A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary ...A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model.展开更多
The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurode...The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.展开更多
The oxidation behavior of 316L austenitic steel after thermal aging process at 600℃for 6 h was investigated in the supercritical water(600℃/25 MPa)with 1000 h.Results showed that the grain size and the proportion of...The oxidation behavior of 316L austenitic steel after thermal aging process at 600℃for 6 h was investigated in the supercritical water(600℃/25 MPa)with 1000 h.Results showed that the grain size and the proportion of high angle grain boundaries(HAGB)increased in the steel after thermal aging process,with the observation of micro-textures.The weight gain rate of the steel after aging process increased,presenting the decreased Cr_(2)O_(3)contain in the oxide layer,which resulted in the increasing diffusion rate of Fe and O ions in oxide layer.The molecular dynamics simulation results confirmed the high oxidation rate in HAGB and micro-textures for the 316L steel after aging process.展开更多
The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 ...The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 h,the temperature coefficient of intrinsic coercivity in the temperature range of 25-500℃,β_(25-500℃),was optimized from -0,167%/℃ to-0.112%/℃ for x=0.3 magnets.The noticeable enhancement(~33%) of temperature stability is correlated with the increased content of 1:5H cell boundary phase and its relatively high Curie temperature as well.However,for the x=0.5 magnet,it is found that the presence of Sm_(5)Co_(19) phases and wider nanotwin variants hinder the formation of 1:5H cell boundary phase.The insufficient 1:5H is not beneficial to the proper redistribution of Cu in cell boundary,making the x=0.5 magnet difficult to achieve higher temperature stability.Consequently,the approach of adjusting the isothermal aging process can offer guidance for attaining superior magnetic performance in the temperature range from 25 to 500℃ for Gd-substituted Sm_(2)Co_(17)-type magnets.展开更多
Decreased brain levels of coenzyme Q10(CoQ10),an endogenously synthesized lipophilic antioxidant1,2,underpin encephalopathy in primary CoQ10 deficiencies3,4 and are associated with common neurodegenerative diseases an...Decreased brain levels of coenzyme Q10(CoQ10),an endogenously synthesized lipophilic antioxidant1,2,underpin encephalopathy in primary CoQ10 deficiencies3,4 and are associated with common neurodegenerative diseases and the ageing process5,6.CoQ10 supplementation does not increase CoQ10 pools in the brain or in other tissues.展开更多
Microplastics(MPs)are ubiquitous in the environment,continuously undergo aging processes and release toxic chemical substances.Understanding the environmental behaviors of MPs is critical to accurately evaluate their ...Microplastics(MPs)are ubiquitous in the environment,continuously undergo aging processes and release toxic chemical substances.Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk.Generalized twodimensional correlation spectroscopy(2D-COS)is a powerful tool for MPs studies,which can dig more comprehensive information hiding in the conventional one-dimensional spectra,such as infrared(IR)and Raman spectra.The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment,including their aging processes,and interactions with natural organicmatter(NOM)or other chemical substances,were summarized systematically.The main requirements and limitations of current approaches for exploring these processes are discussed,and the corresponding strategies to address these limitations and drawbacks are proposed as well.Finally,new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.展开更多
The influences of adding different amount of Ti(0%,0.39%,0.87%)and three kinds of difierent aging processes(T6,T6I6,RRA)on the microstructure and properties of Al-11.3Zn-3.2Mg-1.3Cu-0.2Zr-0.1Sr were investigated.Resul...The influences of adding different amount of Ti(0%,0.39%,0.87%)and three kinds of difierent aging processes(T6,T6I6,RRA)on the microstructure and properties of Al-11.3Zn-3.2Mg-1.3Cu-0.2Zr-0.1Sr were investigated.Results show that an appropriate amount of Ti can effectively inhibit grain growth and thus achieve the efiect of grain refinement.The contribution of dislocation density and dislocation strengthening become the biggest when Ti content is 0.39%.At the same time,the intergranular corrosion depth is the lowest when Ti content is 0.39%.Among the three aging processes,the alloys reach the greatest hardness and tensile strength in T6I6.The biggest tensile strength reaches 716.77 MPa.However,when aging at RRA,the alloys obtain the greatest elongation,reaching 7.2%,as well as the good corrosion resistance.展开更多
The effects of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li alloy have been investigated by X-ray diffraction, scanning electron microscopy and transmission electron mi...The effects of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li alloy have been investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It is found that the tensile properties of a novel Al-Cu-Li alloy are sensitive to aging processes, which correspond to different microstructures. σ(Al_5Cu_6Mg_2) and T_1(Al_2CuLi) phases are the major precipitates for the alloy in T6 aging condition(165 ℃/60 h). After duplex aging condition(150 ℃/24 h + 180 ℃/12 h), σ, θ'(Al_2Cu) and T_1 phases are detected. Only the T_1 phases can be found in the T8 state alloy(6% pre-strain+135 ℃/60 h). The failure modes of alloy in T6 and duplex aging conditions are dimple-intergranular fracture, while typical quasi-cleavage fracture in T8 condition.展开更多
