The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how ma...The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.展开更多
Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size ...Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing.展开更多
Cloud microphysical data observed with PMS probes have been combined with radar and other in-situ data collected by a NOAA P-3 aircraft that flew through the stratiform and transition regions of a mesoscale convective...Cloud microphysical data observed with PMS probes have been combined with radar and other in-situ data collected by a NOAA P-3 aircraft that flew through the stratiform and transition regions of a mesoscale convective complex(MCC).The combined data have been analyzed with respect to the mescscale structure of the storm systems.The characteristics of ice particles in the transition and stratiform regions were quite differeat.The ice particle concentrations in the transition region were about 4 to 6 times that found in the stratiform region,and the size of ice particles in the stratiform region was about twice that in the transition region.The relatively lower radar reflectivity in the transition region is a result of smaller particle sizes.The main precipitation particle growth mechanisms are riming and aggregation in the transition region ard the aggregation process predominates in the stratiform region referred from the microphysical structures.The ag- gregation starts in the upper,colder levls but becomes more efficient as the particles approach the melting layer.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11405118,11401448 and 11301403
文摘The air transportation network, one of the common multilayer complex systems, is composed of a collection of individual airlines, and each airline corresponds to a different layer. An important question is then how many airlines are really necessary to represent the optimal structure of a multilayer air transportation system. Here we take the Chinese air transportation network (CATN) as an example to explore the nature of multiplex systems through the procedure of network aggregation. Specifically, we propose a series of structural measures to characterize the CATN from the multilayered to the aggregated network level. We show how these measures evolve during the network aggregation process in which layers are gradually merged together and find that there is an evident structural transition that happened in the aggregated network with nine randomly chosen airlines merged, where the network features and construction cost of this network are almost equivalent to those of the present CATN with twenty-two airlines under this condition. These findings could shed some light on network structure optimization and management of the Chinese air transportation system.
基金National Basic Research Program of China (2005CB121101, 2005CB121103)the Knowledge Innovation Program of the Chinese Academy of Sciences (Grant No. KZCX2-YW-407)
文摘Laboratory experiments were carried out to investigate the effect of freezing and thawing processes on wet aggregate stability (WAS) of black soil. Wet aggregate stability was determined by different aggregate size groups, different water contents, various freeze-thaw cycles, and various freezing temperatures. The results showed that, when at suitable water content, aggregate stability was enhanced, aggregate sta-bility will be disrupted when moisture content is too high or too low, especially higher water content. Temperature also had a significant ef-fect, but moisture content determined the suitable freezing temperatures for a given soil. Water-stable aggregate (WSA〉0.5), the total aggre-gate content, and mean weight diameter decreasing with the freeze-thaw cycles increase, reached to 5 percent significance level. The reason for crumbing aggregates is the water and air conflict, thus raising the hypothesis that water content affects the aggregate stability in the process of freezing and thawing.
文摘Cloud microphysical data observed with PMS probes have been combined with radar and other in-situ data collected by a NOAA P-3 aircraft that flew through the stratiform and transition regions of a mesoscale convective complex(MCC).The combined data have been analyzed with respect to the mescscale structure of the storm systems.The characteristics of ice particles in the transition and stratiform regions were quite differeat.The ice particle concentrations in the transition region were about 4 to 6 times that found in the stratiform region,and the size of ice particles in the stratiform region was about twice that in the transition region.The relatively lower radar reflectivity in the transition region is a result of smaller particle sizes.The main precipitation particle growth mechanisms are riming and aggregation in the transition region ard the aggregation process predominates in the stratiform region referred from the microphysical structures.The ag- gregation starts in the upper,colder levls but becomes more efficient as the particles approach the melting layer.