,evidence for this intervention is scarce.This mini-review summarizes the available research on the effects of pharmacological therapies on improving exercise capacity.
基金Ho Chi Minh City University of Technology(HCMUT),VNU-HCM,for supporting this study.
文摘This study focuses on the preparation,and optimization of the nanoemulsions coorporating with pumpkin seed oil,grape seed oil,and grapefruit essential oil using the phase inversion temperature(PIT)technique.The research investigated the impact of surfactant types and concentrations on critical nanoemulsion properties,including droplet size,polydispersity index(PDI),and zeta potential.Using a Box-Behnken Design(BBD)model,the formulation was optimized containing 6.0%plant oils,10.0%Tween 80,2.0%Span 80,and 1.0%lecithin to achieve nano-sized droplets(33.52 nm),with a low PDI(0.205),and a stable zeta potential(15.49 mV).The antioxidant activity,was evaluated through 2,2-diphenyl-1-picrylhydrazyl(DPPH)radical scavenging assays,demonstrating its outstanding efficacy.And the optimized nanoemulsion showed a radical-scavenging capacity exceeding 2250μg ascorbic acid equivalents/g,significantly outperforming non-nanoemulsified oils.Stability testing under various environmental conditions highlighted exceptional robustness,with refrigerated samples maintaining structural integrity,minimal particle size growth,and consistent physicochemical properties over a 30-day storage period.The results suggest that the plant oil-based nanoemulsions exhibit strong antioxidant potential,offering a promising natural treatment for their application in cosmeceutical and therapeutic formulations.
文摘Background:Cardiovascular rehabilitation(CR)enhances the functional capacity of patients with heart failure(HF),but its effectiveness remains understudied in low-resource settings such as Cameroon.This study aimed to evaluate the impact of CR on the functional capacity of HF patients at YaoundéGeneral Hospital(YGH).Methods:A mixed retrospective and prospective cohort study was conducted at the Cardiovascular and Metabolic Rehabilitation Unit(CMRU)of YGH from February 2024 to May 2025.It included adults(≥21 years)diagnosed with HF according to the 2021 ESC criteria,who completed at least 10 CR sessions.The primary outcome was 6-minute walk test(6 MWT)distance.Secondary outcomes included VO_(2)max estimated from 6 MWT(VO_(2)max_6 MWT=distance×0.1+3.5;the most objective VO_(2)max estimate),VO_(2)max estimated from the Duke Activity Status Index(DASI)questionnaire(VO_(2)max_DASI=0.43×DASI+9.6),Metabolic Equivalents(METs),and DASI score.These functional parameters were assessed before and after CR,and factors associated with changes(delta)in outcomes post CR were identified via linear regression.Results:Thirty-three patients(mean age 59±12 years;60.6%male)were included.CR significantly improved 6 MWT distance(456 to 571 m),VO_(2)max_6 MWT(11.02 to 13.02 mL/kg/min),VO_(2)max_DASI(15.7 to 22.3 mL/kg/min),METs(5.08 to 8.6),and DASI score(13.3 to 29.5)(all p<0.001).Reductions in resting heart rate and systolic blood pressure,as well as improvements in dyspnoea(100%NYHA stage I post-CR),were also observed.Older age was associated with less improvement in VO_(2)max_DASI,while higher baseline heart rate and a greater number of sessions were linked to better 6 MWT performance.Conclusion:CR significantly improves functional capacity and haemodynamic parameters in HF patients in a low-resource setting.Integrating CR into universal health coverage and tailoring programmes for older patients could optimise outcomes.
基金supported by grants from the Doctoral Research Project of Yan’an University(2003-205040349)the 2022 General Special Scientific Research Plan Project of the Shaanxi Provincial Department of Education(YDZZYB23-40)the Social Science Foundation of Shaanxi Province(2023P013 and 2024P028).
文摘Although numerousfindings show that people experience both positive and negative experiences with regards to solitude,the relationship between solitude capacity and emotional experience remains unclear.The current study investigated the extent to which emotion regulation may play a suppressive role in the relationship between solitude capacity and emotional experience.Questionnaires on solitude capacity,emotion regulation,and emotional experience were completed by a sample of Chinese college students(n=844;432 females;Meanage=19.79 years,SD=1.43 years).The results of the indirect effect test showed that cognitive reappraisal suppresses the prediction of solitude capacity on positive emotions,while the solitude capacity prediction of negative emotions was suppressed by both cognitive reappraisal and expressive suppression.This suggests that solitude capacity does not predict emotional experience directly,but instead is realized through an antagonistic system consisting of adaptive and nonadaptive emotion regulation strategies.Thesefindings provide cross-sectional empirical support for the ecological niche hypothesis of solitude,and are of theoretical significance in clarifying the role of internal mechanisms of solitude capacity on the human emotional experience.
