Aimed at the problem of adaptive noise canceling(ANC),three implementary algorithms which are least mean square(LMS) algorithm,recursive least square(RLS) algorithm and fast affine projection(FAP) algorithm,have been ...Aimed at the problem of adaptive noise canceling(ANC),three implementary algorithms which are least mean square(LMS) algorithm,recursive least square(RLS) algorithm and fast affine projection(FAP) algorithm,have been researched.The simulations were made for the performance of these algorithms.The extraction of fetal electrocardiogram(FECG) is applied to compare the application effect of the above algorithms.The proposed FAP algorithm has obvious advantages in computational complexity,convergence speed and steadystate error.展开更多
Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system....Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association.展开更多
Given a biobjective linear programming problem,we develop an affine scaling algorithm with min-max direction and demonstrate its convergence for an efficient solution.We implement the algorithm for some minor issues i...Given a biobjective linear programming problem,we develop an affine scaling algorithm with min-max direction and demonstrate its convergence for an efficient solution.We implement the algorithm for some minor issues in the literature.展开更多
The inverse problem analysis method provides an effective way for the structural parameter identification.However,uncertainties wildly exist in the practical engineering inverse problems.Due to the coupling of multi-s...The inverse problem analysis method provides an effective way for the structural parameter identification.However,uncertainties wildly exist in the practical engineering inverse problems.Due to the coupling of multi-source uncertainties in the measured responses and the modeling parameters,the traditional inverse method under the deterministic framework faces the challenges in solving mechanism and computing cost.In this paper,an uncertain inverse method based on convex model and dimension reduction decomposition is proposed to realize the interval identification of unknown structural parameters according to the uncertain measured responses and modeling parameters.Firstly,the polygonal convex set model is established to quantify the epistemic uncertainties of modeling parameters.Afterwards,a space collocation method based on dimension reduction decomposition is proposed to transform the inverse problem considering multi-source uncertainties into a few interval inverse problems considering response uncertainty.The transformed interval inverse problem involves the two-layer solving process including interval propagation and optimization updating.In order to solve the interval inverse problems considering response uncertainty,an efficient interval inverse method based on the high dimensional model representation and affine algorithm is further developed.Through the coupling of the above two strategies,the proposed uncertain inverse method avoids the time-consuming multi-layer nested calculation procedure,and then effectively realizes the uncertainty identification of unknown structural parameters.Finally,two engineering examples are provided to verify the effectiveness of the proposed uncertain inverse method.展开更多
Based on the generalized Dikin-type direction proposed by Jansen et al in 1997, we give out in this paper a generalized Dikin-type affine scaling algorithm for solving the P-*(kappa)-matrix linear complementarity prob...Based on the generalized Dikin-type direction proposed by Jansen et al in 1997, we give out in this paper a generalized Dikin-type affine scaling algorithm for solving the P-*(kappa)-matrix linear complementarity problem (LCP). Form using high-order correctors technique and rank-one updating, the iteration complexity and the total computational turn out asymptotically O((kappa + 1)root nL) and O((kappa + 1)n(3)L) respectively.展开更多
The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean ...The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean square(NLMS) algorithm in EC applications where the input signal is highly correlated. Since the APA with a constant step-size has to make compromise between the performance criteria 1) and 2), a variable step-size APA(VSS-APA) provides a more reliable solution. A nonparametric VSS-APA(NPVSS-APA) is proposed by recovering the background noise within the error signal instead of cancelling the a posteriori errors. The most problematic term of its variable step-size formula is the value of background noise power(BNP). The power difference between the desired signal and output signal, which equals the power of error signal statistically, has been considered the BNP estimate in a rough manner. Considering that the error signal consists of background noise and misalignment noise, a precise BNP estimate is achieved by multiplying the rough estimate with a corrective factor. After the analysis on the power ratio of misalignment noise to background noise of APA, the corrective factor is formulated depending on the projection order and the latest value of variable step-size. The new algorithm which does not require any a priori knowledge of EC environment has the advantage of easier controllability in practical application. The simulation results in the EC context indicate the accuracy of the proposed BNP estimate and the more effective behavior of the proposed algorithm compared with other versions of APA class.展开更多
Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggest...Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA0 SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA0 SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.展开更多
基金the National Key Technologies R&D Program (No. 2006BAI22B01)
文摘Aimed at the problem of adaptive noise canceling(ANC),three implementary algorithms which are least mean square(LMS) algorithm,recursive least square(RLS) algorithm and fast affine projection(FAP) algorithm,have been researched.The simulations were made for the performance of these algorithms.The extraction of fetal electrocardiogram(FECG) is applied to compare the application effect of the above algorithms.The proposed FAP algorithm has obvious advantages in computational complexity,convergence speed and steadystate error.
