Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover cr...Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover crop,and nitrogen(N)fertilization on SOC physical and molecular fractions and water-stable aggregate stability were evaluated by characterizing soils of the world's oldest,century-long(>120 years)continuous cotton experiment located in the southern USA.Field treatments included continuous cotton with no winter legume and no mineral N fertilizer(control,CK),continuous cotton with winter legume(CWL),cotton-corn rotation with winter legume(CCWL),cotton-corn rotation with winter legume and mineral N fertilizer(CCWLN),and continuous cotton with mineral N fertilizer(CN).Total organic C(TOC),total nitrogen(TN),acid-hydrolysis C(AHC),and water-extractable organic C(WEOC)in both bulk soils and different aggregate fractions were determined.Soil organic matter(SOM)composition was characterized using pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS).Results showed that CCWL and CCWLN increased bulk soil TOC,AHC,and TN by 150%–165%,300%–315%,and 198%–223%,respectively,as well as aggregate-associated C by 180%–246%over CK.The CWL and CN treatments also increased TOC,AHC,and TN compared to CK but to a lesser degree.The CCWL treatment increased macroaggregates(250–2000μm)by 92%followed by CCWLN by 46%,whereas CWL and CN had limited effects in increasing macroaggregates(by 1%–7%)compared to CK.Moreover,SOM showed more diversified polysaccharide-derived compounds,aliphatic compounds,aromatic compounds,lignin,and phenols in CCWL and CCWLN followed by CWL,CN,and CK.Across different field treatments,aggregate stability indices,mean weight diameter(MWD)and geometric mean diameter(GMD),were positively related to TOC and TN(R2=0.57–0.65),and N-containing compounds and phenols(R^(2)=0.71–0.89),as well as polysaccharide-derived and aliphatic compounds(R^(2)=0.53–0.71).It was concluded that the diversified inputs of SOM composition brought by synergistic interactions between corn rotation and winter legume inclusion were mainly responsible for the observed TOC accumulation and aggregate formation and stability in these subtropical cotton production systems.展开更多
Exploring alternative aggregates or recycled aggregates to substitute traditional concrete aggregates,particularly sand aggregates,which are becoming more limited and must comply with environmental protection standard...Exploring alternative aggregates or recycled aggregates to substitute traditional concrete aggregates,particularly sand aggregates,which are becoming more limited and must comply with environmental protection standards,is essential.Research has explored various alternative materials to sand in concrete,including concrete from demolished buildings,and broken glass from projects,among others.Investigating the use of recycled broken glass to substitute sand aggregates and implementing this research in compression columns is crucial.This paper examines the compressive behavior of reinforced concrete columns that utilize recycled glass particles as a substitute for sand in concrete.The research findings establish the relationships:load and vertical displacement,load and deformation at the column head,mid-column,and column base;the formation and propagation of cracks in the column,while considering factors such as the percentage of recycled glass,the arrangement of stirrups,and the amount of load-bearing steel influencing the performance of square reinforced concrete columns under compression.The feasibility of using recycled glass as a substitute for sand in column structures subjected to compression has been demonstrated,with the ideal replacement content for sand aggregate in reinforced concrete columns in this study ranging from 0%to 10%.The column’s load-bearing ability dropped from 250 kN to 150 kN when 100%recycled glass was used instead of sand.This is a 40%drop,and cracks started to show up sooner.The research will support recycling broken glass instead of using sand in building,improving the environment and reducing natural sand use.展开更多
Soil aggregate plays a critical role in the sequestration of soil organic carbon(SOC)on the Qinghai-Tibetan Plateau(QTP).However,the impact of plateau pika(Ochotona curzoniae)on these processes remains uncertain.In th...Soil aggregate plays a critical role in the sequestration of soil organic carbon(SOC)on the Qinghai-Tibetan Plateau(QTP).However,the impact of plateau pika(Ochotona curzoniae)on these processes remains uncertain.In this study,we examined both control and pika disturbed alpine grasslands across various degradation levels,including undegraded(UDM),lightly(LDM),moderately(MDM)and severely(SDM)degraded sites.Through analyzing variations in aggregate size distribution,stability,aggregate associated SOC(ASOC)and bulk SOC(BSOC)concentration,we investigated the influence of plateau pika disturbance on SOC,and compared these effects across varying degradation levels.The results indicate that:(i)pika disturbance decreases soil water content(SWC)by 26.3%and 22.2%in LDM and SDM at the surface soil layer,while increasing SWC by 34.1%and 30.4%in LDM and MDM at the subsurface soil layer.It significantly reduces bulk density(BD)across all soil depths and grassland types,with most significant effect in LDM;(ii)Plateau pika disturbance increases the macroaggregate proportion in both drysieved aggregate(DSA)and water-stable aggregate(WSA),particularly in LDM.It enhances mean weight diameter(MWD)and geometric mean diameter(GMD)for both DSA and WSA,especially in MDM;(iii)Pika disturbance mitigates the negative effect of soil properties on aggregate stability,particularly in LDM and MDM,thereby enhancing the positive effect of aggregate stability on ASOC and improving BSOC content,especially in LDM.These findings provide novel insights into the effects of plateau pika disturbance on SOC dynamics in alpine grasslands.展开更多
The accumulation of soil organic carbon(SOC)and total nitrogen(TN)is easily accomplished by returning crop straw,which strongly affects the formation and pore structure of aggregates,especially in black soil.We return...The accumulation of soil organic carbon(SOC)and total nitrogen(TN)is easily accomplished by returning crop straw,which strongly affects the formation and pore structure of aggregates,especially in black soil.We returned maize straw at different rates(6,000,9,000,12,000 and 15,000 kg ha^(-1))for nine years to investigate its influence on the SOC and TN contents in the SOC fractions of aggregates by combining size and density fractionation.Their subsequent influences on pore morphology and size distribution characteristics were examined using X-ray microcomputed tomography scanning(μCT).The results showed that returning straw significantly increased the contents of C and N in the SOC fractions of aggregates,especially at the return rates of 12,000 and 15,000 kg ha^(-1),which in turn promoted aggregate formation and stability,and ultimately amended pore structure.The pore size>100μm,porosity(>2μm),and morphological characteristics(anisotropy,circularity,connectivity and fractal dimension)significantly increased,but the total number of pores significantly decreased(P<0.05).Our results indicated that the amendment of the pore morphology and size distribution of soil aggregates was primarily controlled by the higher contents of C and N in the density fractions of aggregates,rather than in the aggregate sizes.Furthermore,this pore network reconfiguration favored the storage of C and N simultaneously.The findings of this study offer valuable new insights into the relationships between C and N storage and the pore characteristics in soil aggregates under straw return.展开更多
This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging...This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging at the charging station level,estimating its physical dispatchable capability,determining its economic dispatchable capability under economic incentives,modeling its participation in the grid,and investigating the effects of different scenarios and EV penetration on the aggregated load dispatch and dispatchable capability.The results indicate that using economic dispatchable capability reduces charging prices by 9.7%compared to physical dispatchable capability and 9.3%compared to disorderly charging.Additionally,the peak-to-valley difference is reduced by 64.6%when applying economic dispatchable capability with 20%EV penetration and residential base load,compared to disorderly charging.展开更多
Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may ...Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates.展开更多
Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic ...Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.展开更多
In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression condit...In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression conditions,The RAC of OMRA(0%,5%,10%,and 15%)and BRA(0%,3%,6%,9%,12%,and 15%)were studied.The experimental results show that,under uniaxial compression,the interfacial relationships of RAC containing OMRA and BRA between different materials are more complex,and the failure mechanism is also more complex.The content of OMRA and BRA had significant influence on the deformation behavior of RAC.When the content of OMRA and BRA is high,it is difficult for existing formulas and models to accurately represent the actual value.In this study,the influence of OMRA and BRA content is taken into account,and the existing formulas for calculating concrete deformation are modified,so that these formulas can more accurately calculate the elastic modulus,peak strain and ultimate strain of recycled concrete.The stress-strain formula of Guo concrete fits the stress-strain curve of concrete very well.We modified the formula on the basis of Guo formula to make the formula more suitable for the stress-strain curve of recycled concrete containing old mortar and brick,and the theoretical model proposed has better fitting accuracy.The study provides a valuable reference for nonlinear analysis of recycled aggregate concrete structures under different proportions of OMRA and BRA.展开更多
To accurately identify the factors affecting the formation of stable aggregates in bauxite residue during the soil formation process,the comprehensive effects of a combined chemical-biological amelioration strategy in...To accurately identify the factors affecting the formation of stable aggregates in bauxite residue during the soil formation process,the comprehensive effects of a combined chemical-biological amelioration strategy including solid wastes and a functional microorganism on aggregate size distribution and its stability in bauxite residue were investigated during a 365-d simulation experiment.The results showed that the combined amelioration effectively reduced the saline alkalinity of bauxite residue,and markedly changed the contents of aggregate-associated chemical binding agents.Desulfurization gypsum and maize straw-Penicillium oxalicum(P.oxalicum)differentiated the formation of aggregates within different sizes.Maize straw-P.oxalicum stimulated the formation of water-stable macroaggregates with more durable erosion resistance by the wet-sieving and laser dynamic diffraction analysis.The Pearson correlation analysis showed that exchangeable polyvalent metal ions,pyrophosphate extractable Fe oxide,and organic carbon exhibited positive correlations with aggregate stability during the 365-d incubation.The findings in this study may provide data support and engineering practical reference for ecological restoration in the disposal areas.展开更多
oil aggregates profoundly impact soil sustainability and crop productivity, and they are influenced by complexinteractions between minerals and organics. This study aimed to elucidate the alterations in mineralogy and...oil aggregates profoundly impact soil sustainability and crop productivity, and they are influenced by complexinteractions between minerals and organics. This study aimed to elucidate the alterations in mineralogy and soilorganic carbon(SOC) following long-term green manure incorporation and the effect on soil aggregates. Based on 5-and 36-year field experiments, surface soil samples(0–20 cm) were collected from Alfisol and Ferrisol soilssubjected to rice–rice–winter fallow(CK) and rice–rice–Chinese milk vetch(MV) treatments to investigate aggregatestability, mineralogy, SOC composition, and soil microstructural characteristics. The results showed that high clay-content Ferrisol exhibited greater aggregate stability than low clay-content Alfisol. The phyllosilicates in Alfisolprimarily comprised illite and vermiculite, whereas those in Ferrisol with high-content free-form Fe oxides(Fed) weredominated by kaolinite. Additionally, the clay fraction in Ferrisol contained more aromatic-C than the clay fraction inAlfisol. The 36-year MV incorporation significantly increased the Ferrisol macroaggregate stability(9.57–13.37%),and it also facilitated the transformation of vermiculite into kaolinite and significantly increased the clay, Fed, and aromatic-C contents in Ferrisol. Backscattered electron(BSE)-scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS) revealed a compact aggregate structure in Ferrisol with co-localization of Feoxides and kaolinite. Moreover, the partial least path model(PLS-PM) revealed that clay content directly improvedmacroaggregate stability, and that kaolinite and Fed positively and directly affected clay or indirectly modulated clay formation by increasing the aromatic-C levels. Overall, long-term MV incorporation promotes clay aggregation by affecting mineral transformation to produce more kaolinite and Fe oxides and retain aromatic-C, and it ultimately improves aggregate stability.展开更多
Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon r...Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon reservoirs,playing a critical role in mitigating climate change.However,the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood.Here,an in-situ field experiment manipulating snow conditions(i.e.,snow removal and snow cover)was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates(>2,0.25-2,and<0.25 mm)in a peatland of Northeast China.The results showed that snow removal significantly increased the SOC content and stability within aggregates.Compared to the soils with snow cover,snow removal resulted in decreased soil average temperatures in the topsoil(0-30 cm depth)and subsoil(30-60 cm depth)(by 1.48 and 1.34°C,respectively)and increased freeze-thaw cycles(by 11 cycles),consequently decreasing the stability of aggregates in the topsoil and subsoil(by 23.68%and 6.85%,respectively).Furthermore,more recalcitrant carbon and enhanced SOC stability were present in microaggregates(<0.25 mm)at two soil depths.Moreover,reductions in bacterial diversity and network stability were observed in response to snow removal.Structural equation modeling analysis demonstrated that snow removal indirectly promoted(P<0.01)SOC stability by regulating carbon to nitrogen(C:N)ratio within aggregates.Overall,our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.展开更多
Soil aggregate stability is a fundamental measure for evaluating soil structure.While numerous tests exist for assessing soil aggregate stability,ultrasonic agitation(UA)is widely recognized for its effectiveness.None...Soil aggregate stability is a fundamental measure for evaluating soil structure.While numerous tests exist for assessing soil aggregate stability,ultrasonic agitation(UA)is widely recognized for its effectiveness.Nonetheless,a significant limitation of UA is the lack of standardized methodologies and stability assessment criteria,resulting in inconsistency and incomparability across studies.Several critical factors influence the assessment of soil aggregate stability,including sample preparation(e.g.,drying,sieving,and settling duration),initial and final aggregate size classes,the definition of final energy form and its calculation,variations in instrumentation and laboratory procedures,and the absence of standardized criteria.Unlike some stability methods,UA produces a broad range of results,with dispersion energy varying significantly(0.5–13440 J g^(-1))across different soil and aggregate types due to divergent procedural settings.These settings encompass factors such as initial power and amplitude,temperature fluctuation,soil/water ratio,probe specification(diameter and insertion depth),and the choice of liquid used during the process.Furthermore,UA faces challenges related to limited reproducibility,raising doubts about its status as a standard stability assessment method.To address these issues,standardization through predefined procedures and stability criteria has the potential to transform UA into a precise and widely accepted method for both qualitative and quantitative assessments of soil stability.In this comprehensive review,we outline the challenges in standardizing UA,elucidate the factors contributing to dispersion energy variation,and offer practical recommendations to establish standardized protocols for UA in soil aggregate stability assessments.展开更多
