期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Dynamic response of blast doors enhanced by enclosed-space TNT explosions: Experimental and numerical study
1
作者 Chenwei Wu Guokai Zhang +3 位作者 Yong He Liwang Liu Ju Liu Xiaoning Yang 《Defence Technology(防务技术)》 2025年第6期173-186,共14页
The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic re... The afterburning of TNT and structural constraints in confined spaces significantly amplify the blast load,leading to severe structural damage. This study investigates the mechanisms underlying the enhanced dynamic response of reinforced concrete blast doors with four-sided restraints in confined space. Explosion tests with TNT charges ranging from 0.15 kg to 0.4 kg were conducted in a confined space,capturing overpressure loads and the dynamic response of the blast door. An internal explosion model incorporating the afterburning effect was developed using LS-DYNA software and validated against experimental data. The results reveal that the TNT afterburning effect amplifies both the initial peak overpressure and the quasi-static overpressure, resulting in increased deformation of the blast door.Within the 0.15-0.4 kg charge range, the initial overpressure peak and quasi-static overpressure increased by an average of 1.79 times and 2.21 times, respectively. Additionally, the afterburning effect enhanced the blast door's deflection by 177%. Compared to open-space scenarios, the cumulative deflection of the blast door due to repeated shock wave impacts is significantly greater in confined spaces. Furthermore, the quasi-static pressure arising from the structural constraints sustains the blast door's deflection at a high level. 展开更多
关键词 Internal explosion afterburning effect Constraint effect Reinforced concrete blast door Dynamic response Enhancement effect
在线阅读 下载PDF
Re-entry rocket basic flow characteristics and thermal environment of different retro-propulsion modes 被引量:2
2
作者 Yifei SU Peijie SUN +1 位作者 Yangwen CUI Guigao LE 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2024年第7期190-203,共14页
During the supersonic re-entry of multi-nozzle heavy rockets into the atmosphere,the basic flow state becomes increasingly complex due to the coupling effect between the retropropulsion plumes and the freestream.A num... During the supersonic re-entry of multi-nozzle heavy rockets into the atmosphere,the basic flow state becomes increasingly complex due to the coupling effect between the retropropulsion plumes and the freestream.A numerical method using the hybrid Reynolds-Averaged Navier-Stokes and Large Eddy Simulation(RES)method and discrete coordinate method is developed to accurately estimate the thermal environment.In addition,finite rate chemical kinetics is used to calculate the afterburning reactions.The numerical results agree well with wind tunnel data,which confirms the validity and accuracy of the numerical method.Computations are conducted for the heavy carrier rocket re-entry from 53.1 km to 39.5 km altitude with 180°angle of attack by using three different Supersonic Retro-Propulsion(SRP)modes.The numerical results reveal that these three SRP flow fields are all Short Penetration Models(SPM).As the re-entry altitudes decrease,both the plume-plume interaction and the plume-freestream interaction become weaker.The highest temperatures in the plume shear layers of the three SRP modes increase by 8.36%,7.33%and 6.92%respectively after considering afterburning reactions,and all occur at a reentry altitude of 39.5 km.As the rocket re-enters the atmosphere,the maximum heat flux on the rocket base plate of three SRP modes stabilizes at 290,170 and 200 kW/m^(2) respectively,but the maximum heat flux on the side wall increases significantly.When the altitude declines to 39.5 km,the extreme heat flux of the three modes increase by 84.16%,49.45%and 62.97%respectively compared to that at 53.1 km. 展开更多
关键词 Re-entry rocket MULTI-NOZZLE Supersonic retro propulsion Thermal environment afterburning effect
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部