We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to p...We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).展开更多
To accurately identify the factors affecting the formation of stable aggregates in bauxite residue during the soil formation process,the comprehensive effects of a combined chemical-biological amelioration strategy in...To accurately identify the factors affecting the formation of stable aggregates in bauxite residue during the soil formation process,the comprehensive effects of a combined chemical-biological amelioration strategy including solid wastes and a functional microorganism on aggregate size distribution and its stability in bauxite residue were investigated during a 365-d simulation experiment.The results showed that the combined amelioration effectively reduced the saline alkalinity of bauxite residue,and markedly changed the contents of aggregate-associated chemical binding agents.Desulfurization gypsum and maize straw-Penicillium oxalicum(P.oxalicum)differentiated the formation of aggregates within different sizes.Maize straw-P.oxalicum stimulated the formation of water-stable macroaggregates with more durable erosion resistance by the wet-sieving and laser dynamic diffraction analysis.The Pearson correlation analysis showed that exchangeable polyvalent metal ions,pyrophosphate extractable Fe oxide,and organic carbon exhibited positive correlations with aggregate stability during the 365-d incubation.The findings in this study may provide data support and engineering practical reference for ecological restoration in the disposal areas.展开更多
Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon r...Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon reservoirs,playing a critical role in mitigating climate change.However,the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood.Here,an in-situ field experiment manipulating snow conditions(i.e.,snow removal and snow cover)was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates(>2,0.25-2,and<0.25 mm)in a peatland of Northeast China.The results showed that snow removal significantly increased the SOC content and stability within aggregates.Compared to the soils with snow cover,snow removal resulted in decreased soil average temperatures in the topsoil(0-30 cm depth)and subsoil(30-60 cm depth)(by 1.48 and 1.34°C,respectively)and increased freeze-thaw cycles(by 11 cycles),consequently decreasing the stability of aggregates in the topsoil and subsoil(by 23.68%and 6.85%,respectively).Furthermore,more recalcitrant carbon and enhanced SOC stability were present in microaggregates(<0.25 mm)at two soil depths.Moreover,reductions in bacterial diversity and network stability were observed in response to snow removal.Structural equation modeling analysis demonstrated that snow removal indirectly promoted(P<0.01)SOC stability by regulating carbon to nitrogen(C:N)ratio within aggregates.Overall,our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.展开更多
oil aggregates profoundly impact soil sustainability and crop productivity, and they are influenced by complexinteractions between minerals and organics. This study aimed to elucidate the alterations in mineralogy and...oil aggregates profoundly impact soil sustainability and crop productivity, and they are influenced by complexinteractions between minerals and organics. This study aimed to elucidate the alterations in mineralogy and soilorganic carbon(SOC) following long-term green manure incorporation and the effect on soil aggregates. Based on 5-and 36-year field experiments, surface soil samples(0–20 cm) were collected from Alfisol and Ferrisol soilssubjected to rice–rice–winter fallow(CK) and rice–rice–Chinese milk vetch(MV) treatments to investigate aggregatestability, mineralogy, SOC composition, and soil microstructural characteristics. The results showed that high clay-content Ferrisol exhibited greater aggregate stability than low clay-content Alfisol. The phyllosilicates in Alfisolprimarily comprised illite and vermiculite, whereas those in Ferrisol with high-content free-form Fe oxides(Fed) weredominated by kaolinite. Additionally, the clay fraction in Ferrisol contained more aromatic-C than the clay fraction inAlfisol. The 36-year MV incorporation significantly increased the Ferrisol macroaggregate stability(9.57–13.37%),and it also facilitated the transformation of vermiculite into kaolinite and significantly increased the clay, Fed, and aromatic-C contents in Ferrisol. Backscattered electron(BSE)-scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS) revealed a compact aggregate structure in Ferrisol with co-localization of Feoxides and kaolinite. Moreover, the partial least path model(PLS-PM) revealed that clay content directly improvedmacroaggregate stability, and that kaolinite and Fed positively and directly affected clay or indirectly modulated clay formation by increasing the aromatic-C levels. Overall, long-term MV incorporation promotes clay aggregation by affecting mineral transformation to produce more kaolinite and Fe oxides and retain aromatic-C, and it ultimately improves aggregate stability.展开更多
The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and or...The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and organic matter composition under different land uses affect microbial community structure remain unclear.Here,land-use types in the agro-pastoral ecotone,including shrubland(BF),artificial grassland(ArG),abandoned grassland(AbG),and maize farmland(MA),were chosen to explore the response relationships between soil microbial communities and the aggregates and dissolved organic matter(DOM)composition.The results showed that compared to MA,the macroaggregates in BF,AbG,and ArG were increased by 123.0,92.79,and 63.71%,respectively,while MA soil had the greatest abundance of<100μm particles.The higher aromatic carbon with high aromaticity and molecular weight in BF soil DOM contributed to its highest mineral-associated organic carbon level(12.61 g kg^(-1)),while MA soil organic carbon had highly efficient decomposition due to its high content of aliphatic and carboxy carbon,so it is prone to loss from the active carbon pools.The transition in land use from shrubland to grassland and farmland has facilitated the conversion of stable aromatic carbon to unstable carboxy carbon.The taxonomic analysis revealed that soil bacterial and fungal communities in the four land uses were dominated by Proteobacteria,Actinobacteriota,Chloroflexi,and Ascomycota.More taxonomic groups from phylum to family were enriched in BF soil.The DOM components and organic carbon are crucial variables shaping the composition of soil bacterial communities,jointly explaining 61.66% of the variance,while aggregates are important variables driving the composition of fungal communities,with an explanation rate of 20.49%.Our results suggest that DOM components and aggregates impact the soil microbial structure;and the transition in land use from agricultural land to grassland and shrubland in the agro-pastoral ecotone enhances aggregate stability,carbon sequestration potential,and microbial diversity.展开更多
In response to the effectiveness of reforestation in controlling soil erosion,there has been a dramatic increase in forest coverage in the hilly red soil region of southern China.Aggregate stability and soil shear str...In response to the effectiveness of reforestation in controlling soil erosion,there has been a dramatic increase in forest coverage in the hilly red soil region of southern China.Aggregate stability and soil shear strength are indicators that reflect soil resistance to erosion and its ability to prevent shallow landslides,respectively.However,limited research has focused on the response of soil aggregate stability and shear strength to reforestation.We selected three types of reforestations(Phyllostachys edulis forest,Cunninghamia lanceolata(Lamb.)Hook.forest,Citrus sinensis(L.)Osbeck.orchard),a natural forest(mixed coniferous and broadleaf forests),and a fallow land as study plots,and measured root traits,and soil physicochemical traits,i.e.,pH,soil organic matter(SOC),Soil water content(SWC),soil bulk density(BD),soil cohesion(c),soil internal friction angle(φ)and analyzed their multiple interactions.The soil aggregate stability traits,refer to the mean weight diameter(MWD)and geometric mean diameter(GMD),exhibited a significant increase in reforested plots,approximately 200%compared to fallow land and 50%compared to natural forests.For soil shear strength the values were approximately 20%higher than in fallow land and approximately 10%lower than in natural forests.Soil aggregate stability and soil shear strength did not exhibit a significant positive correlation across all plots,and the underlying drivers of these traits were variable.For instance,in natural forest and timber stands,soil aggregate stability was mainly influenced by soil organic carbon,while soil shear strength was primarily affected by root length density.In economic forest,aggregate stability and shear strength are mainly affected by organic carbon.Overall,we found that vegetation restoration enhances soil erosion resistance,however,the primary drivers for the improvement of aggregate stability(soil organic carbon)and shear strength(root length density)are different.Therefore,in future benefit assessments of vegetation restoration projects aimed at soil erosion control,different indicators should be considered based on specific conditions.展开更多
Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical re...Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.展开更多
Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was c...Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.展开更多
Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover cr...Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover crop,and nitrogen(N)fertilization on SOC physical and molecular fractions and water-stable aggregate stability were evaluated by characterizing soils of the world's oldest,century-long(>120 years)continuous cotton experiment located in the southern USA.Field treatments included continuous cotton with no winter legume and no mineral N fertilizer(control,CK),continuous cotton with winter legume(CWL),cotton-corn rotation with winter legume(CCWL),cotton-corn rotation with winter legume and mineral N fertilizer(CCWLN),and continuous cotton with mineral N fertilizer(CN).Total organic C(TOC),total nitrogen(TN),acid-hydrolysis C(AHC),and water-extractable organic C(WEOC)in both bulk soils and different aggregate fractions were determined.Soil organic matter(SOM)composition was characterized using pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS).Results showed that CCWL and CCWLN increased bulk soil TOC,AHC,and TN by 150%–165%,300%–315%,and 198%–223%,respectively,as well as aggregate-associated C by 180%–246%over CK.The CWL and CN treatments also increased TOC,AHC,and TN compared to CK but to a lesser degree.The CCWL treatment increased macroaggregates(250–2000μm)by 92%followed by CCWLN by 46%,whereas CWL and CN had limited effects in increasing macroaggregates(by 1%–7%)compared to CK.Moreover,SOM showed more diversified polysaccharide-derived compounds,aliphatic compounds,aromatic compounds,lignin,and phenols in CCWL and CCWLN followed by CWL,CN,and CK.Across different field treatments,aggregate stability indices,mean weight diameter(MWD)and geometric mean diameter(GMD),were positively related to TOC and TN(R2=0.57–0.65),and N-containing compounds and phenols(R^(2)=0.71–0.89),as well as polysaccharide-derived and aliphatic compounds(R^(2)=0.53–0.71).It was concluded that the diversified inputs of SOM composition brought by synergistic interactions between corn rotation and winter legume inclusion were mainly responsible for the observed TOC accumulation and aggregate formation and stability in these subtropical cotton production systems.展开更多
Soil aggregate plays a critical role in the sequestration of soil organic carbon(SOC)on the Qinghai-Tibetan Plateau(QTP).However,the impact of plateau pika(Ochotona curzoniae)on these processes remains uncertain.In th...Soil aggregate plays a critical role in the sequestration of soil organic carbon(SOC)on the Qinghai-Tibetan Plateau(QTP).However,the impact of plateau pika(Ochotona curzoniae)on these processes remains uncertain.In this study,we examined both control and pika disturbed alpine grasslands across various degradation levels,including undegraded(UDM),lightly(LDM),moderately(MDM)and severely(SDM)degraded sites.Through analyzing variations in aggregate size distribution,stability,aggregate associated SOC(ASOC)and bulk SOC(BSOC)concentration,we investigated the influence of plateau pika disturbance on SOC,and compared these effects across varying degradation levels.The results indicate that:(i)pika disturbance decreases soil water content(SWC)by 26.3%and 22.2%in LDM and SDM at the surface soil layer,while increasing SWC by 34.1%and 30.4%in LDM and MDM at the subsurface soil layer.It significantly reduces bulk density(BD)across all soil depths and grassland types,with most significant effect in LDM;(ii)Plateau pika disturbance increases the macroaggregate proportion in both drysieved aggregate(DSA)and water-stable aggregate(WSA),particularly in LDM.It enhances mean weight diameter(MWD)and geometric mean diameter(GMD)for both DSA and WSA,especially in MDM;(iii)Pika disturbance mitigates the negative effect of soil properties on aggregate stability,particularly in LDM and MDM,thereby enhancing the positive effect of aggregate stability on ASOC and improving BSOC content,especially in LDM.These findings provide novel insights into the effects of plateau pika disturbance on SOC dynamics in alpine grasslands.展开更多
Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil sta...Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil stabilization. The treatments included no fertilization (CK), normal chemical fertilization (NPK), double the NPK application rates (2NPK), and NPK mixed with organic manure (NPK+OM). Compared with CK, Fertilization increased soil organic carbon (SOC) and soil porosity. The results of soil aggregate fragmentation degree (SAFD) showed that fast wetting by water was the key fragmentation mechanism. Among the treatments, the NPK+OM treatment had the largest size of water-stable aggregates and greatest normal mean weight diameter (NMWD) (P ≤ 0.05), but the lowest PR and TS in both cultivated horizon (Ap) and plow pan. The CK and 2NPK treatments were measured with PR 〉 2.0 MPa and friability index 〈 0.20, respectively, in the Ap horizon, suggesting that the soils was mechanically unfavourable to root growth and tillage. In the plow pan, the fertilization treatments had greater TS and PR than in CK. TS and PR of the tested soil aggregates were negatively correlated to SOC content and soil porosity. This study suggested that chemical fertilization could cause deterioration of mechanical properties while application of organic manure could improve soil stability and mechanical properties.展开更多
Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980 s showed that loss of soil organic matter (SOM) and soil aggregate stability was st...Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980 s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to a…展开更多
Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by ...Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by accelerating erosion. Thus, reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands. Four sites of different land use types/tillage practices, i) no-till (NT) corn (Zea mays L.) (NTC), ii) conventional till (CT) corn (CTC), iii) pastureland (PL), and iv) native forest (NF), were selected at the North Appalachian Experimental Watershed Station, Ohio, USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation, mean weight diameter (MWD) and geometric mean diameter (GMD), and soil organic carbon and total nitrogen contents. The NTC plots received cow manure additions (about 15 t ha-1) every other year. The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-l). The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC. In the 0-10 cm soil layer, the 〉 4.75-mm size fraction dominated NTC and was 46% more than that for CTC, whereas the 〈 0.25-mm size fraction was 380% more for CTC than for NTC. The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm, respectively) were higher than those for CTC (1.47 and 0.72 mm, respectively) in the 0-10 cm soil layer. Macroaggregates contained 6%-42% and 13%-43% higher organic carbon and total nitrogen contents, respectively, than microaggregates in soil for all sites. Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC. Therefore, a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC. In contrast, soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates. The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF 〉 PL 〉 NTC 〉 CTC, being 35%-46% more for NTC over CTC. The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils.展开更多
Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil ...Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality.展开更多
The inlfuences of tillage systems on soil carbon (C) stocks have been studied extensively, but the distribution of soil C within aggregate fractions is not well understood. The objective of this study was to determi...The inlfuences of tillage systems on soil carbon (C) stocks have been studied extensively, but the distribution of soil C within aggregate fractions is not well understood. The objective of this study was to determine the inlfuences of various tillage systems on soil aggregation and aggregate-associated C under wheat (Triticum aestivum L.) and corn (Zea mays L.) double cropping systems in the North China Plain. The experiment was established in 2001, including four treatments:moldboard plow (MP) with residue (MP+R) and without residue (MP-R), rotary tillage with residue (RT), and no-till with residue (NT). In 2007 soil samples were collected from the 0-5, 5-10, and 10-20 cm depths, and were separated into four aggregate-size classes (〉2 000, 250-2 000, 53-250, and〈53 μm) by wet-sieving method. Aggregate-associated C was determined, and the relationships between total soil C concentration and aggregation-size fractions were examined. The results showed that NT and RT treatments signiifcantly increased the proportion of macroaggregate fractions (〉2 000 and 250-2 000 μm) compared with the MP-R and MP+R treatments. Averaged across all depths, mean weight diameters of aggregates (MWD) in NT and RT were 47 and 20% higher than that in MP+R. The concentration of bulk soil organic C was positively correlated with MWD (r=0.98; P=0.024) and macroaggregate fraction (r=0.96; P=0.036) in the 0-5 cm depth. In the 0-20 cm depth, comparing with MP+R, total C occluded in the〉2 000 μm fraction was increased by 9 and 6%under NT and RT, respectively. We conclude that adoption of conservation tillage system, especially no-till, can increase soil macro-aggregation and total C accumulation in macroaggregates, which may improve soil C sequestration in the intensive agricultural region of the North China Plain.展开更多
A column experiment was conducted to investigate the effect of phosphogypsum(PG)on the salinealkalinity,and aggregate stability of bauxite residue.Results showed that:with increasing leaching time,the concentrations o...A column experiment was conducted to investigate the effect of phosphogypsum(PG)on the salinealkalinity,and aggregate stability of bauxite residue.Results showed that:with increasing leaching time,the concentrations of saline−alkali ions decreased while the SO_(4)^(2-)concentration increased in bauxite residue leachate;compared with CK(control group)treatment,pH,electric conductivity(EC),exchangeable sodium percentage(ESP),sodium absorption ratio(SAR),and exchangeable Na+content of bauxite residue were reduced following PG treatment;average particle sizes in aggregates following CK and PG treatments were determined to be 155 and 193 nm,respectively.SR-μCT test results also confirmed that bauxite residue following PG treatment acquired larger aggregates and larger pore diameter.These results indicate that the PG treatment could significantly modulate the saline-alkalinity,and simultaneously enhance aggregate stability of bauxite residue,which provides a facile approach to reclaim bauxite residue disposal areas.展开更多
Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustain...Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.展开更多
Aggregate stability is a very important predictor of soil structure and strength, which influences soil erodibility. Several aggregate stability indices were selected erodibility of four soil properties from temperate...Aggregate stability is a very important predictor of soil structure and strength, which influences soil erodibility. Several aggregate stability indices were selected erodibility of four soil properties from temperate for estimating interrill types with contrasting and subtropical regions of China. This study was conducted to investigate how closely the soil interrill erodibility factor in the Water Erosion Prediction Project (WEPP) model relates to soil aggregate stability. The mass fractal dimension (FD), geometric mean diameter (GMD), mean weight diameter (MWD), and aggregate stability index (ASI) of soil aggregates were calculated. A rainfall simulator with a drainable flume (3.0 m long × 1.0 m wide × 0.5 m deep) was used at four slope gradients (5°,10 °,15° and 20°), and four rainfall intensities (0.6, 1.1, 1.7 and 2.5 mm/min). Results indicated that the interriU erodibility (Ki) values were significantly correlated to the indices of ASI, MWD, GMD, and FD computed from the aggregate wet-sieve data. The Kihad a strong positive correlation with FD, as well as a strong negative correlation with ASI, GMD, and MWD. Soils with a higher aggregate stability and lower fractal dimension have smaller Ki values. Stable soils were characterized by a high percentage of large aggregates and the erodible soils by a high percentage of smaller aggregates. The correlation coefficients of Ki with ASI and GMD were greater than those with FD and MWD, implying that both the ASI and GMD may be better alternative parameters for empirically predicting the soil Ki factor. ASI and GMD are more reasonable in interrill soil erodibility estimation, compared with Ki calculation in original WEPP model equation. Results demonstrate the validation of soil aggregation characterization as an appropriate indicator of soil susceptibility to erosion in contrasting soil types in China.展开更多
The distribution of binding agents(i.e.,soil organic carbon(SOC)and glomalin-related soil protein(GRSP))in soil aggregates was influenced by many factors,such as plant characteristics and soil properties.However,how t...The distribution of binding agents(i.e.,soil organic carbon(SOC)and glomalin-related soil protein(GRSP))in soil aggregates was influenced by many factors,such as plant characteristics and soil properties.However,how these factors affect binding agents and soil aggregate stability along a climatic gradient remained unclear.We selected the Robinia pseudoacacia L.forests from semi-arid to semi-humid of the Loess Plateau,China to analyze the plant biomass,soil physical-chemical properties,SOC and GRSP distribution in different sized soil aggregates.We found that from semi-arid to semi-humid forests:(1)the proportion of macro-aggregates(>0.250 mm)significantly increased(P<0.05),whereas those of micro-aggregates(0.250–0.053 mm)and fine materials(<0.053 mm)decreased and soil aggregate stability was increased;(2)the contents of SOC and GRSP in macro-aggregates and micro-aggregates significantly increased,and those in fine materials decreased;(3)the contribution of SOC to soil aggregate stability was greater than those of total GRSP and easily extractable GRSP;(4)soil properties had greater influence on binding agents than plant biomass;and(5)soil aggregate stability was enhanced by increasing the contents of SOC and GRSP in macro-aggregates and soil property was the important part during this process.Climate change from semi-arid to semi-humid forests is important factor for soil structure formation because of its positive effect on soil aggregates.展开更多
Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-solub...Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-soluble organic C(WSOC),easily oxidizable organic C(EOC),humic C fractions,aggregate-associated C,aggregate stability,and humic acid(HA) composition along an east-west transect across Qinghai-Tibet Plateau,and explored their spatial patterns and controlling factors.The contents of SOC,WSOC,EOC,humic C fractions and aggregate-associated C,the proportions of macroaggregates(2-0.25) and micro-aggregates(0.25-0.053 mm),and the aggregate stability indices all increased in the order alpine desert < alpine steppe < alpine meadow.The alkyl C,O-alkyl C,and aliphatic C/aromatic C ratio of HA increased as alpine desert < alpine meadow < alpine steppe,and the trends were reverse for the aromatic C and HB/HI ratio.Mean annual precipitation and aboveground biomass weresignificantly correlated with the contents of SOC and its fractions,the proportions of macro- and microaggregates,and the aggregate stability indices along this transect.Among all these C fractions,SOC content and aggregate stability were more closely associated with humic C and silt and clay sized C in comparison with WSOC,EOC,and macro- and microaggregate C.The results suggested that alpine meadow soils containing higher SOC exhibited high soil aggregation and aggregate stability.Mean annual precipitation should be the main climate factor controlling the spatial patterns of SOC,soil aggregation,and aggregate stability in this region.The resistant and stable C fractions rather than labile C fractions are the major determinant of SOC stocks and aggregate stability.展开更多
基金supported financially by the National Natural Science Foundation of China(41807102,U1710255-3 and 41907215)the Special Fund for Science and Technology Innovation Teams of Shanxi Province,China(202304051001042)the Distinguished and Excellent Young Scholar Cultivation Project of Shanxi Agricultural University,China(2022YQPYGC05)。
文摘We studied changes in the concentrations of aggregate-cementing agents after different reclamation times and with different fertilization regimes,as well as the formation mechanism of aggregates in reclaimed soil,to provide a theoretical basis for rapid reclamation of soil fertility in the subsidence area of coal mines in Shanxi Province,China.In this study,soil samples of 0–20 cm depth were collected from four fertilization treatments of a longterm experiment started in 2008:no fertilizer (CK),inorganic fertilizer (NPK),chicken manure compost (M),and50%inorganic fertilizer plus 50%chicken manure compost (MNPK).The concentrations of cementing agents and changes in soil aggregate size distribution and stability were analysed.The results showed that the formation of>2 mm aggregates,the aggregate mean weight diameter (MWD),and the proportion of>0.25 mm water-stable aggregates (WR_(0.25)) increased significantly after 6 and 11 years of reclamation.The concentration of organic cementing agents tended to increase with reclamation time,whereas free iron oxide (Fed) and free aluminium oxide(Ald) concentrations initially increased but then decreased.In general,the MNPK treatment signi?cantly increased the concentrations of organic cementing agents and CaCO_(3),and CaCO_(3) increased by 60.4%at 11 years after reclamation.Additionally,CaCO_(3) had the greatest effect on the stability of aggregates,promoting the formation of>0.25 mm aggregates and accounting for 54.4%of the variance in the proportion and stability of the aggregates.It was concluded that long-term reclamation is bene?cial for improving soil structure.The MNPK treatment was the most effective measure for increasing maize grain yield and concentration of organic cementing agents and CaCO_(3).
基金Projects(42177391,42477437)supported by the National Natural Science Foundation of ChinaProject(2024RC3041)supported by the Science and Technology Innovation Program of Hunan Province,China+1 种基金Project(2023CXQD064)supported by the Innovation-Driven Research Programme of Central South University,ChinaProject(242102321124)supported by the Henan Provincal Science and Technology Research Project,China。
文摘To accurately identify the factors affecting the formation of stable aggregates in bauxite residue during the soil formation process,the comprehensive effects of a combined chemical-biological amelioration strategy including solid wastes and a functional microorganism on aggregate size distribution and its stability in bauxite residue were investigated during a 365-d simulation experiment.The results showed that the combined amelioration effectively reduced the saline alkalinity of bauxite residue,and markedly changed the contents of aggregate-associated chemical binding agents.Desulfurization gypsum and maize straw-Penicillium oxalicum(P.oxalicum)differentiated the formation of aggregates within different sizes.Maize straw-P.oxalicum stimulated the formation of water-stable macroaggregates with more durable erosion resistance by the wet-sieving and laser dynamic diffraction analysis.The Pearson correlation analysis showed that exchangeable polyvalent metal ions,pyrophosphate extractable Fe oxide,and organic carbon exhibited positive correlations with aggregate stability during the 365-d incubation.The findings in this study may provide data support and engineering practical reference for ecological restoration in the disposal areas.
基金supported by the National Natural Science Foundation of China(Nos.42222102,41971136,and 42171107)the Jilin Provincial Department of Science and Technology,China(No.20230508089RC)the Professional Association of the Alliance of International Science Organizations(No.ANSO-PA-2020-14).
文摘Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon reservoirs,playing a critical role in mitigating climate change.However,the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood.Here,an in-situ field experiment manipulating snow conditions(i.e.,snow removal and snow cover)was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates(>2,0.25-2,and<0.25 mm)in a peatland of Northeast China.The results showed that snow removal significantly increased the SOC content and stability within aggregates.Compared to the soils with snow cover,snow removal resulted in decreased soil average temperatures in the topsoil(0-30 cm depth)and subsoil(30-60 cm depth)(by 1.48 and 1.34°C,respectively)and increased freeze-thaw cycles(by 11 cycles),consequently decreasing the stability of aggregates in the topsoil and subsoil(by 23.68%and 6.85%,respectively).Furthermore,more recalcitrant carbon and enhanced SOC stability were present in microaggregates(<0.25 mm)at two soil depths.Moreover,reductions in bacterial diversity and network stability were observed in response to snow removal.Structural equation modeling analysis demonstrated that snow removal indirectly promoted(P<0.01)SOC stability by regulating carbon to nitrogen(C:N)ratio within aggregates.Overall,our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.
基金supported by the National Natural Science Foundation of China (41977020)the China Agriculture Research System of MOF and MARA (CARS22)。
文摘oil aggregates profoundly impact soil sustainability and crop productivity, and they are influenced by complexinteractions between minerals and organics. This study aimed to elucidate the alterations in mineralogy and soilorganic carbon(SOC) following long-term green manure incorporation and the effect on soil aggregates. Based on 5-and 36-year field experiments, surface soil samples(0–20 cm) were collected from Alfisol and Ferrisol soilssubjected to rice–rice–winter fallow(CK) and rice–rice–Chinese milk vetch(MV) treatments to investigate aggregatestability, mineralogy, SOC composition, and soil microstructural characteristics. The results showed that high clay-content Ferrisol exhibited greater aggregate stability than low clay-content Alfisol. The phyllosilicates in Alfisolprimarily comprised illite and vermiculite, whereas those in Ferrisol with high-content free-form Fe oxides(Fed) weredominated by kaolinite. Additionally, the clay fraction in Ferrisol contained more aromatic-C than the clay fraction inAlfisol. The 36-year MV incorporation significantly increased the Ferrisol macroaggregate stability(9.57–13.37%),and it also facilitated the transformation of vermiculite into kaolinite and significantly increased the clay, Fed, and aromatic-C contents in Ferrisol. Backscattered electron(BSE)-scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS) revealed a compact aggregate structure in Ferrisol with co-localization of Feoxides and kaolinite. Moreover, the partial least path model(PLS-PM) revealed that clay content directly improvedmacroaggregate stability, and that kaolinite and Fed positively and directly affected clay or indirectly modulated clay formation by increasing the aromatic-C levels. Overall, long-term MV incorporation promotes clay aggregation by affecting mineral transformation to produce more kaolinite and Fe oxides and retain aromatic-C, and it ultimately improves aggregate stability.