文摘BACKGROUND The primary issue in managing edentulous patients is the severely resorbed mandibular ridge,particularly in older individuals with diminished adaptive capacities.This compromised situation leads to the fabrication of inadequate dentures that lack retention and stability,potentially causing psychosocial issues.AIM To determine the difference in retentive capacity between three attachment systems in implant-retained overdentures.METHODS Three edentulous mandibular models were fabricated using heat-cured polymethacrylate resin,with two implant replicas placed in the intra-foraminal region of each model.30 acrylic resin mandibular overdentures were fabricated with provisions for three different overdenture attachment systems:A prefabricated ball/O-ring attachment,a locator attachment system,and an equator attachment system.Each model was subjected to 15000 pulls using a universal testing machine to remove the overdenture from the acrylic model and the force data were recorded.RESULTS The ball/O-ring attachment system demonstrated superior retentive capacity for 15 years,while the locator and equator attachment systems maintained excellent retentive capacity for 5 years.CONCLUSION The ball/O-ring attachment system outperformed better than the other two attachment systems regarding retentive capacity.The locator and equator attachment systems presented sufficient retentive abilities until 15000 cycles.After 7500 cycles,significant differences in retentive force between the systems evolved.
基金supported by Fundamental Research Funds for Central Universities(Grant No.N2107009)Reviving-Liaoning Excellence Plan(Grant No.XLYC2203186).
文摘The Fe–Mn damping alloys possess considerable damping capacity,but their yield strength is rather low.The 800 MPa Fe–Mn alloy with expected damping capacity was designed by the combination of grain refinement and ε-martensite introduction.The yield strength can be greatly raised to around 700 MPa by refining grain size from 88.4 to 1.8μm.Although there exist numerous stacking faults in the fine-grained alloy,the damping capacity is strongly deteriorated due to the suppression of thermally activated ε-martensite.We demonstrate that the stacking faults cannot provide effective contribution to damping capacity and hence introduce a considerable volume fraction of stress/strain-induced ε-martensite to raise damping sources,including ε-martensite and γ/ε interfaces,etc.,by a small pre-strain.From this,the damping capacity can be improved,and the yield strength can be further enhanced from nearly 700 MPa to around 800 MPa.Thus,the combination of high yield strength and good damping capacity is realized.
基金the financial support from China Postdoctoral Science Foundation(2024M750177)National Natural Science Foundation of China(52474345)and Science and Technology Major Project of WuHan(2023020302020572).
文摘The properties of direct reduced iron(DRI)smelting slag are important in the DRI melting process for molten iron production to ensure the slag-iron separation and quality of molten iron.The influence of binary basicity on the viscosity and sulfide capacity of CaO-SiO_(2)-MgO-Al_(2)O_(3)-FeO slag was investigated by the high-temperature experiments,structural analysis and thermodynamic calculation.The viscosity of the slag decreased rapidly with an increase in basicity from 0.4 to 0.8,and this trend became slow as the basicity further increased to 1.2.For the acidic slag with basicity of 0.4 and 0.6,the viscosity at 1500℃ was higher than 0.6 Pa s,which was harmful for the fluidity of slag melt.The slags with basicity of 0.8,1.0 and 1.2 at 1500℃ showed the low viscosity of less than 0.6 Pa s.For the basic slag with basicity of 1.0 and 1.2,the rapid precipitation of melilite led to the abrupt increase behavior of the viscosity,and the acidic slag showed the gentle temperature-viscosity curves.The Raman analysis revealed that the conversion from Q^(3) to Q^(2),Q^(1) and Q^(0) mainly occurred with the basicity increasing from 0.4 to 0.8,and the conversion from Q^(2) to Q^(1) and Q^(0) was dominant with further increase in basicity to 1.2,decreasing the degree of polymerization.The sulfide capacity was improved with the increasing basicity due to the increase in O^(2-)ions,and CaS could be formed dominantly for S^(2-)stabilization in present slag.The sulfur partition ratio was derived from sulfide capacity,and the values of sulfur partition ratio at basicity of 0.4 and 0.6 were much smaller than those at basicity of 0.8,1.0 and 1.2,indicating a weak desulfurization ability of the slag with a low basicity.