The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and or...The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and organic matter composition under different land uses affect microbial community structure remain unclear.Here,land-use types in the agro-pastoral ecotone,including shrubland(BF),artificial grassland(ArG),abandoned grassland(AbG),and maize farmland(MA),were chosen to explore the response relationships between soil microbial communities and the aggregates and dissolved organic matter(DOM)composition.The results showed that compared to MA,the macroaggregates in BF,AbG,and ArG were increased by 123.0,92.79,and 63.71%,respectively,while MA soil had the greatest abundance of<100μm particles.The higher aromatic carbon with high aromaticity and molecular weight in BF soil DOM contributed to its highest mineral-associated organic carbon level(12.61 g kg^(-1)),while MA soil organic carbon had highly efficient decomposition due to its high content of aliphatic and carboxy carbon,so it is prone to loss from the active carbon pools.The transition in land use from shrubland to grassland and farmland has facilitated the conversion of stable aromatic carbon to unstable carboxy carbon.The taxonomic analysis revealed that soil bacterial and fungal communities in the four land uses were dominated by Proteobacteria,Actinobacteriota,Chloroflexi,and Ascomycota.More taxonomic groups from phylum to family were enriched in BF soil.The DOM components and organic carbon are crucial variables shaping the composition of soil bacterial communities,jointly explaining 61.66% of the variance,while aggregates are important variables driving the composition of fungal communities,with an explanation rate of 20.49%.Our results suggest that DOM components and aggregates impact the soil microbial structure;and the transition in land use from agricultural land to grassland and shrubland in the agro-pastoral ecotone enhances aggregate stability,carbon sequestration potential,and microbial diversity.展开更多
In order to realize the resource utilization of construction waste,industrial waste slag and silt,this paper used Portland cement,mineral waste residue and phosphogypsum composite to make cementing material(CMPS)with ...In order to realize the resource utilization of construction waste,industrial waste slag and silt,this paper used Portland cement,mineral waste residue and phosphogypsum composite to make cementing material(CMPS)with construction waste recycled aggregate to solidify silt.The mechanical properties of the solidified silt were analyzed by laboratory solidification test and microscopic examination respectively.In order to clarify the mineral composition,microscopic morphology and pore characteristics of the regenerated aggregate and CMPS solidified silt,X-ray diffractometer(XRD),scanning electron microscope(SEM),and nitrogen adsorption pore analyzer(NA)were used to further explore and analyze the regenerated aggregate and CMPS solidified silt effectively,and further reveal the internal mechanism of the regenerated aggregate and CMPS solidified silt effectively.The experimental results show that the strength of Portland cement-mineral waste residue phosphogypsum terpolymer system curing agent increases by 107.34%than that of single Port-land cement solidified silt at 56 d,and the strength of CMPS solidified silt increases by 25.68%under the action of recycled aggregate framework.The curing age and moisture content of the silt have a high correlation with the strength of the solidified silt.Therefore,the influence law of the above two influencing factors on its mechanical properties is further explored and the strength prediction is made.The microscopic test results show that,based on the hydration of Port-land cement and the pozzolans reaction of mineral waste residue,the solidified system has produced calcium silicate hydrate gel and ettringite crystals with gelatinous properties,which helps to fill the pores and form a denser structure.展开更多
Utilizing coarse aggregates containing mining waste rock for backfilling addresses the strength requirements and reduces the expenses associated with binder and solid waste treatment.However,this type of material is p...Utilizing coarse aggregates containing mining waste rock for backfilling addresses the strength requirements and reduces the expenses associated with binder and solid waste treatment.However,this type of material is prone to aggregate segregation,which can lead to uneven deformation and damage to the backfill.We employed an image-segmentation method that incorporated machine learning to analyze the distribution information of the aggregates on the splitting surface of the test blocks.The results revealed a nonlinear rela-tionship between aggregate segregation and variations in solid concentration(SC)and cement/aggregate ratio(C/A).The SC of 81wt%-82wt%and C/A of 10.00wt%-12.50wt%reflect surges in fluid dynamics,friction effects,and shifts in their dominance.A uniaxial compression experiment,supplemented with additional strain gauges and digital image correlation technology,enabled us to analyze the mechanical properties and failure mechanism under the influence of aggregate segregation.It was found that the uniaxial compressive strength,ranging from 1.75 MPa to 12.65 MPa,is linearly related to both the SC and C/A,and exhibits no significant relation-ship with the degree of segregation in numerical terms.However,the degree of segregation affects the development trend of the elastic modulus to a certain extent,and a standard deviation of the aggregate area ratio of less than 1.63 clearly indicates a higher elastic modu-lus.In the pouring direction,the top area of the test block tended to form a macroscopic fracture surface earlier.By contrast,the compressibility of the bottom area was greater than that of the top area.The intensification of aggregate segregation widened the differences in the deformation and failure characteristics between the different areas.For samples with different uniformities,significant differences in local deformation ranging from 515.00μεto 1693.70μεwere observed during the stable deformation stage.The extreme unevenness of the aggregate leads to rapid crack penetration in the sample,causing macroscopic tensile failure and resulting in premature structural failure.展开更多
Crop straw incorporation is widely recommended to maintain crop yields and improve soil organic carbon(SOC)stocks as well as soil quality.However,the long-term effects of different straw incorporation practices on the...Crop straw incorporation is widely recommended to maintain crop yields and improve soil organic carbon(SOC)stocks as well as soil quality.However,the long-term effects of different straw incorporation practices on the SOC stock remain uncertain.In this study,a long-term experiment(2007 to 2018)with four treatments(MW_0:maize–wheat rotation with no straw incorporation,MW_(50):maize–wheat rotation with 50%chopped straw incorporation,MW_(b50):maize–wheat rotation with 50%in situ burned harvested straw,and MF_(50):maize–fallow rotation with 50%harvested maize straw incorporation)was set up to evaluate the response of the SOC stock to different straw incorporation methods.The results showed that the SOC stock significantly increased by 32.4,12.2 and 17.4%under the MW_(50),MW_(b50)and MF_(50)treatments,respectively,after continuous straw incorporation over a decade,while the SOC stock under MW0 was significantly reduced by 22.9%after the 11 year long-term experiment.Compared to MW_0,straw incorporation significantly increased organic carbon input,and improved the soil aggregate structure and the ratio of dissolved organic carbon(DOC)to particulate organic carbon(POC),but it did not significantly stimulate soil heterotrophic respiration,resulting in the increased SOC accumulation rate and SOC stocks of bulk soil.The increased ratio of DOC to microbial biomass carbon(MBC)enhanced the relative abundances of Acidobacteria and Proteobacteria but inhibited Bacteroidetes and Chloroflexi,and the bacterial relative abundances were the main reasons for the non-significant increase or even decrease in soil heterotrophic respiration with straw incorporation.The SOC stock would reach an equilibrium based on the results of Rothamsted carbon(RothC)model simulations,with a long-term equilibrium value of 18.85 Mg ha^(–1)under MW_(50).Overall,the results of the long-term field experiment(2007–2018)and RothC model simulation suggested that maize–wheat rotation with 50%chopped straw incorporation delivered the largest benefits for the SOC stock in calcareous soils of subtropical mountain landscapes over the long term.展开更多