The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(H...The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The tensile strength and electrical conductivity of this alloy after various aging processes were tested. The results show that two kinds of crystallographic structure associated with chromium-rich phases, fcc and bcc structure, exist in the peak-aging of the alloy. The orientation relationship between bcc Cr precipitate and the matrix exhibits Nishiyama–Wasserman orientation relationship. Two kinds of Zr-rich phases(Cu4Zr and Cu5Zr)can be identified and the habit plane is parallel to {111}Cu plane during the aging. The increase in strength is ascribed to the precipitation of Cr- and Zr-rich phase.展开更多
Biochar has been introduced as an acceptable soil amendment due to its environmental benefits such as sequestering soil contaminants. However, the aging process in biochar amended soil probably decreases the adsorptio...Biochar has been introduced as an acceptable soil amendment due to its environmental benefits such as sequestering soil contaminants. However, the aging process in biochar amended soil probably decreases the adsorption capacity of biochar through changing its physico-chemical properties. Adsorption, leaching and bioavailability of fomesafen to corn in a Chinese soil amended by rice hull biochar after 0, 30, 90 and 180 days were investigated. Results showed that the addition of 0.5%-2% fresh biochar significantly increases the adsorption of fomesafen 4-26 times compare to unamended soil due to higher SSA of biochar. Biochar amendment also decreases fomesafen concentration in soil pore water by 5%-23% resulting lower risk of the herbicide for cultivated plants. However, the aging process decreased the adsorption capacity ofbiochar since the adsorption coefficient values which was 1.9-12.4 in 0.5%-2% fresh biochar amended soil, declined to 1.36-4.16, 1.13-2.78 and 0.95-2.31 in 1, 3 and 6-month aged treatments, respectively. Consequently, higher desorption, leaching and bioavailable fraction of fomesafen belonged to 6-month aged treatment. Nevertheless, rice hull biochar was effective for sequestering fomesafen as the adsorption capacity of biochar amended soil after 6 months of aging was still 2.5-5 times hi^her compared to that of unamended soil.展开更多
Quantitative changes in main parameters of secondary xylem during aging process were studied in four trees of Pinus bungeana collected from two different sites.No marked difference was found in the width of heartwo...Quantitative changes in main parameters of secondary xylem during aging process were studied in four trees of Pinus bungeana collected from two different sites.No marked difference was found in the width of heartwood, transition zone and sapwood at four cardinal directions and a wider sapwood and a narrower heartwood were noted in fast grown trees than in slowly grown ones. Earlywood generally showed a higher percentage of aspirated pits than latewood regardless of the age and growth conditions of the trees in addition , the earliest dead cells and the last living cells in the marginal cells were found a bit earlier than those in the central cells. It thus seems appropriate to conclude that the death of cells results largely from decrease of fluid permeability as the number of aspirated pits increases during aging process.展开更多
The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due t...The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due to their excellent reactivity.Therefore it becomes extremely important to understand their aging and failure process in the environment before using them.Here,the aging and failure process of Al/CuO in 71°C/60%RH were investigated,and showed that CuO nanoparticles negatively catalyze Al nanopowders,resulting in rapid hydration.The anti-aging effect of FAS-17-coated Al nanopowder was also examined.The aging process of Al,Al/CuO,and Al@FAS-17/CuO in high humidity and heat environment were revealed by quasi-in situ SEM and TEM methods.Compared with the aging of pure Al,the Al nanopowder in the nanothermites strongly agglomerated with the CuO nanopowder and hydrated earlier.This may be caused by CuO catalyzed hydration of Al nanopowder.The energy release experiments showed that the performance of Al/CuO decreased rapidly and failed to ignite after 4 h of aging.In contrast,the Al@FAS-17/CuO thermite can achieve long-term stability of up to 60 h in the same environment by simple cladding of FAS-17.It is found that FAS-17 coated Al nanopowder can prevent both particle agglomeration and water erosion,which is an effective means to make nanothermites application in high humidity and heat environment.展开更多
The accelerating pace of global aging underscores the need for a deeper understanding of the aging process and the identification of effective anti-aging substances,whether from natural sources or synthetic compounds....The accelerating pace of global aging underscores the need for a deeper understanding of the aging process and the identification of effective anti-aging substances,whether from natural sources or synthetic compounds.Currently,most drugs aimed at preventing or treating ageing,such as metformin,nicotinamide adenine dinucleotide(NAD*)precursors,etc.,are still in the research phase and come with safety concerns and side effects.展开更多
