Pear anthracnose,caused by Colletotrichum fructicola,is a devastating disease that seriously affects most pear varieties,compromising their yield and quality.However,effective control of this pathogen is lacking.Moreo...Pear anthracnose,caused by Colletotrichum fructicola,is a devastating disease that seriously affects most pear varieties,compromising their yield and quality.However,effective control of this pathogen is lacking.Moreover,the critical resistance responses to C.fructicola in pear are unknown.To investigate these resistance mechanisms of pear against C.fructicola,transcriptomic and metabolomic analyses were performed on the anthracnose-resistant variety‘Seli’and susceptible variety‘Cuiguan’after C.fructicola infection.Differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were mainly involved in metabolism and secondary metabolite synthetic pathways,includingα-linoleic acid metabolism,phenylalanine biosynthesis metabolism,unsaturated fatty acids biosynthesis,and biosynthesis of amino acids and their derivatives.In particular,the accumulation of unsaturated fatty acids(UFAs),amino acids,and their derivatives,such as linoleic acid and its derivatives,lauric acid,N-acetyl-L-glutamic acid,and L-proline,was significantly increased in‘Seli’after infection,while the amino acids of oxiglutatione and N-acetyl-L-glutamic acid,as well as the proanthocyanidins,were significantly decreased in‘Cuiguan’.These findings suggest that these metabolites may contribute to the differential anthracnose resistance between‘Seli’and‘Cuiguan’.Overall,our results provid new insights into the regulation of pear anthracnose resistance,which may assist in developing new control strategies and breeding anthracnose-resistant varieties.展开更多
基金supported by the China Agriculture Research System(CARS-28-14)the National Natural Science Foundation of China(32302484)the University Natural Science Research Project of Anhui Province,China(2022AHO50926 and 2022AH040129).
文摘Pear anthracnose,caused by Colletotrichum fructicola,is a devastating disease that seriously affects most pear varieties,compromising their yield and quality.However,effective control of this pathogen is lacking.Moreover,the critical resistance responses to C.fructicola in pear are unknown.To investigate these resistance mechanisms of pear against C.fructicola,transcriptomic and metabolomic analyses were performed on the anthracnose-resistant variety‘Seli’and susceptible variety‘Cuiguan’after C.fructicola infection.Differentially expressed genes(DEGs)and differentially accumulated metabolites(DAMs)were mainly involved in metabolism and secondary metabolite synthetic pathways,includingα-linoleic acid metabolism,phenylalanine biosynthesis metabolism,unsaturated fatty acids biosynthesis,and biosynthesis of amino acids and their derivatives.In particular,the accumulation of unsaturated fatty acids(UFAs),amino acids,and their derivatives,such as linoleic acid and its derivatives,lauric acid,N-acetyl-L-glutamic acid,and L-proline,was significantly increased in‘Seli’after infection,while the amino acids of oxiglutatione and N-acetyl-L-glutamic acid,as well as the proanthocyanidins,were significantly decreased in‘Cuiguan’.These findings suggest that these metabolites may contribute to the differential anthracnose resistance between‘Seli’and‘Cuiguan’.Overall,our results provid new insights into the regulation of pear anthracnose resistance,which may assist in developing new control strategies and breeding anthracnose-resistant varieties.