The effects of various fly ash(FA)contents on the durability and mechanical properties of recycled fine aggregate high ductility cementitious composites(RFA-HDCC)prepared with recycled fine aggregates(RFA)to fully rep...The effects of various fly ash(FA)contents on the durability and mechanical properties of recycled fine aggregate high ductility cementitious composites(RFA-HDCC)prepared with recycled fine aggregates(RFA)to fully replace natural fine aggregates was investigated.The results indicated that a 50% FA content significantly increased the compressive strength of RFA-HDCC by 13.93%.However,a?further increase in FA content led to a drastic decrease.The increased fly ash content substantially reduced the flexural and tensile strength;however,it markedly increased the matrix strain capacity,resulting in a 53.73% increase in the peak strain when FA was raised to 70%.Regarding durability,the increase in FA content negatively affected the chloride ion permeability and carbonation resistance.However,the increase in FA content initially improved the frost resistance of RFA-HDCC,peaking at 50% FA and deteriorating at 60% and 70% FA content.展开更多
To examine the influences of waste polypropylene fiber(PPF)on the strength and internal pore structure of recycled aggregate concrete incorporating iron ore tailings,both the cubic compressive strength and axial compr...To examine the influences of waste polypropylene fiber(PPF)on the strength and internal pore structure of recycled aggregate concrete incorporating iron ore tailings,both the cubic compressive strength and axial compressive strength of the concrete were measured.Additionally,the microstructure was analyzed using scanning electron microscopy.The evolution of pore structure parameters,including pore size distribution,pore type distribution,and nuclear magnetic resonance spectral area in the concrete,was investigated through nuclear magnetic resonance(NMR)analysis.A model correlating the concrete's pore structure with its macroscopic performance was subsequently developed based on fractal theory.The results demonstrate that an appropriate amount of PPF created a bridging effect that decelerated the progression of macro cracks,enhanced the ductility of the concrete's failure mode,and increased both cubic compressive strength and axial compressive strength,with the most effective dosage being approximately 0.6%.An appropriate amount of PPF(ranging from 0.3%to 0.6%)facilitated the formation of harmless pores and shifted the pore size distribution towards medium and small sizes.Specifically,a fiber content of 0.6%resulted in the most significant reduction in the T2 spectral area.Furthermore,the pore structure of concrete exhibits distinct fractal characteristics.As the PPF content increased,the fractal dimension initially rose and then declined,demonstrating a strong correlation with the mechanical properties.展开更多
The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRE...The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRESP),is an important factor affecting the homogeneity.This study investigated the influence of the size combination and MRESP on the distribution homogeneity of particles in aggregate blend using discrete element method(DEM).An indicator quantifying the distribution homogeneity was established according to the coefficient of variation(CV)for particle number.Two-size,three-size,and four-size aggregate blends with various compositions were designed.Laboratory tests show the DEM simulation is feasible.The particle distribution homogeneity in various blends was analyzed.The results showed the distribution homogeneity of each size particles in a blend is closely related to their mass fraction.The higher the mass fraction of the particles,the more homogeneous the distribution of them.The MRESP has no significant influence on the homogeneity of the blend composed of only coarse aggregates.However,the homogeneity of the blend composed of coarse and fine aggregates improves gradually with the increase of the mass fraction of fine aggregates.The smaller the maximum particle size in a blend,the better the homogeneity.It is suggested that the mass fraction of fine aggregates should be between 33%and 50%for achieving good homogeneity of aggregate blends.The research results can provide a reference for gradation design of asphalt mixture.展开更多
This study meticulously examined the compaction and sulfate erosion resistance of cement-stabilized materials incorporating recycled brick-concrete aggregate (RBCA).To explore the effects of recycled brick aggregate (...This study meticulously examined the compaction and sulfate erosion resistance of cement-stabilized materials incorporating recycled brick-concrete aggregate (RBCA).To explore the effects of recycled brick aggregate (RBA) with varying particle sizes,three size ranges (4.75-9.5 mm,9.5-19 mm and 19-31.5 mm) were used to replace 20% of the corresponding particle sizes of recycled concrete aggregate (RCA) in cement-stabilized materials.The findings indicated that cement-stabilized materials utilizing RBA and RCA exhibited a lower maximum dry density and a higher optimum moisture content than natural aggregate cement-stabilized materials.The use of RBA with a particle size of 4.75-9.5 mm resulted in a lower maximum dry density and a higher optimum moisture content than 9.5-19 mm and 19-31.5 mm.Furthermore,the 7-day unconfined compressive strength of RBCA cement-stabilized materials with RBA of 4.75-9.5 mm demonstrated superior results compared to those with larger particle sizes.Regarding sulfate erosion resistance,the mass loss and unconfined compressive strength loss of the RBCA cement-stabilized materials at 56 days were highest for the 19-31.5 mm particle size of the RBA.In terms of compaction and sulfate resistance,it is recommended to use 4.75-19 mm RBA in RBCA cement-stabilized materials.展开更多
基金supported by the United States Department of Agriculture-Natural Resources Conservation Service(No.NR217217XXXXG004)the United States Department of Agriculture National Institute of Food and Agriculture Hatch Project(No.7003969)supported,in part,by a scholarship from China Scholarship Council(No.201206300183)。
文摘Understanding long-term effects of agricultural management on soil organic carbon(C)(SOC)dynamics and aggregate stability is essential for crop production sustainability.In this study,effects of crop rotation,cover crop,and nitrogen(N)fertilization on SOC physical and molecular fractions and water-stable aggregate stability were evaluated by characterizing soils of the world's oldest,century-long(>120 years)continuous cotton experiment located in the southern USA.Field treatments included continuous cotton with no winter legume and no mineral N fertilizer(control,CK),continuous cotton with winter legume(CWL),cotton-corn rotation with winter legume(CCWL),cotton-corn rotation with winter legume and mineral N fertilizer(CCWLN),and continuous cotton with mineral N fertilizer(CN).Total organic C(TOC),total nitrogen(TN),acid-hydrolysis C(AHC),and water-extractable organic C(WEOC)in both bulk soils and different aggregate fractions were determined.Soil organic matter(SOM)composition was characterized using pyrolysis-gas chromatography/mass spectrometry(Py-GC/MS).Results showed that CCWL and CCWLN increased bulk soil TOC,AHC,and TN by 150%–165%,300%–315%,and 198%–223%,respectively,as well as aggregate-associated C by 180%–246%over CK.The CWL and CN treatments also increased TOC,AHC,and TN compared to CK but to a lesser degree.The CCWL treatment increased macroaggregates(250–2000μm)by 92%followed by CCWLN by 46%,whereas CWL and CN had limited effects in increasing macroaggregates(by 1%–7%)compared to CK.Moreover,SOM showed more diversified polysaccharide-derived compounds,aliphatic compounds,aromatic compounds,lignin,and phenols in CCWL and CCWLN followed by CWL,CN,and CK.Across different field treatments,aggregate stability indices,mean weight diameter(MWD)and geometric mean diameter(GMD),were positively related to TOC and TN(R2=0.57–0.65),and N-containing compounds and phenols(R^(2)=0.71–0.89),as well as polysaccharide-derived and aliphatic compounds(R^(2)=0.53–0.71).It was concluded that the diversified inputs of SOM composition brought by synergistic interactions between corn rotation and winter legume inclusion were mainly responsible for the observed TOC accumulation and aggregate formation and stability in these subtropical cotton production systems.