Studies have shown that microRNAs(miRNAs)in red blood cells(RBCs)contribute most of the miRNAs in whole blood,and miRNAs in RBCs are closely related to storage lesions in vitro.However,the role of miRNAs in the proces...Studies have shown that microRNAs(miRNAs)in red blood cells(RBCs)contribute most of the miRNAs in whole blood,and miRNAs in RBCs are closely related to storage lesions in vitro.However,the role of miRNAs in the process of RBC senescence in vivo remains unclear.We conducted a comprehensive miRNA expression analysis of RBCs collected from enriched mature RBCs in five density layers.The results showed that the type and number of RBC miRNAs changed with the aging of RBCs,the expression levels of 10 RBC miRNAs decreased markedly at the early stage of RBC aging and the levels of 5 RBC miRNAs increased significantly at the terminal stage of RBC senescence.The analysis identified 32 miRNAs whose changes in expression levels were correlated with the two selected aging indexes-pyruvate kinase(PK)activity and RBC indices.The differential expression amounts of the two selected miRNAs(miR-22-3p and miR-144-3p)were confirmed by real-time polymerase chain reaction(PCR)analysis.A bioinformatics analysis identified the potential targets and biological functions of these miRNAs.The experiment of miR-22-3p in the human erythroblast cell line K562 confirmed its negative effects on PK levels.Overall,our research demonstrates,for the first time,that changes in the expression levels of miRNAs during the RBC aging process,and RBC miRNAs thus have the potential to serve as markers of RBC aging in vivo.In addition,the expression of miR-22-3p may regulate RBC senescence by inhibiting PK levels.展开更多
The electrochemical deposition technique was applied to achieve porous silicon (PS) surface passivated with Ag deposition for improving the properties of PS photoluminescence. The relation of Ag depositing forms to ...The electrochemical deposition technique was applied to achieve porous silicon (PS) surface passivated with Ag deposition for improving the properties of PS photoluminescence. The relation of Ag depositing forms to current density and the effect of PS hydrophilic surface on deposition uniformity were investigated. The experimental results indicated that there were two critical current densities (maximum and minimum) in which Ag was absent and electroplated on PS surface correspondingly, and the range of current density for deposition of Ag on porous silicon was from 50 μA/cm^2 to 400 μA/cm^2. The process of changing PS surface from hydrophobic into hydrophilic had positive effect on Ag deposition uniformity. Under the same experimental conditions, PS hydrophobic surface presented uneven Ag deposition.However, hydrophilic surface treated with SC-1 solution was even. Finally, the effect of PS surface passivation with Ag even deposition on photoluminescence intensity and stabilization of PS was studied. It was discovered that Ag passivation inhibited the degradation of PL intensity effectively. In addition, excessive Ag deposition had a quenching effect on room-temperature visible photoluminescence of PS.展开更多
The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size ...The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn_(2)precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion(IGC) and exfoliation corrosion(EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.展开更多
The precipitation behaviours during the aging process and the corresponding strengthening mechanism of a Cu-0.4 wt%Sc alloy were systematically investigated in this study.The phase transformation sequence of the preci...The precipitation behaviours during the aging process and the corresponding strengthening mechanism of a Cu-0.4 wt%Sc alloy were systematically investigated in this study.The phase transformation sequence of the precipitation in the aging process of the Cu-0.4 wt%Sc alloy was found to be:supersaturated solid solution→Sc-enriched atomic clusters→metastable phase→Cu4Sc phase.The tetragonal structured lamellar Cu4Sc precipitates,with a habit plane parallel to the{111}plane of the Cu matrix and orientation relationships of(022)_(α)//(211)_(Cu4Sc)and[011]_(α)//[113]_(Cu4Sc),are found homogeneously distributed in the matrix.A combined process of cryogenic rolling(CR)and aging was designed for optimization of the mechanical and electrical properties.Excellent integration of yield strength(696 MPa)and electrical conductivity(62.8%IACS)of this alloy was achieved by cryogenic rolling and subsequent aging process at 400℃for 4 h.The significant precipitation strengthening effect of this alloy is attributed to the Cu4Sc precipitates with an extremely small size of only 1.5–3 nm.The leading strengthening mechanism is considered as the superposition of both coherent strengthening and Orowan strengthening effects.展开更多
In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads o...In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.展开更多