基金funded by the Inner Mongolia Local Science and Technology Development Fund Projects,China(2021GG0393)。
文摘The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and organic matter composition under different land uses affect microbial community structure remain unclear.Here,land-use types in the agro-pastoral ecotone,including shrubland(BF),artificial grassland(ArG),abandoned grassland(AbG),and maize farmland(MA),were chosen to explore the response relationships between soil microbial communities and the aggregates and dissolved organic matter(DOM)composition.The results showed that compared to MA,the macroaggregates in BF,AbG,and ArG were increased by 123.0,92.79,and 63.71%,respectively,while MA soil had the greatest abundance of<100μm particles.The higher aromatic carbon with high aromaticity and molecular weight in BF soil DOM contributed to its highest mineral-associated organic carbon level(12.61 g kg^(-1)),while MA soil organic carbon had highly efficient decomposition due to its high content of aliphatic and carboxy carbon,so it is prone to loss from the active carbon pools.The transition in land use from shrubland to grassland and farmland has facilitated the conversion of stable aromatic carbon to unstable carboxy carbon.The taxonomic analysis revealed that soil bacterial and fungal communities in the four land uses were dominated by Proteobacteria,Actinobacteriota,Chloroflexi,and Ascomycota.More taxonomic groups from phylum to family were enriched in BF soil.The DOM components and organic carbon are crucial variables shaping the composition of soil bacterial communities,jointly explaining 61.66% of the variance,while aggregates are important variables driving the composition of fungal communities,with an explanation rate of 20.49%.Our results suggest that DOM components and aggregates impact the soil microbial structure;and the transition in land use from agricultural land to grassland and shrubland in the agro-pastoral ecotone enhances aggregate stability,carbon sequestration potential,and microbial diversity.
基金supported by the National Natural Science Foundation of China(NO.32201626)the Key Research and Development Program of Jiangxi Province(20223BBG74S01,20223BBG71013).
文摘In response to the effectiveness of reforestation in controlling soil erosion,there has been a dramatic increase in forest coverage in the hilly red soil region of southern China.Aggregate stability and soil shear strength are indicators that reflect soil resistance to erosion and its ability to prevent shallow landslides,respectively.However,limited research has focused on the response of soil aggregate stability and shear strength to reforestation.We selected three types of reforestations(Phyllostachys edulis forest,Cunninghamia lanceolata(Lamb.)Hook.forest,Citrus sinensis(L.)Osbeck.orchard),a natural forest(mixed coniferous and broadleaf forests),and a fallow land as study plots,and measured root traits,and soil physicochemical traits,i.e.,pH,soil organic matter(SOC),Soil water content(SWC),soil bulk density(BD),soil cohesion(c),soil internal friction angle(φ)and analyzed their multiple interactions.The soil aggregate stability traits,refer to the mean weight diameter(MWD)and geometric mean diameter(GMD),exhibited a significant increase in reforested plots,approximately 200%compared to fallow land and 50%compared to natural forests.For soil shear strength the values were approximately 20%higher than in fallow land and approximately 10%lower than in natural forests.Soil aggregate stability and soil shear strength did not exhibit a significant positive correlation across all plots,and the underlying drivers of these traits were variable.For instance,in natural forest and timber stands,soil aggregate stability was mainly influenced by soil organic carbon,while soil shear strength was primarily affected by root length density.In economic forest,aggregate stability and shear strength are mainly affected by organic carbon.Overall,we found that vegetation restoration enhances soil erosion resistance,however,the primary drivers for the improvement of aggregate stability(soil organic carbon)and shear strength(root length density)are different.Therefore,in future benefit assessments of vegetation restoration projects aimed at soil erosion control,different indicators should be considered based on specific conditions.
文摘Rubber trees (Hevea brasiliensis Müll. Arg.) have been commercially cultivated for a century and a half in Asia, particularly in China, and they constitute a common element of plantation ecosystems in tropical regions. Soil health is fundamental to the sustainable development of rubber plantations. The objective of the study is to explore the influence of different complex ecological cultivation modes on the stability of soil aggregates in rubber based agroforestry systems. In this study, the ecological cultivation mode of rubber—Alpinia oxyphylla plantation, the ecological cultivation mode of rubber—Phrynium hainanense plantations, the ecological cultivation mode of rubber—Homalium ceylanicum plantations and monoculture rubber plantations were selected, and the particle size distribution of soil aggregates and their water stability characteristics were analyzed. The soil depth of 0 - 20 cm and 20 - 40 cm was collected for four cultivation modes. Soil was divided into 6 particle levels > 20 cm. soil was divided into 6 particle levels > 5 mm, 2 - 5 mm, 1 - 2 mm, 0.5 - 1 mm, 0.25 - 0.5 mm, and 0.053 - 0.25 mm according to the wet sieve method. The particle size proportion and water stability of soil aggregates were determined by the wet sieve method. The particle size proportion and water stability of soil aggregates under different ecological cultivation modes were analyzed. The results showed that under different ecological cultivation modes in the shallow soil layer (0 - 20 cm), the rubber—Alpinia oxyphylla plantation and the rubber—Phrynium hainanense plantation promoted the development of dominant soil aggregates towards larger size classes, whereas the situation is the opposite for rubber—Homalium ceylanicum plantation. In soil layer (20 - 40 cm), the ecological cultivation mode of rubber—Phrynium hainanense plantation developed the dominant radial level of soil aggregates to the diameter level of large aggregates. Rubber—Alpinia oxyphylla plantation and rubber—Homalium ceylanicum plantation, three indicators, including the water-stable aggregate content R<sub>0.25</sub> (>0.25 mm water-stable aggregates), mean weight diameter (MWD), and geometric mean diameter (GMD), were all lower than those in the rubber monoculture mode. However, in the rubber—Phrynium hainanense plantation, the water-stable aggregate content R<sub>0.25</sub>, mean weight diameter, and geometric mean diameter were higher than in the rubber monoculture mode, although these differences did not reach statistical significance.
基金co-funded by the National Natural Science Foundation of China(U204020742277323)+2 种基金the 111 Project of Hubei Province(2021EJD026)the open fund of Key Laboratory of Geological Hazards on Three Gorges Reservoir Area(China Three Gorges University)Ministry of Education(2022KDZ24).
文摘Soil aggregate is the basic structural unit of soil,which is the foundation for supporting ecosystem functions,while its composition and stability is significantly affected by the external environment.This study was conducted to explore the effect of external environment(wetting-drying cycles and acidic conditions)on the soil aggregate distribution and stability and identify the key soil physicochemical factors that affect the soil aggregate stability.The yellow‒brown soil from the Three Gorges Reservoir area(TGRA)was used,and 8 wetting-drying conditions(0,1,2,3,4,5,10 and 15 cycles)were simulated under 4 acidic conditions(pH=3,4,5 and 7).The particle size distribution and soil aggregate stability were determined by wet sieving method,the contribution of environmental factors(acid condition,wetting-drying cycle and their combined action)to the soil aggregate stability was clarified and the key soil physicochemical factors that affect the soil aggregate stability under wetting-drying cycles and acidic conditions were determined by using the Pearson’s correlation analysis,Partial least squares path modeling(PLS‒PM)and multiple linear regression analysis.The results indicate that wetting-drying cycles and acidic conditions have significant effects on the stability of soil aggregates,the soil aggregate stability gradually decreases with increasing number of wetting-drying cycles and it obviously decreases with the increase of acidity.Moreover,the combination of wetting-drying cycles and acidic conditions aggravate the reduction in the soil aggregate stability.The wetting-drying cycles,acidic conditions and their combined effect imposes significant impact on the soil aggregate stability,and the wetting-drying cycles exert the greatest influence.The soil aggregate stability is significantly correlated with the pH,Ca^(2+),Mg^(2+),maximum disintegration index(MDI)and soil bulk density(SBD).The PLS‒PM and multiple linear regression analysis further reveal that the soil aggregate stability is primarily influenced by SBD,Ca^(2+),and MDI.These results offer a scientific basis for understanding the soil aggregate breakdown mechanism and are helpful for clarifying the coupled effect of wetting-drying cycles and acid rain on terrestrial ecosystems in the TGRA.
