This paper studies the relationship between two principal tools for the analysis of network traffic, namely, effective bandwidth and network calculus. It is shown that a general formulation of effective bandwidth can ...This paper studies the relationship between two principal tools for the analysis of network traffic, namely, effective bandwidth and network calculus. It is shown that a general formulation of effective bandwidth can be expressed within the framework of a probabilistic version of the network calculus, where both arrivals and service are specified in terms of probabilistic bounds. Aggregate scheduling with statistical service assurances based on statistical network calculus is presented by strong effective envelope function, instead of commonly used effective envelope to obtain bounds on the amount of traffic on a link, the proposed scheme can overcome the overestimation of the number of admitted flows, which makes it superior to the previous scheme especially when implementing call admission control.展开更多
In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectr...In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectrum aggregation are not optimal or suitable for CR based heterogeneous networks(Het Nets). Consequently, the authors propose a novel resource scheduling scheme for spectrum aggregation in CR based Het Nets, termed as cognitive radio based resource scheduling(CR-RS) scheme. CR-RS has a three-level structure. Under a dynamic traffic model, an equivalent throughput of the CCs based on the knowledge of primary users(PUs) is given. On this basis, the CR users data transmission time of each CC is equal in CR-RS. The simulation results show that CR-RS has the better performance than the current resource scheduling schemes in the CR based Het Nets. Meanwhile, CR-RS is also effective in other spectrum aggregation systems which are not CR based HetNets.展开更多
The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility...The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility and efficiency of the traffic flow management, SDN based traffic engineering increases network utilization and improves Quality of Service(QoS). In this paper, an SDN based traffic scheduling algorithm called CATS is proposed to detect and control congestions in real time. In particular, a new concept of aggregated elephant flow is presented. And then a traffic scheduling optimization model is formulated with the goal of minimizing the variance of link utilization and improving QoS. We develop a chaos genetic algorithm to solve this NP-hard problem. At the end of this paper, we use Mininet, Floodlight and video traces to simulate the SDN enabled video networking. We simulate both the case of live video streaming in the wide area backbone network and the case of video file transferring among data centers. Simulation results show that the proposed algorithm CATS effectively eliminates network congestions in subsecond. In consequence, CATS improves the QoS with lower packet loss rate and balanced link utilization.展开更多
文摘This paper studies the relationship between two principal tools for the analysis of network traffic, namely, effective bandwidth and network calculus. It is shown that a general formulation of effective bandwidth can be expressed within the framework of a probabilistic version of the network calculus, where both arrivals and service are specified in terms of probabilistic bounds. Aggregate scheduling with statistical service assurances based on statistical network calculus is presented by strong effective envelope function, instead of commonly used effective envelope to obtain bounds on the amount of traffic on a link, the proposed scheme can overcome the overestimation of the number of admitted flows, which makes it superior to the previous scheme especially when implementing call admission control.
基金supported by Major National Science and Technology Project(2014ZX03004003-005)Municipal Exceptional Academic Leaders Foundation (2014RFXXJ002)China Postdoctoral Science Foundation (2014M561347)
文摘In spectrum aggregation(SA), two or more component carriers(CCs) of different bandwidths in different bands can be aggregated to support wider transmission bandwidth. The current resource scheduling schemes for spectrum aggregation are not optimal or suitable for CR based heterogeneous networks(Het Nets). Consequently, the authors propose a novel resource scheduling scheme for spectrum aggregation in CR based Het Nets, termed as cognitive radio based resource scheduling(CR-RS) scheme. CR-RS has a three-level structure. Under a dynamic traffic model, an equivalent throughput of the CCs based on the knowledge of primary users(PUs) is given. On this basis, the CR users data transmission time of each CC is equal in CR-RS. The simulation results show that CR-RS has the better performance than the current resource scheduling schemes in the CR based Het Nets. Meanwhile, CR-RS is also effective in other spectrum aggregation systems which are not CR based HetNets.
基金partly supported by NSFC under grant No.61371191 and No.61472389
文摘The Software Defined Networking(SDN) paradigm separates the control plane from the packet forwarding plane, and provides applications with a centralized view of the distributed network state. Thanks to the flexibility and efficiency of the traffic flow management, SDN based traffic engineering increases network utilization and improves Quality of Service(QoS). In this paper, an SDN based traffic scheduling algorithm called CATS is proposed to detect and control congestions in real time. In particular, a new concept of aggregated elephant flow is presented. And then a traffic scheduling optimization model is formulated with the goal of minimizing the variance of link utilization and improving QoS. We develop a chaos genetic algorithm to solve this NP-hard problem. At the end of this paper, we use Mininet, Floodlight and video traces to simulate the SDN enabled video networking. We simulate both the case of live video streaming in the wide area backbone network and the case of video file transferring among data centers. Simulation results show that the proposed algorithm CATS effectively eliminates network congestions in subsecond. In consequence, CATS improves the QoS with lower packet loss rate and balanced link utilization.