基金Supported by the National Natural Science Foundation of China(11078001)
文摘Track association of multi-target has been recognized as one of the key technologies in distributed multiple-sensor data fusion system,and its accuracy directly impacts on the performance of the whole tracking system.A multi-sensor data association is proposed based on aftinity propagation(AP)algorithm.The proposed method needs an initial similarity,a distance between any two points,as a parameter,therefore,the similarity matrix is calculated by track position,velocity and azimuth of track data.The approach can automatically obtain the optimal classification of uncertain target based on clustering validity index.Furthermore,the same kind of data are fused based on the variance of measured data and the fusion result can be taken as a new measured data of the target.Finally,the measured data are classified to a certain target based on the nearest neighbor ideas and its characteristics,then filtering and target tracking are conducted.The experimental results show that the proposed method can effectively achieve multi-sensor and multi-target track association.
文摘Given a biobjective linear programming problem,we develop an affine scaling algorithm with min-max direction and demonstrate its convergence for an efficient solution.We implement the algorithm for some minor issues in the literature.
基金National Science Foundation of China(Grant No.51975199)the Changsha Municipal Natural Science Foundation(Grant No.kq2014050).
文摘The inverse problem analysis method provides an effective way for the structural parameter identification.However,uncertainties wildly exist in the practical engineering inverse problems.Due to the coupling of multi-source uncertainties in the measured responses and the modeling parameters,the traditional inverse method under the deterministic framework faces the challenges in solving mechanism and computing cost.In this paper,an uncertain inverse method based on convex model and dimension reduction decomposition is proposed to realize the interval identification of unknown structural parameters according to the uncertain measured responses and modeling parameters.Firstly,the polygonal convex set model is established to quantify the epistemic uncertainties of modeling parameters.Afterwards,a space collocation method based on dimension reduction decomposition is proposed to transform the inverse problem considering multi-source uncertainties into a few interval inverse problems considering response uncertainty.The transformed interval inverse problem involves the two-layer solving process including interval propagation and optimization updating.In order to solve the interval inverse problems considering response uncertainty,an efficient interval inverse method based on the high dimensional model representation and affine algorithm is further developed.Through the coupling of the above two strategies,the proposed uncertain inverse method avoids the time-consuming multi-layer nested calculation procedure,and then effectively realizes the uncertainty identification of unknown structural parameters.Finally,two engineering examples are provided to verify the effectiveness of the proposed uncertain inverse method.
文摘Based on the generalized Dikin-type direction proposed by Jansen et al in 1997, we give out in this paper a generalized Dikin-type affine scaling algorithm for solving the P-*(kappa)-matrix linear complementarity problem (LCP). Form using high-order correctors technique and rank-one updating, the iteration complexity and the total computational turn out asymptotically O((kappa + 1)root nL) and O((kappa + 1)n(3)L) respectively.
文摘The adaptive algorithm used for echo cancellation(EC) system needs to provide 1) low misadjustment and 2) high convergence rate. The affine projection algorithm(APA) is a better alternative than normalized least mean square(NLMS) algorithm in EC applications where the input signal is highly correlated. Since the APA with a constant step-size has to make compromise between the performance criteria 1) and 2), a variable step-size APA(VSS-APA) provides a more reliable solution. A nonparametric VSS-APA(NPVSS-APA) is proposed by recovering the background noise within the error signal instead of cancelling the a posteriori errors. The most problematic term of its variable step-size formula is the value of background noise power(BNP). The power difference between the desired signal and output signal, which equals the power of error signal statistically, has been considered the BNP estimate in a rough manner. Considering that the error signal consists of background noise and misalignment noise, a precise BNP estimate is achieved by multiplying the rough estimate with a corrective factor. After the analysis on the power ratio of misalignment noise to background noise of APA, the corrective factor is formulated depending on the projection order and the latest value of variable step-size. The new algorithm which does not require any a priori knowledge of EC environment has the advantage of easier controllability in practical application. The simulation results in the EC context indicate the accuracy of the proposed BNP estimate and the more effective behavior of the proposed algorithm compared with other versions of APA class.
文摘Interference signals due to scattering from surface and reflecting from bottom is one of the most important problems of reliable communications in shallow water channels. To solve this problem, one of the best suggested ways is to use adaptive equalizers. Convergence rate and misadjustment error in adaptive algorithms play important roles in adaptive equalizer performance. In this paper, affine projection algorithm (APA), selective regressor APA(SR-APA), family of selective partial update (SPU) algorithms, family of set-membership (SM) algorithms and selective partial update selective regressor APA (SPU-SR-APA) are compared with conventional algorithms such as the least mean square (LMS) in underwater acoustic communications. We apply experimental data from the Strait of Hormuz for demonstrating the efficiency of the proposed methods over shallow water channel. We observe that the values of the steady-state mean square error (MSE) of SR-APA, SPU-APA0 SPU-normalized least mean square (SPU-NLMS), SPU-SR-APA0 SM-APA and SM-NLMS algorithms decrease in comparison with the LMS algorithm. Also these algorithms have better convergence rates than LMS type algorithm.