基金supported by the United States Department of Agriculture-Natural Resources Conservation Service(No.NR217217XXXXG004)the United States Department of Agriculture National Institute of Food and Agriculture Hatch Project(No.7003969)supported,in part,by a scholarship from China Scholarship Council(No.201206300183)。
文摘Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover crop,and nitrogen(N)fertilization on SOC physical and molecular fractions and water-stable aggregate stability were evaluated by characterizing soils of the world's oldest,century-long(>120 years)continuous cotton experiment located in the southern USA.Field treatments included continuous cotton with no winter legume and no mineral N fertilizer(control,CK),continuous cotton with winter legume(CWL),cotton-corn rotation with winter legume(CCWL),cotton-corn rotation with winter legume and mineral N fertilizer(CCWLN),and continuous cotton with mineral N fertilizer(CN).Total organic C(TOC),total nitrogen(TN),acid-hydrolysis C(AHC),and water-extractable organic C(WEOC)in both bulk soils and different aggregate fractions were determined.Soil organic matter(SOM)composition was characterized using pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS).Results showed that CCWL and CCWLN increased bulk soil TOC,AHC,and TN by 150%–165%,300%–315%,and 198%–223%,respectively,as well as aggregate-associated C by 180%–246%over CK.The CWL and CN treatments also increased TOC,AHC,and TN compared to CK but to a lesser degree.The CCWL treatment increased macroaggregates(250–2000μm)by 92%followed by CCWLN by 46%,whereas CWL and CN had limited effects in increasing macroaggregates(by 1%–7%)compared to CK.Moreover,SOM showed more diversified polysaccharide-derived compounds,aliphatic compounds,aromatic compounds,lignin,and phenols in CCWL and CCWLN followed by CWL,CN,and CK.Across different field treatments,aggregate stability indices,mean weight diameter(MWD)and geometric mean diameter(GMD),were positively related to TOC and TN(R2=0.57–0.65),and N-containing compounds and phenols(R^(2)=0.71–0.89),as well as polysaccharide-derived and aliphatic compounds(R^(2)=0.53–0.71).It was concluded that the diversified inputs of SOM composition brought by synergistic interactions between corn rotation and winter legume inclusion were mainly responsible for the observed TOC accumulation and aggregate formation and stability in these subtropical cotton production systems.
基金supported by the National Natural Science Foundation of China(41672342)Natural Science Foundation of Sichuan Province(2024NSFSC0101).
文摘Soil aggregate plays a critical role in the sequestration of soil organic carbon(SOC)on the Qinghai-Tibetan Plateau(QTP).However,the impact of plateau pika(Ochotona curzoniae)on these processes remains uncertain.In this study,we examined both control and pika disturbed alpine grasslands across various degradation levels,including undegraded(UDM),lightly(LDM),moderately(MDM)and severely(SDM)degraded sites.Through analyzing variations in aggregate size distribution,stability,aggregate associated SOC(ASOC)and bulk SOC(BSOC)concentration,we investigated the influence of plateau pika disturbance on SOC,and compared these effects across varying degradation levels.The results indicate that:(i)pika disturbance decreases soil water content(SWC)by 26.3%and 22.2%in LDM and SDM at the surface soil layer,while increasing SWC by 34.1%and 30.4%in LDM and MDM at the subsurface soil layer.It significantly reduces bulk density(BD)across all soil depths and grassland types,with most significant effect in LDM;(ii)Plateau pika disturbance increases the macroaggregate proportion in both drysieved aggregate(DSA)and water-stable aggregate(WSA),particularly in LDM.It enhances mean weight diameter(MWD)and geometric mean diameter(GMD)for both DSA and WSA,especially in MDM;(iii)Pika disturbance mitigates the negative effect of soil properties on aggregate stability,particularly in LDM and MDM,thereby enhancing the positive effect of aggregate stability on ASOC and improving BSOC content,especially in LDM.These findings provide novel insights into the effects of plateau pika disturbance on SOC dynamics in alpine grasslands.
基金Project supported by the National Natural Science Foundation of China (No.40371059).
文摘Wet stability, penetration resistance (PR), and tensile strength (TS) of paddy soils under a fertilization experiment for 22 years were determined to elucidate the function of soil organic matter in paddy soil stabilization. The treatments included no fertilization (CK), normal chemical fertilization (NPK), double the NPK application rates (2NPK), and NPK mixed with organic manure (NPK+OM). Compared with CK, Fertilization increased soil organic carbon (SOC) and soil porosity. The results of soil aggregate fragmentation degree (SAFD) showed that fast wetting by water was the key fragmentation mechanism. Among the treatments, the NPK+OM treatment had the largest size of water-stable aggregates and greatest normal mean weight diameter (NMWD) (P ≤ 0.05), but the lowest PR and TS in both cultivated horizon (Ap) and plow pan. The CK and 2NPK treatments were measured with PR 〉 2.0 MPa and friability index 〈 0.20, respectively, in the Ap horizon, suggesting that the soils was mechanically unfavourable to root growth and tillage. In the plow pan, the fertilization treatments had greater TS and PR than in CK. TS and PR of the tested soil aggregates were negatively correlated to SOC content and soil porosity. This study suggested that chemical fertilization could cause deterioration of mechanical properties while application of organic manure could improve soil stability and mechanical properties.
