Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for ...Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures,and inconsistent objects.To address this challenge,we proposed an effective,lightweight object detector method called the RFNet model(YOLO-FR).The YOLO-FR is a lightweight and effective model.Specifically,for efficient multi-scale feature extraction,effective feature pyramid shared convolutional(FPSC)was designed to improve the feature extract performance by leveraging convolutional layers with varying dilation rates from the input image in the backbone.Secondly,to address the problem of multi-scale variability in the scene,we design the Rep Ghost fusion Cross Stage Partial and Efficient Layer Aggregation Network(RGCSPELAN)to improve the network performance further and reduce the amount of computation and the number of parameters.In addition,by conducting experimental valuation on the SCB dataset3 and STBD-08 dataset.Experimental results indicate that,compared to the baseline model,the RFNet model has increased mean accuracy precision(mAP@50)from 69.6%to 71.0%on the SCB dataset3 and from 91.8%to 93.1%on the STBD-08 dataset.The RFNet approach has effectiveness precision at 68.6%,surpassing the baseline method(YOLOv11)at 3.3%and archieve the minimal size(4.9 M)on the SCB dataset3.Finally,comparing it with other algorithms,it accurately detects student behavior in complex classroom environments results confirmed that RFNet is well-suited for real-time and efficiently recognizing classroom behaviors.展开更多
Hemerocallis citrina Baroni is rich in nutritional value,with a clear trend of increasing market demand,and it is a pillar industry for rural economic development.Hemerocallis citrina Baroni exhibits rapid growth,a sh...Hemerocallis citrina Baroni is rich in nutritional value,with a clear trend of increasing market demand,and it is a pillar industry for rural economic development.Hemerocallis citrina Baroni exhibits rapid growth,a shortened harvest cycle,lacks a consistent maturity identification standard,and relies heavily on manual labor.To address these issues,a new method for detecting the maturity of Hemerocallis citrina Baroni,called LTCB YOLOv7,has been introduced.To begin with,the layer aggregation network and transition module are made more efficient through the incorporation of Ghost convolution,a lightweight technique that streamlines the model architecture.This results in a reduction of model parameters and computational workload.Second,a coordinate attention mechanism is enhanced between the feature extraction and feature fusion networks,which enhances the model precision and compensates for the performance decline caused by lightweight design.Ultimately,a bi-directional feature pyramid network with weighted connections replaces the Concatenate function in the feature fusion network.This modification enables the integration of information across different stages,resulting in a gradual improvement in the overall model performance.The experimental results show that the improved LTCB YOLOv7 algorithm for Hemerocallis citrina Baroni maturity detection reduces the number of model parameters and floating point operations by about 1.7 million and 7.3G,respectively,and the model volume is compressed by about 3.5M.This refinement leads to enhancements in precision and recall by approximately 0.58%and 0.18%respectively,while the average precision metrics mAP@0.5 and mAP@0.5:0.95 show improvements of about 1.61%and 0.82%respectively.Furthermore,the algorithm achieves a real-time detection performance of 96.15 FPS.The proposed LTCB YOLOv7 algorithm exhibits strong performance in detecting maturity in Hemerocallis citrina Baroni,effectively addressing the challenge of balancing model complexity and performance.It also establishes a standardized approach for maturity detection in Hemerocallis citrina Baroni for identification and harvesting purposes.展开更多
Aggregation is one of the many important processes in chemical and process engineering. Several researchers have attempted to understand this complex process in fluidized beds using the macro-model of population balan...Aggregation is one of the many important processes in chemical and process engineering. Several researchers have attempted to understand this complex process in fluidized beds using the macro-model of population balance equations (PBEs). The aggregation kernel is an effective parameter in PBEs, and is defined as the product of the aggregation efficiency and collision frequency functions. Attempts to derive this kernel have taken different approaches, including theoretical, experimental, and empirical techniques. The present paper calculates the aggregation kernel using micro-model computer simulations, i.e., a discrete particle model. We simulate the micro-model without aggregation for various initial conditions, and observe that the collision frequency function is in good agreement with the shear kernel. We then simulate the micro-model with aggregation and calculate the aggregation efficiency rate.展开更多
基金suported by the Fundamental Research Grant Scheme(FRGS)of Universiti Sains Malaysia,Research Number:FRGS/1/2024/ICT02/USM/02/1.