文摘Exploring alternative aggregates or recycled aggregates to substitute traditional concrete aggregates,particularly sand aggregates,which are becoming more limited and must comply with environmental protection standards,is essential.Research has explored various alternative materials to sand in concrete,including concrete from demolished buildings,and broken glass from projects,among others.Investigating the use of recycled broken glass to substitute sand aggregates and implementing this research in compression columns is crucial.This paper examines the compressive behavior of reinforced concrete columns that utilize recycled glass particles as a substitute for sand in concrete.The research findings establish the relationships:load and vertical displacement,load and deformation at the column head,mid-column,and column base;the formation and propagation of cracks in the column,while considering factors such as the percentage of recycled glass,the arrangement of stirrups,and the amount of load-bearing steel influencing the performance of square reinforced concrete columns under compression.The feasibility of using recycled glass as a substitute for sand in column structures subjected to compression has been demonstrated,with the ideal replacement content for sand aggregate in reinforced concrete columns in this study ranging from 0%to 10%.The column’s load-bearing ability dropped from 250 kN to 150 kN when 100%recycled glass was used instead of sand.This is a 40%drop,and cracks started to show up sooner.The research will support recycling broken glass instead of using sand in building,improving the environment and reducing natural sand use.
基金supported by the National Natural Science Foundation of China(41672342)Natural Science Foundation of Sichuan Province(2024NSFSC0101).
文摘Soil aggregate plays a critical role in the sequestration of soil organic carbon(SOC)on the Qinghai-Tibetan Plateau(QTP).However,the impact of plateau pika(Ochotona curzoniae)on these processes remains uncertain.In this study,we examined both control and pika disturbed alpine grasslands across various degradation levels,including undegraded(UDM),lightly(LDM),moderately(MDM)and severely(SDM)degraded sites.Through analyzing variations in aggregate size distribution,stability,aggregate associated SOC(ASOC)and bulk SOC(BSOC)concentration,we investigated the influence of plateau pika disturbance on SOC,and compared these effects across varying degradation levels.The results indicate that:(i)pika disturbance decreases soil water content(SWC)by 26.3%and 22.2%in LDM and SDM at the surface soil layer,while increasing SWC by 34.1%and 30.4%in LDM and MDM at the subsurface soil layer.It significantly reduces bulk density(BD)across all soil depths and grassland types,with most significant effect in LDM;(ii)Plateau pika disturbance increases the macroaggregate proportion in both drysieved aggregate(DSA)and water-stable aggregate(WSA),particularly in LDM.It enhances mean weight diameter(MWD)and geometric mean diameter(GMD)for both DSA and WSA,especially in MDM;(iii)Pika disturbance mitigates the negative effect of soil properties on aggregate stability,particularly in LDM and MDM,thereby enhancing the positive effect of aggregate stability on ASOC and improving BSOC content,especially in LDM.These findings provide novel insights into the effects of plateau pika disturbance on SOC dynamics in alpine grasslands.
基金the Chinese Academy of Sciences for their financial support and research facilitiesfunded by the National Key Research and Development Program of China(2022YFD1500100)+1 种基金the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA28070100)the China Agriculture Research System of MOF and MARA(CARS04)。
文摘The accumulation of soil organic carbon(SOC)and total nitrogen(TN)is easily accomplished by returning crop straw,which strongly affects the formation and pore structure of aggregates,especially in black soil.We returned maize straw at different rates(6,000,9,000,12,000 and 15,000 kg ha^(-1))for nine years to investigate its influence on the SOC and TN contents in the SOC fractions of aggregates by combining size and density fractionation.Their subsequent influences on pore morphology and size distribution characteristics were examined using X-ray microcomputed tomography scanning(μCT).The results showed that returning straw significantly increased the contents of C and N in the SOC fractions of aggregates,especially at the return rates of 12,000 and 15,000 kg ha^(-1),which in turn promoted aggregate formation and stability,and ultimately amended pore structure.The pore size>100μm,porosity(>2μm),and morphological characteristics(anisotropy,circularity,connectivity and fractal dimension)significantly increased,but the total number of pores significantly decreased(P<0.05).Our results indicated that the amendment of the pore morphology and size distribution of soil aggregates was primarily controlled by the higher contents of C and N in the density fractions of aggregates,rather than in the aggregate sizes.Furthermore,this pore network reconfiguration favored the storage of C and N simultaneously.The findings of this study offer valuable new insights into the relationships between C and N storage and the pore characteristics in soil aggregates under straw return.
基金State Grid Henan Power Company Science and Technology Project‘Key Technology and Demonstration Application of Multi-Domain Electric Vehicle Aggregated Charging Load Dispatch’(5217L0240003).
文摘This paper introduces a method for modeling the entire aggregated electric vehicle(EV)charging process and analyzing its dispatchable capabilities.The methodology involves developing a model for aggregated EV charging at the charging station level,estimating its physical dispatchable capability,determining its economic dispatchable capability under economic incentives,modeling its participation in the grid,and investigating the effects of different scenarios and EV penetration on the aggregated load dispatch and dispatchable capability.The results indicate that using economic dispatchable capability reduces charging prices by 9.7%compared to physical dispatchable capability and 9.3%compared to disorderly charging.Additionally,the peak-to-valley difference is reduced by 64.6%when applying economic dispatchable capability with 20%EV penetration and residential base load,compared to disorderly charging.
基金Project(2024JJ2073)supported by the Science Fund for Distinguished Young Scholars of Hunan Province,ChinaProjects(2023YFC3807205,2019YFC1904704)+4 种基金supported by the National Key R&D Program of ChinaProject(52178443)supported by the National Natural Science Foundation of ChinaProject(2024ZZTS0109)supported by Fundamental Research Funds for the Central Universities of Central South University,China。
文摘Permeable roads generally exhibit inferior mechanical properties and shorter service life than traditional dense-graded/impermeable roads.Furthermore,the incorporation of recycled aggregates in their construction may exacerbate these limitations.To address these issues,this study introduced a novel cement-stabilized permeable recycled aggregate material.A total of 162 beam specimens prepared with nine different levels of cement-aggregate ratio were tested to evaluate their permeability,bending load,and bending fatigue life.The experimental results indicate that increasing the content of recycled aggregates led to a reduction in both permeability and bending load.Additionally,the inclusion of recycled aggregates diminished the energy dissipation capacity of the specimens.These findings were used to establish a robust relationship between the initial damage in cement-stabilized permeable recycled aggregate material specimens and their fatigue life,and to propose a predictive model for their fatigue performance.Further,a method for assessing fatigue damage based on the evolution of fatigue-induced strain and energy dissipation was developed.The findings of this study provide valuable insights into the mechanical behavior and fatigue performance of cement-stabilized permeable recycled aggregate materials,offering guidance for the design of low-carbon-emission,permeable,and durable roadways incorporating recycled aggregates.
基金supported by the Shenyang Municipal Science and Technology Project,China(23-409-2-03)the Liaoning Provincial Department of Science and Technology Project,China(Z20230183)the Liaoning Provincial Applied Basic Research Program,China(2022JH2/101300173).