基金Project supported by the USDA-NRCS National Employee Development Center, USA the Chinese Academy of Sciences for the Hundred Talents Program, and the Federal Hatch Program, USA (No.MAS00860)
文摘Agricultural sustainability relates directly to maintaining or enhancing soil quality. Soil quality studies in Canada during the 1980 s showed that loss of soil organic matter (SOM) and soil aggregate stability was standard features of non-sustainable land management in agroecosystems. In this study total soil organic carbon (SOC), particulate organic matter (POM), POM-C as a percentage of total SOC, and aggregate stability were determined for three cultivated fields and three adjacent grassland fields to a…
基金the research fellowship granted by the Department of Biotechnology,Government of India,in the form of Overseas Associateship(No. BT/20/NE/2011/2014)
文摘Promoting soil carbon sequestration in agricultural land is one of the viable strategies to decelerate the observed climate changes. However, soil physical disturbances have aggravated the soil degradation process by accelerating erosion. Thus, reducing the magnitude and intensity of soil physical disturbance through appropriate farming/agricultural systems is essential to management of soil carbon sink capacity of agricultural lands. Four sites of different land use types/tillage practices, i) no-till (NT) corn (Zea mays L.) (NTC), ii) conventional till (CT) corn (CTC), iii) pastureland (PL), and iv) native forest (NF), were selected at the North Appalachian Experimental Watershed Station, Ohio, USA to assess the impact of NT farming on soil aggregate indices including water-stable aggregation, mean weight diameter (MWD) and geometric mean diameter (GMD), and soil organic carbon and total nitrogen contents. The NTC plots received cow manure additions (about 15 t ha-1) every other year. The CTC plots involved disking and chisel ploughing and liquid fertilizer application (110 L ha-l). The results showed that both water-stable aggregation and MWD were greater in soil for NTC than for CTC. In the 0-10 cm soil layer, the 〉 4.75-mm size fraction dominated NTC and was 46% more than that for CTC, whereas the 〈 0.25-mm size fraction was 380% more for CTC than for NTC. The values of both MWD and GMD in soil for NTC (2.17 mm and 1.19 mm, respectively) were higher than those for CTC (1.47 and 0.72 mm, respectively) in the 0-10 cm soil layer. Macroaggregates contained 6%-42% and 13%-43% higher organic carbon and total nitrogen contents, respectively, than microaggregates in soil for all sites. Macroaggregates in soil for NTC contained 40% more organic carbon and total nitrogen over microaggregates in soil for CTC. Therefore, a higher proportion of microaggregates with lower organic carbon contents created a carbon-depleted environment for CTC. In contrast, soil for NTC had more aggregation and contained higher organic carbon content within water-stable aggregates. The soil organic carbon and total nitrogen stocks (Mg ha-1) among the different sites followed the trend of NF 〉 PL 〉 NTC 〉 CTC, being 35%-46% more for NTC over CTC. The NT practice enhanced soil organic carbon content over the CT practice and thus was an important strategy of carbon sequestration in cropland soils.
基金the National Natural Science Foundation of China(Nos.31960240 and 32171755)the Guangxi Natural Science Foundation(No.2019GXNSFAA185023)the Scientific Research Capacity Building Project for Youyiguan Forest Ecosystem Observation and Research Station of Guangxi under Grant No.2203513003。
文摘Background:Soil aggregates are the basic units of soil structure,and their stability is a key indicator of soil quality and capacity to support ecosystem functions.The impacts of various environmental factors on soil aggregates have been widely studied.However,there remains elusive knowledge on the synergistic effects of changing forest stand structure on soil aggregate stability(SAS),particularly in subtropical China where soil erosion remains a critical issue.Methods:We investigated variations in the components of soil humus(HS),including humic acids(HAs),fulvic acids(FAs),and humins(HMs),under pure Chinese fir(Cunninghamia lanceolata)plantation(PP)and multilayered mixed plantation(MP)comprising C.lanceolata,Castanopsis hystrix,and Michelia hedyosperma.The state of soil aggregate stability,was determined by three separate methods,i.e.,dry-sieving,wet-sieving,and the Le Bissonnais.High-throughput sequencing was used to determine the diversity and composition of microbial communities under PP and MP.We then built partial least squares path models(PLS-PM)for assessing the responses of SAS to the variations in soil microorganisms and HS components.Results:The MP stands had significantly greater SAS(P<0.05),higher content of HAs and more rapid organic matter humification within aggregates,than the PP stands.High-throughput sequencing confirmed that the Pielou andα-diversity index values(Chao1 and Shannon)for fungi were all significantly higher under MP than under PP,while no marked difference was found in bacterialα-diversity between the two plantation types.Moreover,there were markedly greater abundance of three bacterial phyla(Verrucomicrobia,Chloroflexi,and Gemmatimonadetes)and three fungal phyla(Ascomycota,Kickxellomycota,and Glomeromycota),and significantly less abundance of two bacterial phyla(Planctomycetes and Firmicutes)and four fungal phyla(Basidiomycota,Mortierellomycota,Mucoromycota,and Rozellomycota)under MP than under PP.The Chloroflexi and Ascomycota phyla appeared to be the primary drivers of soil aggregate distribution.Our findings revealed that the promotion of SAS under MP was mainly driven by increased soil organic matter(SOM)content,which altered bacterial communities and enhanced fungal diversity,thereby increasing HAs content and the rate of organic matter humification.Conclusions:Considering the combined effects of enhanced soil quality,productivity,and relevant economic costs,introducing broadleaved tree species into Chinese fir plantations can be an effective strategy for stabilizing soil structure against erosion in subtropical China.Our study elucidated the controls on variations of SAS in Chinese fir-dominated plantations and demonstrated the benefit of converting pure Chinese fir plantation to multi-layered mixed plantations in increasing soil structural stability and improving site quality.
基金funded by the National Natural Science Foundation of China(31000250)the National 973 Program of China(2009CB118607)
文摘The inlfuences of tillage systems on soil carbon (C) stocks have been studied extensively, but the distribution of soil C within aggregate fractions is not well understood. The objective of this study was to determine the inlfuences of various tillage systems on soil aggregation and aggregate-associated C under wheat (Triticum aestivum L.) and corn (Zea mays L.) double cropping systems in the North China Plain. The experiment was established in 2001, including four treatments:moldboard plow (MP) with residue (MP+R) and without residue (MP-R), rotary tillage with residue (RT), and no-till with residue (NT). In 2007 soil samples were collected from the 0-5, 5-10, and 10-20 cm depths, and were separated into four aggregate-size classes (〉2 000, 250-2 000, 53-250, and〈53 μm) by wet-sieving method. Aggregate-associated C was determined, and the relationships between total soil C concentration and aggregation-size fractions were examined. The results showed that NT and RT treatments signiifcantly increased the proportion of macroaggregate fractions (〉2 000 and 250-2 000 μm) compared with the MP-R and MP+R treatments. Averaged across all depths, mean weight diameters of aggregates (MWD) in NT and RT were 47 and 20% higher than that in MP+R. The concentration of bulk soil organic C was positively correlated with MWD (r=0.98; P=0.024) and macroaggregate fraction (r=0.96; P=0.036) in the 0-5 cm depth. In the 0-20 cm depth, comparing with MP+R, total C occluded in the〉2 000 μm fraction was increased by 9 and 6%under NT and RT, respectively. We conclude that adoption of conservation tillage system, especially no-till, can increase soil macro-aggregation and total C accumulation in macroaggregates, which may improve soil C sequestration in the intensive agricultural region of the North China Plain.
基金the financial supports from the National Natural Science Foundation of China(Nos.42030711,41877511).