A multiscale methodology using scanning and transmission electron microscope,synchrotron X-ray nano-tomography and micro-tomography,small angle neutron scattering,and in situ synchrotron X-ray diffrac-tion has been us...A multiscale methodology using scanning and transmission electron microscope,synchrotron X-ray nano-tomography and micro-tomography,small angle neutron scattering,and in situ synchrotron X-ray diffrac-tion has been used,to reveal the effect of Fe-rich phases and precipitates on the mechanical behaviour of an Al-Cu-Mn-Fe-Sc-Zr alloy.Theα-Al grains size is reduced from 185.1μm(0 MPa)and 114.3μm(75 MPa)by applied pressure.Moreover,it has been demonstrated that suitable heat treatments modify the 3D morphology of Fe-rich phases from interconnected to a disaggregated structure that improves the mechanical properties of the alloy.The size and morphology evolution of fine precipitates under differ-ent ageing temperature and time are revealed.At ageing temperature of 160℃,the precipitates change from GP zones toθ’(around 75 nm in length)with ageing time increasing from 1 h to 24 h;the Vick-ers hardness increases from 72.0 HV to 110.7HV.The high ductility of the Sc,Zr modified Al-Cu alloy is related to the complex shape and the loss of interconnectivity of the Fe-rich particles due to the heat treatment.The evolution of the crystal lattice strains inα-Al,andβ-Fe calculated during tensile test us-ing in-situ synchrotron X-ray diffraction corroborates the influence of the microstructure in the ductility of the modified alloy.展开更多
Black carbon(BC)plays an important role in air quality and climate change,which is closely associated with its mixing state and chemical compositions.In this work the mixing state of BC-containing single particles was...Black carbon(BC)plays an important role in air quality and climate change,which is closely associated with its mixing state and chemical compositions.In this work the mixing state of BC-containing single particles was investigated to explore the evolution process of ambient BC particles using a single particle aerosol mass spectrometer(SPAMS)in March 2018 in Zhengzhou,China.The BC-containing particles accounted for 61.4%of total detected ambient single particles and were classified into five types including BC-nitrate(BC-N,52.3%)as the most abundant species,followed by BC-nitrate-sulfate(BC-NS,22.4%),BCOC(16.8%),BC-fresh(BC-F,4.5%)and BC-sulfate particles(BC-S,4.0%).With enhancement of the ambient nitrate concentration,the relative peak area(RPA)of nitrate in BC-N and BC–NS particles both increased,yet only the number fraction(N_(f))of BC–N particles increased while the N_(f) of BC-NS particles decreased,suggesting that the enhanced mixing state of BC with nitrate was mainly due to the increase in the ambient nitrate mass concentration.In addition,the Nfof BC-N decreased from 65.3%to 28.4%as the absorbing Angstrom exponents(AAE)of e BC increased from 0.75 to 1.45,which indicated the reduction of light absorption ability of aged BC particles with the enhanced formation of BC-N particles.The results of this work indicated a change in the mixing state of BC particles due to the dominance of nitrate in PM_(2.5),which also influenced the optical properties of aged BC particles.展开更多
基金supported by the National Key R&D Program of China(No.2021YFB3400900)the National Natural Science Foundation of China(Nos.52175373,52205435)+1 种基金Natural Science Foundation of Hunan Province,China(No.2022JJ40621)the Innovation Fund of National Commercial Aircraft Manufacturing Engineering Technology Center,China(No.COMACSFGS-2022-1875)。
文摘A new unified constitutive model was developed to predict the two-stage creep-aging(TSCA)behavior of Al-Zn-Mg-Cu alloys.The particular bimodal precipitation feature was analyzed and modeled by considering the primary micro-variables evolution at different temperatures and their interaction.The dislocation density was incorporated into the model to capture the effect of creep deformation on precipitation.Quantitative transmission electron microscopy and experimental data obtained from a previous study were used to calibrate the model.Subsequently,the developed constitutive model was implemented in the finite element(FE)software ABAQUS via the user subroutines for TSCA process simulation and the springback prediction of an integral panel.A TSCA test was performed.The result shows that the maximum radius deviation between the formed plate and the simulation results is less than 0.4 mm,thus validating the effectiveness of the developed constitutive model and FE model.
文摘The aging process is an inexorable fact throughout our lives and is considered a major factor in develo ping neurological dysfunctions associated with cognitive,emotional,and motor impairments.Aging-associated neurodegenerative diseases are characterized by the progressive loss of neuronal structure and function.
基金supported by the Hebei Natural Science Foundation(E2023502105)the China Postdoctoral Science Foundation(2023M741155)the Fundamental Research Funds for the Central Universities(JB2023030).
文摘The oxidation behavior of 316L austenitic steel after thermal aging process at 600℃for 6 h was investigated in the supercritical water(600℃/25 MPa)with 1000 h.Results showed that the grain size and the proportion of high angle grain boundaries(HAGB)increased in the steel after thermal aging process,with the observation of micro-textures.The weight gain rate of the steel after aging process increased,presenting the decreased Cr_(2)O_(3)contain in the oxide layer,which resulted in the increasing diffusion rate of Fe and O ions in oxide layer.The molecular dynamics simulation results confirmed the high oxidation rate in HAGB and micro-textures for the 316L steel after aging process.