文摘Both soil organic carbon (SOC) and iron (Fe) oxide content, among other factors, drive the formation and stability of soil aggregates.However, the mechanism of these drivers in greenhouse soil fertilized with organic fertilizer is not well understood.In a 3-year field experiment, we aimed to investigate the factors which drive the stability of soil aggregates in greenhouse soil.To explore the impact of organic fertilizer on soil aggregates, we established four treatments:no fertilization (CK);inorganic fertilizer (CF);organic fertilizer (OF);and combined application of inorganic and organic fertilizers(COF).The application of organic fertilizer significantly enhanced the stability of aggregates, that is it enhanced the mean weight diameter, geometric mean diameter and aggregate content (%) of>0.25 mm aggregate fractions.OF and COF treatments increased the concentration of SOC, especially the aliphatic-C, aromatic-C and polysaccharide-C components of SOC, particularly in>0.25 mm aggregates.Organic fertilizer application significantly increased the content of free Fe(Fed), reactive Fe (Feo), and non-crystalline Fe in both bulk soil and aggregates.Furthermore, non-crystalline Fe showed a positive correlation with SOC content in both bulk soil and aggregates.Both non-crystalline Fe and SOC were significantly positively correlated with>2 mm mean weight diameter.Overall, we believe that the increase of SOC, aromatic-C, and non-crystal ine Fe concentrations in soil after the application of organic fertilizer is the reason for improving soil aggregate stability.
基金Funded by the Project of National Key Research and Development Program of China(No.2019YFC1906202)。
文摘In order to study the effects of the contents of used mortar recycled aggregate(OMRA)and brick recycled aggregate(BRA)on the deformation properties of recycled aggregate concrete(RAC),under uniaxial compression conditions,The RAC of OMRA(0%,5%,10%,and 15%)and BRA(0%,3%,6%,9%,12%,and 15%)were studied.The experimental results show that,under uniaxial compression,the interfacial relationships of RAC containing OMRA and BRA between different materials are more complex,and the failure mechanism is also more complex.The content of OMRA and BRA had significant influence on the deformation behavior of RAC.When the content of OMRA and BRA is high,it is difficult for existing formulas and models to accurately represent the actual value.In this study,the influence of OMRA and BRA content is taken into account,and the existing formulas for calculating concrete deformation are modified,so that these formulas can more accurately calculate the elastic modulus,peak strain and ultimate strain of recycled concrete.The stress-strain formula of Guo concrete fits the stress-strain curve of concrete very well.We modified the formula on the basis of Guo formula to make the formula more suitable for the stress-strain curve of recycled concrete containing old mortar and brick,and the theoretical model proposed has better fitting accuracy.The study provides a valuable reference for nonlinear analysis of recycled aggregate concrete structures under different proportions of OMRA and BRA.
基金Projects(42177391,42477437)supported by the National Natural Science Foundation of ChinaProject(2024RC3041)supported by the Science and Technology Innovation Program of Hunan Province,China+1 种基金Project(2023CXQD064)supported by the Innovation-Driven Research Programme of Central South University,ChinaProject(242102321124)supported by the Henan Provincal Science and Technology Research Project,China。
文摘To accurately identify the factors affecting the formation of stable aggregates in bauxite residue during the soil formation process,the comprehensive effects of a combined chemical-biological amelioration strategy including solid wastes and a functional microorganism on aggregate size distribution and its stability in bauxite residue were investigated during a 365-d simulation experiment.The results showed that the combined amelioration effectively reduced the saline alkalinity of bauxite residue,and markedly changed the contents of aggregate-associated chemical binding agents.Desulfurization gypsum and maize straw-Penicillium oxalicum(P.oxalicum)differentiated the formation of aggregates within different sizes.Maize straw-P.oxalicum stimulated the formation of water-stable macroaggregates with more durable erosion resistance by the wet-sieving and laser dynamic diffraction analysis.The Pearson correlation analysis showed that exchangeable polyvalent metal ions,pyrophosphate extractable Fe oxide,and organic carbon exhibited positive correlations with aggregate stability during the 365-d incubation.The findings in this study may provide data support and engineering practical reference for ecological restoration in the disposal areas.
基金supported by the National Natural Science Foundation of China (41977020)the China Agriculture Research System of MOF and MARA (CARS22)。
文摘oil aggregates profoundly impact soil sustainability and crop productivity, and they are influenced by complexinteractions between minerals and organics. This study aimed to elucidate the alterations in mineralogy and soilorganic carbon(SOC) following long-term green manure incorporation and the effect on soil aggregates. Based on 5-and 36-year field experiments, surface soil samples(0–20 cm) were collected from Alfisol and Ferrisol soilssubjected to rice–rice–winter fallow(CK) and rice–rice–Chinese milk vetch(MV) treatments to investigate aggregatestability, mineralogy, SOC composition, and soil microstructural characteristics. The results showed that high clay-content Ferrisol exhibited greater aggregate stability than low clay-content Alfisol. The phyllosilicates in Alfisolprimarily comprised illite and vermiculite, whereas those in Ferrisol with high-content free-form Fe oxides(Fed) weredominated by kaolinite. Additionally, the clay fraction in Ferrisol contained more aromatic-C than the clay fraction inAlfisol. The 36-year MV incorporation significantly increased the Ferrisol macroaggregate stability(9.57–13.37%),and it also facilitated the transformation of vermiculite into kaolinite and significantly increased the clay, Fed, and aromatic-C contents in Ferrisol. Backscattered electron(BSE)-scanning electron microscopy/energy dispersive X-ray spectroscopy(SEM/EDS) revealed a compact aggregate structure in Ferrisol with co-localization of Feoxides and kaolinite. Moreover, the partial least path model(PLS-PM) revealed that clay content directly improvedmacroaggregate stability, and that kaolinite and Fed positively and directly affected clay or indirectly modulated clay formation by increasing the aromatic-C levels. Overall, long-term MV incorporation promotes clay aggregation by affecting mineral transformation to produce more kaolinite and Fe oxides and retain aromatic-C, and it ultimately improves aggregate stability.
基金supported by the National Natural Science Foundation of China(Nos.42222102,41971136,and 42171107)the Jilin Provincial Department of Science and Technology,China(No.20230508089RC)the Professional Association of the Alliance of International Science Organizations(No.ANSO-PA-2020-14).
文摘Global climate change exerts profound effects on snow cover,with consequential impacts on microbial activities and the stability of soil organic carbon(SOC)within aggregates.Northern peatlands are significant carbon reservoirs,playing a critical role in mitigating climate change.However,the effects of snow variations on microbial-mediated SOC stability within aggregates in peatlands remain inadequately understood.Here,an in-situ field experiment manipulating snow conditions(i.e.,snow removal and snow cover)was conducted to investigate how snow variations affect soil microbial community and the associated SOC stability within soil aggregates(>2,0.25-2,and<0.25 mm)in a peatland of Northeast China.The results showed that snow removal significantly increased the SOC content and stability within aggregates.Compared to the soils with snow cover,snow removal resulted in decreased soil average temperatures in the topsoil(0-30 cm depth)and subsoil(30-60 cm depth)(by 1.48 and 1.34°C,respectively)and increased freeze-thaw cycles(by 11 cycles),consequently decreasing the stability of aggregates in the topsoil and subsoil(by 23.68%and 6.85%,respectively).Furthermore,more recalcitrant carbon and enhanced SOC stability were present in microaggregates(<0.25 mm)at two soil depths.Moreover,reductions in bacterial diversity and network stability were observed in response to snow removal.Structural equation modeling analysis demonstrated that snow removal indirectly promoted(P<0.01)SOC stability by regulating carbon to nitrogen(C:N)ratio within aggregates.Overall,our study suggested that microaggregate protection and an appropriate C:N ratio enhanced carbon sequestration in response to climate change.