文摘Classroom behavior recognition is a hot research topic,which plays a vital role in assessing and improving the quality of classroom teaching.However,existing classroom behavior recognition methods have challenges for high recognition accuracy with datasets with problems such as scenes with blurred pictures,and inconsistent objects.To address this challenge,we proposed an effective,lightweight object detector method called the RFNet model(YOLO-FR).The YOLO-FR is a lightweight and effective model.Specifically,for efficient multi-scale feature extraction,effective feature pyramid shared convolutional(FPSC)was designed to improve the feature extract performance by leveraging convolutional layers with varying dilation rates from the input image in the backbone.Secondly,to address the problem of multi-scale variability in the scene,we design the Rep Ghost fusion Cross Stage Partial and Efficient Layer Aggregation Network(RGCSPELAN)to improve the network performance further and reduce the amount of computation and the number of parameters.In addition,by conducting experimental valuation on the SCB dataset3 and STBD-08 dataset.Experimental results indicate that,compared to the baseline model,the RFNet model has increased mean accuracy precision(mAP@50)from 69.6%to 71.0%on the SCB dataset3 and from 91.8%to 93.1%on the STBD-08 dataset.The RFNet approach has effectiveness precision at 68.6%,surpassing the baseline method(YOLOv11)at 3.3%and archieve the minimal size(4.9 M)on the SCB dataset3.Finally,comparing it with other algorithms,it accurately detects student behavior in complex classroom environments results confirmed that RFNet is well-suited for real-time and efficiently recognizing classroom behaviors.
基金funded by the Shanxi Provincial Science and Technology Department Surface Project(Grant No.202303021211330)Innovation Platform Project of Science and Technology Innovation Program of Higher Education Institutions in Shanxi Province(Grant No.2022P009)+2 种基金Shanxi Province Basic Research Program Projects(Grant No.202303021212244)the Datong City Shanxi Province Key Research&Development(Agriculture)Program Projects(Grants No.2023006,2023015)the 2024 Basic Research Program of Shanxi Province(Free Exploration Category)Program Projects(Grant No.202403021221181).
文摘Hemerocallis citrina Baroni is rich in nutritional value,with a clear trend of increasing market demand,and it is a pillar industry for rural economic development.Hemerocallis citrina Baroni exhibits rapid growth,a shortened harvest cycle,lacks a consistent maturity identification standard,and relies heavily on manual labor.To address these issues,a new method for detecting the maturity of Hemerocallis citrina Baroni,called LTCB YOLOv7,has been introduced.To begin with,the layer aggregation network and transition module are made more efficient through the incorporation of Ghost convolution,a lightweight technique that streamlines the model architecture.This results in a reduction of model parameters and computational workload.Second,a coordinate attention mechanism is enhanced between the feature extraction and feature fusion networks,which enhances the model precision and compensates for the performance decline caused by lightweight design.Ultimately,a bi-directional feature pyramid network with weighted connections replaces the Concatenate function in the feature fusion network.This modification enables the integration of information across different stages,resulting in a gradual improvement in the overall model performance.The experimental results show that the improved LTCB YOLOv7 algorithm for Hemerocallis citrina Baroni maturity detection reduces the number of model parameters and floating point operations by about 1.7 million and 7.3G,respectively,and the model volume is compressed by about 3.5M.This refinement leads to enhancements in precision and recall by approximately 0.58%and 0.18%respectively,while the average precision metrics mAP@0.5 and mAP@0.5:0.95 show improvements of about 1.61%and 0.82%respectively.Furthermore,the algorithm achieves a real-time detection performance of 96.15 FPS.The proposed LTCB YOLOv7 algorithm exhibits strong performance in detecting maturity in Hemerocallis citrina Baroni,effectively addressing the challenge of balancing model complexity and performance.It also establishes a standardized approach for maturity detection in Hemerocallis citrina Baroni for identification and harvesting purposes.
基金supported by the Graduiertenkolleg-828,"Micro-Macro-Interactions in Structured Media and Particles Systems",Otto-von-Guericke-University Magdeburg
文摘Aggregation is one of the many important processes in chemical and process engineering. Several researchers have attempted to understand this complex process in fluidized beds using the macro-model of population balance equations (PBEs). The aggregation kernel is an effective parameter in PBEs, and is defined as the product of the aggregation efficiency and collision frequency functions. Attempts to derive this kernel have taken different approaches, including theoretical, experimental, and empirical techniques. The present paper calculates the aggregation kernel using micro-model computer simulations, i.e., a discrete particle model. We simulate the micro-model without aggregation for various initial conditions, and observe that the collision frequency function is in good agreement with the shear kernel. We then simulate the micro-model with aggregation and calculate the aggregation efficiency rate.