基金funded by the National Natural Science Foundation Research of China(No.41902127,41802157)the Shandong Provincial Natural Science Foundation,China(No.ZR2018BD015).
文摘This study aims to determine the variation and controlling factors of shale gas adsorption capacity in reservoirs in the Upper Ordovician Wufeng Formation and the Lower Silurian Longmaxi Formation(also referred to as the WF-LMX formations),South China.Based on data obtained using scanning helium ion microscopy(HIM)and nitrogen(N_(2))and methane(CH_(4))adsorption experiments,this study analyzed the organic pore heterogeneity of shales in the WF-LMX formations in well A and its effect on shale gas adsorption.Using the Frenkel-Halsey-Hill(FHH)model,data from N_(2) adsorption experiments were converted into fractal dimensions,which can reflect the complexity and heterogeneity of organic pores while also serving as a novel indicator for quantitatively assessing the pore structure complexity.The results indicate that shales in the WF-LMX formations in well A can be divided into two sections:(Ⅰ)the Wufeng Formation and the lower Longmaxi Formation(depths:ca.2871.0-2898.6 m),and(Ⅱ)the upper Longmaxi Formation(depths:<2871.0 m).Organic pores in Section Ⅰ typically exhibit complex internal structures,coarse surfaces,and interconnectivity,whereas those in Section Ⅱ are simple,smooth,and isolated.Moreover,the former possesses larger specific surface areas(SSAs)than the latter.A fractal analysis reveals that organic pores in the shale sequence can be classified into micropores(<2 nm),mesopores(2-10 nm),and macropores(>10 nm).The calculated fractal dimensions show greater heterogeneity of organic pores,especially macropores,in Section Ⅰ compared to Section Ⅱ.The results also reveal that organic macropores are the primary pores controlling the SSAs of organic pores in shale reservoirs in the WF-LMX formations.Organic pores in Section Ⅰ manifest a superior shale gas adsorption capacity compared to Section Ⅱ.The heterogeneity of organic pores might affect the adsorption capacity of shales in the formations.Generally,organic macropores in Section Ⅰ of the shale sequence exhibit more complex structures and larger SSAs,leading to a stronger absorption capacity of shale reservoirs in Section Ⅰ compared to Section Ⅱ.
文摘Currently,China's express delivery industry is developing rapidly and has become an important part of modern service industry.However,the industry faces challenges such as a large market scale but high fragmentation and low concentration.For express delivery enterprises to achieve development,they should focus on improving their operating capacity.As a leading enterprise in China's express delivery industry,SF Holding Co.,Ltd.(hereinafter referred to as"SF Holding")embodies both industry-wide commonalities and unique characteristics,thus having high research value.This paper aims to analyze the operating capacity of SF Holding by examining its operating indicators disclosed from 2019 to 2023 and comparing them with peer enterprises.It identifies issues in SF Holding's operating capacity,including excessive accounts receivable,inventory backlogs,and low total asset turnover.Corresponding improvement suggestions are proposed:improving credit systems,strengthening inventory management,and rationalizing asset allocation.It is hoped that this study can effectively help SF Holding optimize its operating capacity,enhance market competitiveness,and provide references for other enterprises in the express delivery industry to promote sustainable and collective development of the industry.
基金supported by the Natural Science Foundation of Liaoning Province(No.2022-BS-181).
文摘The phase constitution,microstructure,damping capacity,and mechanical properties of as-cast AlxCrFe3Ni(x=0.5,0.52,0.54,and 0.56,respectively)medium entropy alloys were investigated.It is found that the volume fraction of BCC phase increases while that of FCC decreases with increasing the Al content.When the content of Al is 0.54,the alloy is composed of 82.1vol.%BCC matrix and 17.9vol.%FCC phase.Wherein the FCC phase is distributed on the BCC matrix,forming a structure where the hard BCC matrix is surrounded by soft FCC phase.This results in a hindering effect on the propagation process of vibration waves.The damping performance of Al0.54CrFe_(3)Ni alloy,characterized by an internal friction of Q^(-1) is as high as 0.059,is higher than that of most FeCr damping alloys.The volume fraction of the BCC phase and the peculiar distribution of the FCC phase are identified as the key factors affecting the damping capacity.In addition,the Al0.54CrFe3Ni alloy exhibits a high yield strength of 811.16 MPa.