基金support from the National Natural Science Foundation of China(No.42177299)the Guangdong Province Key Areas Research and Development Plan Project,China—Key Preparation Technology and Application of Green and Efficient Agricultural Input Controlled-Release Materials(No.2023B0202080002)。
文摘Soil aggregate stability is a fundamental measure for evaluating soil structure.While numerous tests exist for assessing soil aggregate stability,ultrasonic agitation(UA)is widely recognized for its effectiveness.Nonetheless,a significant limitation of UA is the lack of standardized methodologies and stability assessment criteria,resulting in inconsistency and incomparability across studies.Several critical factors influence the assessment of soil aggregate stability,including sample preparation(e.g.,drying,sieving,and settling duration),initial and final aggregate size classes,the definition of final energy form and its calculation,variations in instrumentation and laboratory procedures,and the absence of standardized criteria.Unlike some stability methods,UA produces a broad range of results,with dispersion energy varying significantly(0.5–13440 J g^(-1))across different soil and aggregate types due to divergent procedural settings.These settings encompass factors such as initial power and amplitude,temperature fluctuation,soil/water ratio,probe specification(diameter and insertion depth),and the choice of liquid used during the process.Furthermore,UA faces challenges related to limited reproducibility,raising doubts about its status as a standard stability assessment method.To address these issues,standardization through predefined procedures and stability criteria has the potential to transform UA into a precise and widely accepted method for both qualitative and quantitative assessments of soil stability.In this comprehensive review,we outline the challenges in standardizing UA,elucidate the factors contributing to dispersion energy variation,and offer practical recommendations to establish standardized protocols for UA in soil aggregate stability assessments.
基金funded by the Inner Mongolia Local Science and Technology Development Fund Projects,China(2021GG0393)。
文摘The agro-pastoral ecotone epitomizes the ecologically fragile semi-arid zone,where the soil microbiomes play a pivotal role in regulating its multifunctionality.However,whether and how changes in soil structure and organic matter composition under different land uses affect microbial community structure remain unclear.Here,land-use types in the agro-pastoral ecotone,including shrubland(BF),artificial grassland(ArG),abandoned grassland(AbG),and maize farmland(MA),were chosen to explore the response relationships between soil microbial communities and the aggregates and dissolved organic matter(DOM)composition.The results showed that compared to MA,the macroaggregates in BF,AbG,and ArG were increased by 123.0,92.79,and 63.71%,respectively,while MA soil had the greatest abundance of<100μm particles.The higher aromatic carbon with high aromaticity and molecular weight in BF soil DOM contributed to its highest mineral-associated organic carbon level(12.61 g kg^(-1)),while MA soil organic carbon had highly efficient decomposition due to its high content of aliphatic and carboxy carbon,so it is prone to loss from the active carbon pools.The transition in land use from shrubland to grassland and farmland has facilitated the conversion of stable aromatic carbon to unstable carboxy carbon.The taxonomic analysis revealed that soil bacterial and fungal communities in the four land uses were dominated by Proteobacteria,Actinobacteriota,Chloroflexi,and Ascomycota.More taxonomic groups from phylum to family were enriched in BF soil.The DOM components and organic carbon are crucial variables shaping the composition of soil bacterial communities,jointly explaining 61.66% of the variance,while aggregates are important variables driving the composition of fungal communities,with an explanation rate of 20.49%.Our results suggest that DOM components and aggregates impact the soil microbial structure;and the transition in land use from agricultural land to grassland and shrubland in the agro-pastoral ecotone enhances aggregate stability,carbon sequestration potential,and microbial diversity.
基金Funded by the Jiangsu Province Industry University Research Project(No.BY20231142)the Yangzhou Science&Technology Program(No.YZ2023061)the Zhenjiang Science&Technology Program(No.SH2022018)。
文摘In order to realize the resource utilization of construction waste,industrial waste slag and silt,this paper used Portland cement,mineral waste residue and phosphogypsum composite to make cementing material(CMPS)with construction waste recycled aggregate to solidify silt.The mechanical properties of the solidified silt were analyzed by laboratory solidification test and microscopic examination respectively.In order to clarify the mineral composition,microscopic morphology and pore characteristics of the regenerated aggregate and CMPS solidified silt,X-ray diffractometer(XRD),scanning electron microscope(SEM),and nitrogen adsorption pore analyzer(NA)were used to further explore and analyze the regenerated aggregate and CMPS solidified silt effectively,and further reveal the internal mechanism of the regenerated aggregate and CMPS solidified silt effectively.The experimental results show that the strength of Portland cement-mineral waste residue phosphogypsum terpolymer system curing agent increases by 107.34%than that of single Port-land cement solidified silt at 56 d,and the strength of CMPS solidified silt increases by 25.68%under the action of recycled aggregate framework.The curing age and moisture content of the silt have a high correlation with the strength of the solidified silt.Therefore,the influence law of the above two influencing factors on its mechanical properties is further explored and the strength prediction is made.The microscopic test results show that,based on the hydration of Port-land cement and the pozzolans reaction of mineral waste residue,the solidified system has produced calcium silicate hydrate gel and ettringite crystals with gelatinous properties,which helps to fill the pores and form a denser structure.
基金funded by the National Natural Science Foundation of China(Nos.52130404 and 52304121)the Fundamental Research Funds for the Central Universities,China(No.FRF-TP-22-112A1).
文摘Utilizing coarse aggregates containing mining waste rock for backfilling addresses the strength requirements and reduces the expenses associated with binder and solid waste treatment.However,this type of material is prone to aggregate segregation,which can lead to uneven deformation and damage to the backfill.We employed an image-segmentation method that incorporated machine learning to analyze the distribution information of the aggregates on the splitting surface of the test blocks.The results revealed a nonlinear rela-tionship between aggregate segregation and variations in solid concentration(SC)and cement/aggregate ratio(C/A).The SC of 81wt%-82wt%and C/A of 10.00wt%-12.50wt%reflect surges in fluid dynamics,friction effects,and shifts in their dominance.A uniaxial compression experiment,supplemented with additional strain gauges and digital image correlation technology,enabled us to analyze the mechanical properties and failure mechanism under the influence of aggregate segregation.It was found that the uniaxial compressive strength,ranging from 1.75 MPa to 12.65 MPa,is linearly related to both the SC and C/A,and exhibits no significant relation-ship with the degree of segregation in numerical terms.However,the degree of segregation affects the development trend of the elastic modulus to a certain extent,and a standard deviation of the aggregate area ratio of less than 1.63 clearly indicates a higher elastic modu-lus.In the pouring direction,the top area of the test block tended to form a macroscopic fracture surface earlier.By contrast,the compressibility of the bottom area was greater than that of the top area.The intensification of aggregate segregation widened the differences in the deformation and failure characteristics between the different areas.For samples with different uniformities,significant differences in local deformation ranging from 515.00μεto 1693.70μεwere observed during the stable deformation stage.The extreme unevenness of the aggregate leads to rapid crack penetration in the sample,causing macroscopic tensile failure and resulting in premature structural failure.