文摘A column experiment was conducted to investigate the effect of phosphogypsum(PG)on the salinealkalinity,and aggregate stability of bauxite residue.Results showed that:with increasing leaching time,the concentrations of saline−alkali ions decreased while the SO_(4)^(2-)concentration increased in bauxite residue leachate;compared with CK(control group)treatment,pH,electric conductivity(EC),exchangeable sodium percentage(ESP),sodium absorption ratio(SAR),and exchangeable Na+content of bauxite residue were reduced following PG treatment;average particle sizes in aggregates following CK and PG treatments were determined to be 155 and 193 nm,respectively.SR-μCT test results also confirmed that bauxite residue following PG treatment acquired larger aggregates and larger pore diameter.These results indicate that the PG treatment could significantly modulate the saline-alkalinity,and simultaneously enhance aggregate stability of bauxite residue,which provides a facile approach to reclaim bauxite residue disposal areas.
基金Projects(41701587,41877511)supported by the National Natural Science Foundation of China
文摘Bauxite residue is an alkaline waste material in the process of alumina production due to its characteristics of higher salinity and alkalinity,which results in environmental issues and extremely restricts the sustainable development of alumina industries.In this work,we conduct a column experiment to study the effects of two amendments on aggregate stability and variations in alkaline minerals of bauxite residue.The two amendments are phosphogypsum(PG)and phosphogypsum and vermicompost(PVC).The dominant fraction in aggregate is 1–0.25 mm in diameter on the surface,which takes up 39.34%,39.38%,and 44.51%for CK,PG,and PVC,respectively.Additions of PG and PVC decreased pH,EC,ESP,exchangeable Na^+concentration and the percentage of alkaline minerals,and then increased exchangeable Ca^2+concentration in bauxite residue.There was significant positive correlation between pH and exchangeable Na^+concentration,the percentage of cancrinite,tricalcium aluminate and calcite;while negative correlation was found in pH value versus exchangeable Ca^2+concentration.Theses findings confirmed that additions of phosphogypsum and vermicompost have a stimulative effect on aggregate stability in bauxite residue.In particular,amendment neutralization(phosphogypsum+vermicompost)in column represents an advantage for large-scale simulation of vegetation rehabilitate in bauxite residue disposal areas.
基金supported by the National Natural Science Foundation of China(Grant Nos.41271303,40901135)the National Key Technology R&D Program(Grant Nos.2012BAK10B04,2008BAD98B02)+2 种基金the Non-profit Industry Financial Program of MWR(Grant No.201301058)the Changjiang River Scientific Research Institute of Sciences Innovation Team Project(Grant No.CKSF2012052/TB)Central public welfare scientific research project(Grant No.CKSF2013013/TB)
文摘Aggregate stability is a very important predictor of soil structure and strength, which influences soil erodibility. Several aggregate stability indices were selected erodibility of four soil properties from temperate for estimating interrill types with contrasting and subtropical regions of China. This study was conducted to investigate how closely the soil interrill erodibility factor in the Water Erosion Prediction Project (WEPP) model relates to soil aggregate stability. The mass fractal dimension (FD), geometric mean diameter (GMD), mean weight diameter (MWD), and aggregate stability index (ASI) of soil aggregates were calculated. A rainfall simulator with a drainable flume (3.0 m long × 1.0 m wide × 0.5 m deep) was used at four slope gradients (5°,10 °,15° and 20°), and four rainfall intensities (0.6, 1.1, 1.7 and 2.5 mm/min). Results indicated that the interriU erodibility (Ki) values were significantly correlated to the indices of ASI, MWD, GMD, and FD computed from the aggregate wet-sieve data. The Kihad a strong positive correlation with FD, as well as a strong negative correlation with ASI, GMD, and MWD. Soils with a higher aggregate stability and lower fractal dimension have smaller Ki values. Stable soils were characterized by a high percentage of large aggregates and the erodible soils by a high percentage of smaller aggregates. The correlation coefficients of Ki with ASI and GMD were greater than those with FD and MWD, implying that both the ASI and GMD may be better alternative parameters for empirically predicting the soil Ki factor. ASI and GMD are more reasonable in interrill soil erodibility estimation, compared with Ki calculation in original WEPP model equation. Results demonstrate the validation of soil aggregation characterization as an appropriate indicator of soil susceptibility to erosion in contrasting soil types in China.
基金the National Key Research and Development Program of China(2017YFC0504601)the National Natural Science Foundation of China(41671513).
文摘The distribution of binding agents(i.e.,soil organic carbon(SOC)and glomalin-related soil protein(GRSP))in soil aggregates was influenced by many factors,such as plant characteristics and soil properties.However,how these factors affect binding agents and soil aggregate stability along a climatic gradient remained unclear.We selected the Robinia pseudoacacia L.forests from semi-arid to semi-humid of the Loess Plateau,China to analyze the plant biomass,soil physical-chemical properties,SOC and GRSP distribution in different sized soil aggregates.We found that from semi-arid to semi-humid forests:(1)the proportion of macro-aggregates(>0.250 mm)significantly increased(P<0.05),whereas those of micro-aggregates(0.250–0.053 mm)and fine materials(<0.053 mm)decreased and soil aggregate stability was increased;(2)the contents of SOC and GRSP in macro-aggregates and micro-aggregates significantly increased,and those in fine materials decreased;(3)the contribution of SOC to soil aggregate stability was greater than those of total GRSP and easily extractable GRSP;(4)soil properties had greater influence on binding agents than plant biomass;and(5)soil aggregate stability was enhanced by increasing the contents of SOC and GRSP in macro-aggregates and soil property was the important part during this process.Climate change from semi-arid to semi-humid forests is important factor for soil structure formation because of its positive effect on soil aggregates.
基金funded by the National Natural Science Foundation of China (Grant Nos. 31470506 and 41471196)
文摘Alpine grassland soils on Qinghai-Tibet Plateau store approximately 33.5 Pg of organic carbon(C) at 0–0.75 m depth and play an important role in the global carbon cycle.We investigated soil organic C(SOC),water-soluble organic C(WSOC),easily oxidizable organic C(EOC),humic C fractions,aggregate-associated C,aggregate stability,and humic acid(HA) composition along an east-west transect across Qinghai-Tibet Plateau,and explored their spatial patterns and controlling factors.The contents of SOC,WSOC,EOC,humic C fractions and aggregate-associated C,the proportions of macroaggregates(2-0.25) and micro-aggregates(0.25-0.053 mm),and the aggregate stability indices all increased in the order alpine desert < alpine steppe < alpine meadow.The alkyl C,O-alkyl C,and aliphatic C/aromatic C ratio of HA increased as alpine desert < alpine meadow < alpine steppe,and the trends were reverse for the aromatic C and HB/HI ratio.Mean annual precipitation and aboveground biomass weresignificantly correlated with the contents of SOC and its fractions,the proportions of macro- and microaggregates,and the aggregate stability indices along this transect.Among all these C fractions,SOC content and aggregate stability were more closely associated with humic C and silt and clay sized C in comparison with WSOC,EOC,and macro- and microaggregate C.The results suggested that alpine meadow soils containing higher SOC exhibited high soil aggregation and aggregate stability.Mean annual precipitation should be the main climate factor controlling the spatial patterns of SOC,soil aggregation,and aggregate stability in this region.The resistant and stable C fractions rather than labile C fractions are the major determinant of SOC stocks and aggregate stability.