基金Project supported by the National Key Research and Development Program of China (2021YFB3503100,2022YFB3505303,2021YFB3501500)the Key Technology Research and Development Program of Shandong Province (2019JZZY020210)。
文摘The high-temperature magnetic perfo rmance and micro structure of Sm_(1-x)Gd_(x)(Co_(bal)Fe_(0.09)Cu_(0.09)Zr_(0.025))_(7.2)(x=0.3,0.5) magnets were investigated.With the isothermal aging time decreasing from 11 to 3 h,the temperature coefficient of intrinsic coercivity in the temperature range of 25-500℃,β_(25-500℃),was optimized from -0,167%/℃ to-0.112%/℃ for x=0.3 magnets.The noticeable enhancement(~33%) of temperature stability is correlated with the increased content of 1:5H cell boundary phase and its relatively high Curie temperature as well.However,for the x=0.5 magnet,it is found that the presence of Sm_(5)Co_(19) phases and wider nanotwin variants hinder the formation of 1:5H cell boundary phase.The insufficient 1:5H is not beneficial to the proper redistribution of Cu in cell boundary,making the x=0.5 magnet difficult to achieve higher temperature stability.Consequently,the approach of adjusting the isothermal aging process can offer guidance for attaining superior magnetic performance in the temperature range from 25 to 500℃ for Gd-substituted Sm_(2)Co_(17)-type magnets.
文摘Decreased brain levels of coenzyme Q10(CoQ10),an endogenously synthesized lipophilic antioxidant1,2,underpin encephalopathy in primary CoQ10 deficiencies3,4 and are associated with common neurodegenerative diseases and the ageing process5,6.CoQ10 supplementation does not increase CoQ10 pools in the brain or in other tissues.
基金supported by the National Natural Science Foundation of China(Nos.52293444 and 22076209)the Key R&D Project of Ningxia(No.2021BEG02006).
文摘Microplastics(MPs)are ubiquitous in the environment,continuously undergo aging processes and release toxic chemical substances.Understanding the environmental behaviors of MPs is critical to accurately evaluate their long-term ecological risk.Generalized twodimensional correlation spectroscopy(2D-COS)is a powerful tool for MPs studies,which can dig more comprehensive information hiding in the conventional one-dimensional spectra,such as infrared(IR)and Raman spectra.The recent applications of 2D-COS in analyzing the behaviors and fates of MPs in the environment,including their aging processes,and interactions with natural organicmatter(NOM)or other chemical substances,were summarized systematically.The main requirements and limitations of current approaches for exploring these processes are discussed,and the corresponding strategies to address these limitations and drawbacks are proposed as well.Finally,new trends of 2D-COS are prospected for analyzing the properties and behaviors of MPs in both natural and artificial environmental processes.
基金Funded by the Key Projects of Equipment Pre-research Foundation of the Ministry of Equipment Development of the Central Military Commission of China(No.6140922010201)the Key R&D Plan of Zhenjiang in 2018(No.GY2018021)。
文摘The influences of adding different amount of Ti(0%,0.39%,0.87%)and three kinds of difierent aging processes(T6,T6I6,RRA)on the microstructure and properties of Al-11.3Zn-3.2Mg-1.3Cu-0.2Zr-0.1Sr were investigated.Results show that an appropriate amount of Ti can effectively inhibit grain growth and thus achieve the efiect of grain refinement.The contribution of dislocation density and dislocation strengthening become the biggest when Ti content is 0.39%.At the same time,the intergranular corrosion depth is the lowest when Ti content is 0.39%.Among the three aging processes,the alloys reach the greatest hardness and tensile strength in T6I6.The biggest tensile strength reaches 716.77 MPa.However,when aging at RRA,the alloys obtain the greatest elongation,reaching 7.2%,as well as the good corrosion resistance.
基金the National High Technology Research and Development Program of China (Grant No.2013AA032401)
文摘The effects of different aging processes on the microstructure and mechanical properties of a novel Al-Cu-Li alloy have been investigated by X-ray diffraction, scanning electron microscopy and transmission electron microscopy. It is found that the tensile properties of a novel Al-Cu-Li alloy are sensitive to aging processes, which correspond to different microstructures. σ(Al_5Cu_6Mg_2) and T_1(Al_2CuLi) phases are the major precipitates for the alloy in T6 aging condition(165 ℃/60 h). After duplex aging condition(150 ℃/24 h + 180 ℃/12 h), σ, θ'(Al_2Cu) and T_1 phases are detected. Only the T_1 phases can be found in the T8 state alloy(6% pre-strain+135 ℃/60 h). The failure modes of alloy in T6 and duplex aging conditions are dimple-intergranular fracture, while typical quasi-cleavage fracture in T8 condition.