基金financially supported by the National Key Research and Development Program of China(2023YFD1901200)the National Natural Science Foundation of China(U22A20562)+4 种基金the Sichuan Science and Technology Program,China(2022YFS0500)the Project of Special Research Assistant of the Chinese Academy of Sciences(Jing Zheng)the China Postdoctoral Science Foundation(2022M723079)the Sichuan Provincial Postdoctoral Research Foundation,China(TB2022042)the Science and Technology Research Program of Institute of Mountain Hazards and Environment,Chinese Academy of Sciences(IMHEZYTS-08)。
文摘Crop straw incorporation is widely recommended to maintain crop yields and improve soil organic carbon(SOC)stocks as well as soil quality.However,the long-term effects of different straw incorporation practices on the SOC stock remain uncertain.In this study,a long-term experiment(2007 to 2018)with four treatments(MW_0:maize–wheat rotation with no straw incorporation,MW_(50):maize–wheat rotation with 50%chopped straw incorporation,MW_(b50):maize–wheat rotation with 50%in situ burned harvested straw,and MF_(50):maize–fallow rotation with 50%harvested maize straw incorporation)was set up to evaluate the response of the SOC stock to different straw incorporation methods.The results showed that the SOC stock significantly increased by 32.4,12.2 and 17.4%under the MW_(50),MW_(b50)and MF_(50)treatments,respectively,after continuous straw incorporation over a decade,while the SOC stock under MW0 was significantly reduced by 22.9%after the 11 year long-term experiment.Compared to MW_0,straw incorporation significantly increased organic carbon input,and improved the soil aggregate structure and the ratio of dissolved organic carbon(DOC)to particulate organic carbon(POC),but it did not significantly stimulate soil heterotrophic respiration,resulting in the increased SOC accumulation rate and SOC stocks of bulk soil.The increased ratio of DOC to microbial biomass carbon(MBC)enhanced the relative abundances of Acidobacteria and Proteobacteria but inhibited Bacteroidetes and Chloroflexi,and the bacterial relative abundances were the main reasons for the non-significant increase or even decrease in soil heterotrophic respiration with straw incorporation.The SOC stock would reach an equilibrium based on the results of Rothamsted carbon(RothC)model simulations,with a long-term equilibrium value of 18.85 Mg ha^(–1)under MW_(50).Overall,the results of the long-term field experiment(2007–2018)and RothC model simulation suggested that maize–wheat rotation with 50%chopped straw incorporation delivered the largest benefits for the SOC stock in calcareous soils of subtropical mountain landscapes over the long term.
基金Funded by the Natural Science Foundation of Jiangsu Province(No.BK20220626)Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.KYCX24_3174)Taizhou Science and Technology Support Programme(Social Development)Directive Project(No.TS202432)。
文摘The effects of various fly ash(FA)contents on the durability and mechanical properties of recycled fine aggregate high ductility cementitious composites(RFA-HDCC)prepared with recycled fine aggregates(RFA)to fully replace natural fine aggregates was investigated.The results indicated that a 50% FA content significantly increased the compressive strength of RFA-HDCC by 13.93%.However,a?further increase in FA content led to a drastic decrease.The increased fly ash content substantially reduced the flexural and tensile strength;however,it markedly increased the matrix strain capacity,resulting in a 53.73% increase in the peak strain when FA was raised to 70%.Regarding durability,the increase in FA content negatively affected the chloride ion permeability and carbonation resistance.However,the increase in FA content initially improved the frost resistance of RFA-HDCC,peaking at 50% FA and deteriorating at 60% and 70% FA content.
基金Funded by the Natural Science Foundation of Shaanxi Province(No.2023-JC-QN-0553)。
文摘To examine the influences of waste polypropylene fiber(PPF)on the strength and internal pore structure of recycled aggregate concrete incorporating iron ore tailings,both the cubic compressive strength and axial compressive strength of the concrete were measured.Additionally,the microstructure was analyzed using scanning electron microscopy.The evolution of pore structure parameters,including pore size distribution,pore type distribution,and nuclear magnetic resonance spectral area in the concrete,was investigated through nuclear magnetic resonance(NMR)analysis.A model correlating the concrete's pore structure with its macroscopic performance was subsequently developed based on fractal theory.The results demonstrate that an appropriate amount of PPF created a bridging effect that decelerated the progression of macro cracks,enhanced the ductility of the concrete's failure mode,and increased both cubic compressive strength and axial compressive strength,with the most effective dosage being approximately 0.6%.An appropriate amount of PPF(ranging from 0.3%to 0.6%)facilitated the formation of harmless pores and shifted the pore size distribution towards medium and small sizes.Specifically,a fiber content of 0.6%resulted in the most significant reduction in the T2 spectral area.Furthermore,the pore structure of concrete exhibits distinct fractal characteristics.As the PPF content increased,the fractal dimension initially rose and then declined,demonstrating a strong correlation with the mechanical properties.
基金funded by the National Natural Science Foundation of China(No.51978048).
文摘The homogeneity of aggregate blend has a significant influence on the performance of asphalt mixture.The composition of aggregate blend,including the size combination and the mass ratio between each size particles(MRESP),is an important factor affecting the homogeneity.This study investigated the influence of the size combination and MRESP on the distribution homogeneity of particles in aggregate blend using discrete element method(DEM).An indicator quantifying the distribution homogeneity was established according to the coefficient of variation(CV)for particle number.Two-size,three-size,and four-size aggregate blends with various compositions were designed.Laboratory tests show the DEM simulation is feasible.The particle distribution homogeneity in various blends was analyzed.The results showed the distribution homogeneity of each size particles in a blend is closely related to their mass fraction.The higher the mass fraction of the particles,the more homogeneous the distribution of them.The MRESP has no significant influence on the homogeneity of the blend composed of only coarse aggregates.However,the homogeneity of the blend composed of coarse and fine aggregates improves gradually with the increase of the mass fraction of fine aggregates.The smaller the maximum particle size in a blend,the better the homogeneity.It is suggested that the mass fraction of fine aggregates should be between 33%and 50%for achieving good homogeneity of aggregate blends.The research results can provide a reference for gradation design of asphalt mixture.
基金Funded by the National Natural Science Foundation of China (No.52078068)the Natural Science Foundation of Jiangsu Province (No.BK20220626)。
文摘This study meticulously examined the compaction and sulfate erosion resistance of cement-stabilized materials incorporating recycled brick-concrete aggregate (RBCA).To explore the effects of recycled brick aggregate (RBA) with varying particle sizes,three size ranges (4.75-9.5 mm,9.5-19 mm and 19-31.5 mm) were used to replace 20% of the corresponding particle sizes of recycled concrete aggregate (RCA) in cement-stabilized materials.The findings indicated that cement-stabilized materials utilizing RBA and RCA exhibited a lower maximum dry density and a higher optimum moisture content than natural aggregate cement-stabilized materials.The use of RBA with a particle size of 4.75-9.5 mm resulted in a lower maximum dry density and a higher optimum moisture content than 9.5-19 mm and 19-31.5 mm.Furthermore,the 7-day unconfined compressive strength of RBCA cement-stabilized materials with RBA of 4.75-9.5 mm demonstrated superior results compared to those with larger particle sizes.Regarding sulfate erosion resistance,the mass loss and unconfined compressive strength loss of the RBCA cement-stabilized materials at 56 days were highest for the 19-31.5 mm particle size of the RBA.In terms of compaction and sulfate resistance,it is recommended to use 4.75-19 mm RBA in RBCA cement-stabilized materials.