期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Mitochondria-targeting self-assembled nanoparticles derived from triphenylphosphonium-conjugated cyanostilbene enable site-specific imaging and anticancer drug delivery 被引量:4
1
作者 Ka Young Kim Hanyong Jin +6 位作者 Jaehyeon Park Sung Ho Jung Ji Ha Lee Hyesong Park Sung Kuk Kim Jeehyeon Bae Jong Hwa Jung 《Nano Research》 SCIE EI CAS CSCD 2018年第2期1082-1098,共17页
Subcellular organelle-specific nanoparticles for simultaneous tumor targeting, imaging, and drug delivery are of enormous interest in cancer therapy. Herein, we report a selective mitochondria-targeting probe 1, which... Subcellular organelle-specific nanoparticles for simultaneous tumor targeting, imaging, and drug delivery are of enormous interest in cancer therapy. Herein, we report a selective mitochondria-targeting probe 1, which was synthesized by incorporating a triphenyl phosphine with a cyanostilbene and a long alkyl chain moiety. Probe 1 was found to display fluorescence via aggregation-induced emission (AIE). The low molecular-weight cyanostilbene-based probe 1, with and without an anticancer drug, formed a narrow homogeneous nanorod with ca. 110 nm of length or nanopartides with ca. 20 nm diameter in aqueous media. The self-assembled cyanostilbene nanoparticles (N1) selectively accumulated in the mitochondria of cancer cells and emitted fluorescence. N1 was also able to deliver an anticancer drug, doxorubicin (DOX), to the mitochondria with high efficiency. More importantl~ N1 exhibited highly selective cytotoxicity for cancer cells over normal cells. The great potential applications of this self-assembled nanoparticle to biological systems result from its ability to aggregate in the mitochondria. This aggregation led to a significant increase in the generation of intraceUular reactive oxygen species and to a decrease in the mitochondrial membrane potential in cancer cells. Furthermore, tumor tissue uptake experiments in mice proposed that the self-assembled N1 had the ability to internalize and deliver the anticancer drug into tumor tissues effectively. Moreover, both N1 and Nl-encapsulated doxorubicin (N1-DOX) effectively suppressed tumor growth in a xenograft model in vivo. Taken together, our findings indicate that applications of N1 as a mitochondrial targeting probe, drug delivery platform, and chemotherapeutic agent provide a unique strategy for potential image-guided therapy as well as a site-specific delivery system to cancer cells. 展开更多
关键词 aggregation-inducedemission chemotherap3 drug deliver3 mitochondria-targeting fluorescence imaging
原文传递
Toxicity assessment and long-term three-photon fluorescence imaging of bright aggregation-induced emission nanodots in zebrafish 被引量:2
2
作者 Dongyu Li Xinyuan Zhao +7 位作者 Wei Qin Hequn Zhang Yue Fei Liwei Liu Ken-Tye Yong Guangdi Chen Ben Zhong Tang Jun Qian 《Nano Research》 SCIE EI CAS CSCD 2016年第7期1921-1933,共13页
Aggregation-induced emission (AIE) luminogen displays bright fluorescence and has photobleaching resistance in its aggregation state. It is an ideal fluorescent contrast agent for bioimaging. Multiphoton microscopy ... Aggregation-induced emission (AIE) luminogen displays bright fluorescence and has photobleaching resistance in its aggregation state. It is an ideal fluorescent contrast agent for bioimaging. Multiphoton microscopy is an important tool for bioimaging since it possesses the ability to penetrate deep into biological tissues. Herein, we used AIE luminogen together with multiphoton microscopy for long-term imaging of zebrafish. A typical AIE luminogen, 2,3-bis(4-(phenyl(4- (1,Z2-triphenylvinyl) phenyl)amino)phenyl) fumaronitrile (TPE-TPA-FN or TTF), was encapsulated with 1,2-distearoyl-sn-glycero-3-phosphoethanola-mine-N- [methoxy(polyethylene glycol)-2000] (DSPE-mPEG2000) to form nanodots that exhibited bright three-photon fluorescence under 1,560 nm-femtosecond (fs) laser excitation. The TTF-nanodots were chemically stable in a wide range of pH values and showed no in vivo toxicity in zebrafish according to a series of biological tests. The TTF-nanodots were microinjected into zebrafish embryos, and the different growth stages of the labeled embryos were monitored with a three-photon fluorescence microscope. TTF-nanodots could be traced inside the zebrafish body for as long as 120 hours. In addition, the TTF-nanodots were utilized to target the blood vessel of zebrafish, and three-photon fluorescence angiogram was performed. More importantly, these nanodots were highly resistant to photobleaching under 1,560 nm-fs excitation, allowing long-term imaging of zebrafish. 展开更多
关键词 biocompatible organicnanodots aggregation-inducedemission three-photon fluorescence BIOIMAGING ZEBRAFISH
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部