基金financially supported by the Special Foundation for Technology Research and Development in Research Institute of China (No. 2011DIA5k023)
文摘The crystallography and morphology of precipitate particles in a Cu matrix were studied using an aged Cu–Cr–Zr alloy by transmission electron microscopy(TEM) and high-resolution transmission electron microscopy(HRTEM). The tensile strength and electrical conductivity of this alloy after various aging processes were tested. The results show that two kinds of crystallographic structure associated with chromium-rich phases, fcc and bcc structure, exist in the peak-aging of the alloy. The orientation relationship between bcc Cr precipitate and the matrix exhibits Nishiyama–Wasserman orientation relationship. Two kinds of Zr-rich phases(Cu4Zr and Cu5Zr)can be identified and the habit plane is parallel to {111}Cu plane during the aging. The increase in strength is ascribed to the precipitation of Cr- and Zr-rich phase.
基金supported by the National High Technology R&D Program of China(Nos.2013AA102804,2012AA06A204)the National Natural Science Foundation of China(Nos.21177111,41271489)Zhejiang Provincial Natural Science Foundation(No.LZ13D010001)
文摘Biochar has been introduced as an acceptable soil amendment due to its environmental benefits such as sequestering soil contaminants. However, the aging process in biochar amended soil probably decreases the adsorption capacity of biochar through changing its physico-chemical properties. Adsorption, leaching and bioavailability of fomesafen to corn in a Chinese soil amended by rice hull biochar after 0, 30, 90 and 180 days were investigated. Results showed that the addition of 0.5%-2% fresh biochar significantly increases the adsorption of fomesafen 4-26 times compare to unamended soil due to higher SSA of biochar. Biochar amendment also decreases fomesafen concentration in soil pore water by 5%-23% resulting lower risk of the herbicide for cultivated plants. However, the aging process decreased the adsorption capacity ofbiochar since the adsorption coefficient values which was 1.9-12.4 in 0.5%-2% fresh biochar amended soil, declined to 1.36-4.16, 1.13-2.78 and 0.95-2.31 in 1, 3 and 6-month aged treatments, respectively. Consequently, higher desorption, leaching and bioavailable fraction of fomesafen belonged to 6-month aged treatment. Nevertheless, rice hull biochar was effective for sequestering fomesafen as the adsorption capacity of biochar amended soil after 6 months of aging was still 2.5-5 times hi^her compared to that of unamended soil.
文摘Quantitative changes in main parameters of secondary xylem during aging process were studied in four trees of Pinus bungeana collected from two different sites.No marked difference was found in the width of heartwood, transition zone and sapwood at four cardinal directions and a wider sapwood and a narrower heartwood were noted in fast grown trees than in slowly grown ones. Earlywood generally showed a higher percentage of aspirated pits than latewood regardless of the age and growth conditions of the trees in addition , the earliest dead cells and the last living cells in the marginal cells were found a bit earlier than those in the central cells. It thus seems appropriate to conclude that the death of cells results largely from decrease of fluid permeability as the number of aspirated pits increases during aging process.
基金supported by the National Natural Science Foundation of China(Grant No.22275092)。
文摘The safety and reliability of weapon systems would be significantly affected by changes in the performance of energetic materials due to ambient temperature and humidity.Nanothermites have promising applications due to their excellent reactivity.Therefore it becomes extremely important to understand their aging and failure process in the environment before using them.Here,the aging and failure process of Al/CuO in 71°C/60%RH were investigated,and showed that CuO nanoparticles negatively catalyze Al nanopowders,resulting in rapid hydration.The anti-aging effect of FAS-17-coated Al nanopowder was also examined.The aging process of Al,Al/CuO,and Al@FAS-17/CuO in high humidity and heat environment were revealed by quasi-in situ SEM and TEM methods.Compared with the aging of pure Al,the Al nanopowder in the nanothermites strongly agglomerated with the CuO nanopowder and hydrated earlier.This may be caused by CuO catalyzed hydration of Al nanopowder.The energy release experiments showed that the performance of Al/CuO decreased rapidly and failed to ignite after 4 h of aging.In contrast,the Al@FAS-17/CuO thermite can achieve long-term stability of up to 60 h in the same environment by simple cladding of FAS-17.It is found that FAS-17 coated Al nanopowder can prevent both particle agglomeration and water erosion,which is an effective means to make nanothermites application in high humidity and heat environment.
