Background:Chaetomorpha aerea,a marine green alga,has drawn attention because of its rich phytochemical constituents and therapeutic benefits.Using an integrated approach that combined in vitro,in vivo,and in silico a...Background:Chaetomorpha aerea,a marine green alga,has drawn attention because of its rich phytochemical constituents and therapeutic benefits.Using an integrated approach that combined in vitro,in vivo,and in silico approaches,this work examined the antioxidant,anti-inflammatory,and antidiabetic qualities of acetone extract of C.aerea(AECA).Methods:Total phenolic and flavonoid concentrations of AECA were measured.Antioxidant activity was assessed using the DPPH and ABTS free radical scavenging assays.In vitro protein denaturation and in vivo carrageenan-induced paw edema models were employed to evaluate the anti-inflammatory potential,whereas antidiabetic activity was assessed using in vitroα-amylase inhibition and in vivo oral glucose tolerance test(OGTT).Molecular docking and ADME/T analysis were employed to further analyze bioactive compounds identified using gas chromatography–mass spectrometry(GC–MS).Result:Antioxidant activity demonstrated a minimum inhibitory concentration(IC_(50))of 107.44μg/mL for DPPH and 118.23μg/mL for ABTS.In vitro anti-inflammatory assays indicated a suppression of protein denaturation at a concentration of 102μg/mL(IC_(50)),where AECA(400 mg/kg)resulted in a 27%reduction in paw edema at 6 h in the mouse model.In vitro antidiabetic test indicatedα-amylase inhibition with an IC_(50) value of 70.72μg/mL,and in the OGTT,a significant lowering of blood glucose was recorded at 120 min in mice.Strong binding affinities were observed for stigmasta-5,24(28)-dien-3-ol,identified using GC–MS,with values of−9.9 kcal/mol forα-amylase and−8.0 kcal/mol for cyclooxygenase-2.Conclusion:C.aerea serves as an effective natural remedy for oxidative stress,inflammation,and hyperglycemia.These findings advocate for further clinical and mechanistic investigations to optimize therapeutic efficacy.展开更多
Green macroalgae Chaetomorpha aerea and C. linum are taxonomically confused. In this paper, we tried morphological and molecular analyses to separate these two species. C. aerea and C. linum can be distinguished from ...Green macroalgae Chaetomorpha aerea and C. linum are taxonomically confused. In this paper, we tried morphological and molecular analyses to separate these two species. C. aerea and C. linum can be distinguished from morphological characteritics, such as frond dimension, cells size and shape, their mean length/width ratios(LWR), and cell walls constriction. Thalli of C. aerea attenuate basipetally, with diameter 270–500 μm at upper portion, 160–360 μm at middle portion, 100–160 μm at basal portion. For the upper part, the length of cells is less than their diameter. Cell walls usually constrict at the dissepiments, which are pellucid or colorless and give the filament beaded appearance. In contrast, thalli of C. linum often have a constant diameter of 90–300 μm within the same individual, cell walls usually do not constrict and cells are cylindrical or barrel shaped. The LWR is larger than that of C. aerea. Results show that the pairwise distance between two species is 3.6%–3.7% for 18 S r RNA gene and 53.5%–54.3% for ITS region. In phylogeny, they distribute at distant clades, which confirms a genetic divergence at molecular level. In addition, morphological data indicates that filament diameter of C. linum samples is highly variable, ranging from 90 μm to 300 μm. Then these two species can be considered as separate species.展开更多
文摘Background:Chaetomorpha aerea,a marine green alga,has drawn attention because of its rich phytochemical constituents and therapeutic benefits.Using an integrated approach that combined in vitro,in vivo,and in silico approaches,this work examined the antioxidant,anti-inflammatory,and antidiabetic qualities of acetone extract of C.aerea(AECA).Methods:Total phenolic and flavonoid concentrations of AECA were measured.Antioxidant activity was assessed using the DPPH and ABTS free radical scavenging assays.In vitro protein denaturation and in vivo carrageenan-induced paw edema models were employed to evaluate the anti-inflammatory potential,whereas antidiabetic activity was assessed using in vitroα-amylase inhibition and in vivo oral glucose tolerance test(OGTT).Molecular docking and ADME/T analysis were employed to further analyze bioactive compounds identified using gas chromatography–mass spectrometry(GC–MS).Result:Antioxidant activity demonstrated a minimum inhibitory concentration(IC_(50))of 107.44μg/mL for DPPH and 118.23μg/mL for ABTS.In vitro anti-inflammatory assays indicated a suppression of protein denaturation at a concentration of 102μg/mL(IC_(50)),where AECA(400 mg/kg)resulted in a 27%reduction in paw edema at 6 h in the mouse model.In vitro antidiabetic test indicatedα-amylase inhibition with an IC_(50) value of 70.72μg/mL,and in the OGTT,a significant lowering of blood glucose was recorded at 120 min in mice.Strong binding affinities were observed for stigmasta-5,24(28)-dien-3-ol,identified using GC–MS,with values of−9.9 kcal/mol forα-amylase and−8.0 kcal/mol for cyclooxygenase-2.Conclusion:C.aerea serves as an effective natural remedy for oxidative stress,inflammation,and hyperglycemia.These findings advocate for further clinical and mechanistic investigations to optimize therapeutic efficacy.
基金The National Key Technology R&D Program of China under contract No.2012BAC07B05the National Natural Science Foundation of China under contract Nos 31400186,31270257 and 31093440+1 种基金the Science and Technology Plan Project of Guangdong Province under contract No.2012A020200007the Science and Technology Plan Project of Shantou City,China under contract No.2012–171
文摘Green macroalgae Chaetomorpha aerea and C. linum are taxonomically confused. In this paper, we tried morphological and molecular analyses to separate these two species. C. aerea and C. linum can be distinguished from morphological characteritics, such as frond dimension, cells size and shape, their mean length/width ratios(LWR), and cell walls constriction. Thalli of C. aerea attenuate basipetally, with diameter 270–500 μm at upper portion, 160–360 μm at middle portion, 100–160 μm at basal portion. For the upper part, the length of cells is less than their diameter. Cell walls usually constrict at the dissepiments, which are pellucid or colorless and give the filament beaded appearance. In contrast, thalli of C. linum often have a constant diameter of 90–300 μm within the same individual, cell walls usually do not constrict and cells are cylindrical or barrel shaped. The LWR is larger than that of C. aerea. Results show that the pairwise distance between two species is 3.6%–3.7% for 18 S r RNA gene and 53.5%–54.3% for ITS region. In phylogeny, they distribute at distant clades, which confirms a genetic divergence at molecular level. In addition, morphological data indicates that filament diameter of C. linum samples is highly variable, ranging from 90 μm to 300 μm. Then these two species can be considered as separate species.