We investigated forest road networks and forestry operations before and after mechanization on aggregated forestry operation sites. We developed equations to estimate densities of road networks with average slope angl...We investigated forest road networks and forestry operations before and after mechanization on aggregated forestry operation sites. We developed equations to estimate densities of road networks with average slope angles, operational efficiency of bunching operations with road network density, and average forwarding distances with operation site areas. Subsequently, we analyzed the effects of aggregating forests, establishing forest road networks, and mechanization on operational efficiency and costs. Six ha proved to be an appropriate operation site area with minimum operation expenses. The operation site areas of the forest owners' cooperative in this region aggregated approximately 6 ha and the cooperative conducted forestry operations on aggregated sites. Therefore, 6 ha would be an appropriate operation site area in this region. Regarding road network density, higher-density road networks increased operational expenses due to the higher direct operational expenses of strip road establishment. Therefore, road network density should be reduced to approximately 200 m.展开更多
The most common scientific approach to numerical landscape-level forest management planning is combinatorial optimization aimed at finding the optimal combination of the treatment alternatives of stands. The selected ...The most common scientific approach to numerical landscape-level forest management planning is combinatorial optimization aimed at finding the optimal combination of the treatment alternatives of stands. The selected combination of treatments depends on the conditions of the forest, and the objectives of the forest landowners. A two-step procedure is commonly used to derive the plan. First, treatment alternatives are generated for the stands using an automated simulation tool. Second,the optimal combination of the simulated treatment schedules is found by using mathematical programming or various heuristics. Simulation of treatment schedules requires models for stand dynamics and volume for all important tree species and stand types present in the forest.A forest planning system was described for Northeast China. The necessary models for stand dynamics and tree volume were presented for the main tree species of the region. The developed models were integrated into the simulation tool of the planning system. The simulation and the optimization tools of the planning system were described. The optimization tool was used with heuristic methods, making it possible to easily solve also spatial forest planning problems, for instance aggregate cuttings.Finally, the use of the system is illustrated with a case study, in which nonspatial and spatial management plans are developed for the Mengjiagang Forest District.展开更多
文摘We investigated forest road networks and forestry operations before and after mechanization on aggregated forestry operation sites. We developed equations to estimate densities of road networks with average slope angles, operational efficiency of bunching operations with road network density, and average forwarding distances with operation site areas. Subsequently, we analyzed the effects of aggregating forests, establishing forest road networks, and mechanization on operational efficiency and costs. Six ha proved to be an appropriate operation site area with minimum operation expenses. The operation site areas of the forest owners' cooperative in this region aggregated approximately 6 ha and the cooperative conducted forestry operations on aggregated sites. Therefore, 6 ha would be an appropriate operation site area in this region. Regarding road network density, higher-density road networks increased operational expenses due to the higher direct operational expenses of strip road establishment. Therefore, road network density should be reduced to approximately 200 m.
基金financially supported by the Ministry of Science and Technology of the People’s Republic of China(2015BAD09B01)the Fundamental Research Funds for the Central Universities of the People’s Republic of China(2572014BA09)
文摘The most common scientific approach to numerical landscape-level forest management planning is combinatorial optimization aimed at finding the optimal combination of the treatment alternatives of stands. The selected combination of treatments depends on the conditions of the forest, and the objectives of the forest landowners. A two-step procedure is commonly used to derive the plan. First, treatment alternatives are generated for the stands using an automated simulation tool. Second,the optimal combination of the simulated treatment schedules is found by using mathematical programming or various heuristics. Simulation of treatment schedules requires models for stand dynamics and volume for all important tree species and stand types present in the forest.A forest planning system was described for Northeast China. The necessary models for stand dynamics and tree volume were presented for the main tree species of the region. The developed models were integrated into the simulation tool of the planning system. The simulation and the optimization tools of the planning system were described. The optimization tool was used with heuristic methods, making it possible to easily solve also spatial forest planning problems, for instance aggregate cuttings.Finally, the use of the system is illustrated with a case study, in which nonspatial and spatial management plans are developed for the Mengjiagang Forest District.