基金Supported by Traditional Chinese Medicine Inheritance and Innovation“Thousand”Talents(the first batch of National TCM[Xi Xue Zhong]outstanding talents)Training Program(No.NATCM Department of Personnel and Education[2019]13)the Irma and Paul Milstein Program for Senior Health of Milstein Medical Asian American Partnership Foundation(No.20220914)the National Natural Science Foundation of China(No.82004193 and No.82104680)。
文摘The accelerating pace of global aging underscores the need for a deeper understanding of the aging process and the identification of effective anti-aging substances,whether from natural sources or synthetic compounds.Currently,most drugs aimed at preventing or treating ageing,such as metformin,nicotinamide adenine dinucleotide(NAD*)precursors,etc.,are still in the research phase and come with safety concerns and side effects.
基金supported by the National Natural Science Foundation of China(81970167)the National Natural Science Foundation of China(81800108)+1 种基金Beijing Natural Science Foundation(7184246)the National Natural Science Foundation of China(81770194).
文摘Studies have shown that microRNAs(miRNAs)in red blood cells(RBCs)contribute most of the miRNAs in whole blood,and miRNAs in RBCs are closely related to storage lesions in vitro.However,the role of miRNAs in the process of RBC senescence in vivo remains unclear.We conducted a comprehensive miRNA expression analysis of RBCs collected from enriched mature RBCs in five density layers.The results showed that the type and number of RBC miRNAs changed with the aging of RBCs,the expression levels of 10 RBC miRNAs decreased markedly at the early stage of RBC aging and the levels of 5 RBC miRNAs increased significantly at the terminal stage of RBC senescence.The analysis identified 32 miRNAs whose changes in expression levels were correlated with the two selected aging indexes-pyruvate kinase(PK)activity and RBC indices.The differential expression amounts of the two selected miRNAs(miR-22-3p and miR-144-3p)were confirmed by real-time polymerase chain reaction(PCR)analysis.A bioinformatics analysis identified the potential targets and biological functions of these miRNAs.The experiment of miR-22-3p in the human erythroblast cell line K562 confirmed its negative effects on PK levels.Overall,our research demonstrates,for the first time,that changes in the expression levels of miRNAs during the RBC aging process,and RBC miRNAs thus have the potential to serve as markers of RBC aging in vivo.In addition,the expression of miR-22-3p may regulate RBC senescence by inhibiting PK levels.
文摘The electrochemical deposition technique was applied to achieve porous silicon (PS) surface passivated with Ag deposition for improving the properties of PS photoluminescence. The relation of Ag depositing forms to current density and the effect of PS hydrophilic surface on deposition uniformity were investigated. The experimental results indicated that there were two critical current densities (maximum and minimum) in which Ag was absent and electroplated on PS surface correspondingly, and the range of current density for deposition of Ag on porous silicon was from 50 μA/cm^2 to 400 μA/cm^2. The process of changing PS surface from hydrophobic into hydrophilic had positive effect on Ag deposition uniformity. Under the same experimental conditions, PS hydrophobic surface presented uneven Ag deposition.However, hydrophilic surface treated with SC-1 solution was even. Finally, the effect of PS surface passivation with Ag even deposition on photoluminescence intensity and stabilization of PS was studied. It was discovered that Ag passivation inhibited the degradation of PL intensity effectively. In addition, excessive Ag deposition had a quenching effect on room-temperature visible photoluminescence of PS.
基金Project(2021zzts0152) supported by the Fundamental Research Funds for the Central Universities,ChinaProject(U1837207) supported by the National Natural Science Foundation of China。
文摘The influence of different ageing processes on the microstructure, corrosion behaviors and mechanical properties of extruded Al-5.6Zn-1.6Mg-0.05Zr(wt.%) alloy was studied in this work. The changes of morphology, size and distribution of MgZn_(2)precipitate with ageing temperature and time were revealed by optical and electron microscopy. Intergranular corrosion(IGC) and exfoliation corrosion(EXCO) tests were carried out to assess the changes in corrosion susceptibility of the tempered alloy, and some white spots on the surface of the sample aged for longer time were found to be precursors of pits. Electrochemical cyclic polarization test depicted the corrosion behavior under different tempers. Ageing influences on the mechanical behaviors of the alloy were revealed by evaluating its microhardness and tensile strength. The microscopic features of the strengthening phases determined by the ageing procedure directly affect the corrosion resistance and mechanical properties of the alloy.
基金financially supported by the Fundamental Research Funds for the Central Universities(No.FRF-IDRY-19-012)the National Natural Science Foundation for Distinguished Young Scholars of China(No.51925401)
文摘The precipitation behaviours during the aging process and the corresponding strengthening mechanism of a Cu-0.4 wt%Sc alloy were systematically investigated in this study.The phase transformation sequence of the precipitation in the aging process of the Cu-0.4 wt%Sc alloy was found to be:supersaturated solid solution→Sc-enriched atomic clusters→metastable phase→Cu4Sc phase.The tetragonal structured lamellar Cu4Sc precipitates,with a habit plane parallel to the{111}plane of the Cu matrix and orientation relationships of(022)_(α)//(211)_(Cu4Sc)and[011]_(α)//[113]_(Cu4Sc),are found homogeneously distributed in the matrix.A combined process of cryogenic rolling(CR)and aging was designed for optimization of the mechanical and electrical properties.Excellent integration of yield strength(696 MPa)and electrical conductivity(62.8%IACS)of this alloy was achieved by cryogenic rolling and subsequent aging process at 400℃for 4 h.The significant precipitation strengthening effect of this alloy is attributed to the Cu4Sc precipitates with an extremely small size of only 1.5–3 nm.The leading strengthening mechanism is considered as the superposition of both coherent strengthening and Orowan strengthening effects.
基金supported by the Science Foundation of Jiangsu Province of China (Grant No.BK2011759)
文摘In the paper we use detrended cross-correlation analysis (DCCA) to study the electroencephalograms of healthy young subjects and healthy old subjects. It is found that the cross-correlation between different leads of a healthy young subject is larger than that of a healthy old subject. It was shown that the cross-correlation relationship decreases with the aging process and the phenomenon can help to diagnose whether the subject's brain function is healthy or not.
基金financially supported by the Natural Science Foundation of China(Nos.52104373 and 51901042)the Ba-sic and Applied Basic Foundation of Guangdong Province,China(Nos.2020B1515120065 and 2021B1515140028)the Guangdong Province Office of Education,China(No.2018KQNCX256).
文摘A multiscale methodology using scanning and transmission electron microscope,synchrotron X-ray nano-tomography and micro-tomography,small angle neutron scattering,and in situ synchrotron X-ray diffrac-tion has been used,to reveal the effect of Fe-rich phases and precipitates on the mechanical behaviour of an Al-Cu-Mn-Fe-Sc-Zr alloy.Theα-Al grains size is reduced from 185.1μm(0 MPa)and 114.3μm(75 MPa)by applied pressure.Moreover,it has been demonstrated that suitable heat treatments modify the 3D morphology of Fe-rich phases from interconnected to a disaggregated structure that improves the mechanical properties of the alloy.The size and morphology evolution of fine precipitates under differ-ent ageing temperature and time are revealed.At ageing temperature of 160℃,the precipitates change from GP zones toθ’(around 75 nm in length)with ageing time increasing from 1 h to 24 h;the Vick-ers hardness increases from 72.0 HV to 110.7HV.The high ductility of the Sc,Zr modified Al-Cu alloy is related to the complex shape and the loss of interconnectivity of the Fe-rich particles due to the heat treatment.The evolution of the crystal lattice strains inα-Al,andβ-Fe calculated during tensile test us-ing in-situ synchrotron X-ray diffraction corroborates the influence of the microstructure in the ductility of the modified alloy.
基金financially supported by the National Natural Science Foundation of China(No.41827804,41805093)the Guangzhou Economic and Technological Development District International Science and Technology Cooperation Project(No.2018GH08)+1 种基金the International Science and Technology Cooperation Project of Guangdong Province(No.2018A050506020)the Pearl River Nova Program of Guangzhou(No.201806010064)。
文摘Black carbon(BC)plays an important role in air quality and climate change,which is closely associated with its mixing state and chemical compositions.In this work the mixing state of BC-containing single particles was investigated to explore the evolution process of ambient BC particles using a single particle aerosol mass spectrometer(SPAMS)in March 2018 in Zhengzhou,China.The BC-containing particles accounted for 61.4%of total detected ambient single particles and were classified into five types including BC-nitrate(BC-N,52.3%)as the most abundant species,followed by BC-nitrate-sulfate(BC-NS,22.4%),BCOC(16.8%),BC-fresh(BC-F,4.5%)and BC-sulfate particles(BC-S,4.0%).With enhancement of the ambient nitrate concentration,the relative peak area(RPA)of nitrate in BC-N and BC–NS particles both increased,yet only the number fraction(N_(f))of BC–N particles increased while the N_(f) of BC-NS particles decreased,suggesting that the enhanced mixing state of BC with nitrate was mainly due to the increase in the ambient nitrate mass concentration.In addition,the Nfof BC-N decreased from 65.3%to 28.4%as the absorbing Angstrom exponents(AAE)of e BC increased from 0.75 to 1.45,which indicated the reduction of light absorption ability of aged BC particles with the enhanced formation of BC-N particles.The results of this work indicated a change in the mixing state of BC particles due to the dominance of nitrate in PM_(2.5),which also influenced the optical properties of aged BC particles.