A series of Eu^(2+)/Eu^(3+)doped 20La_(2)O_(3)-20Al_(2)O_(3)-60SiO_(2)glasses(LAS:Eu)were fabricated via melting quenching method in air atmosphere.By introducing the reducing agent Si_(3)N_(4),the ratio of Eu^(2+)/Eu...A series of Eu^(2+)/Eu^(3+)doped 20La_(2)O_(3)-20Al_(2)O_(3)-60SiO_(2)glasses(LAS:Eu)were fabricated via melting quenching method in air atmosphere.By introducing the reducing agent Si_(3)N_(4),the ratio of Eu^(2+)/Eu^(3+)in glasses can be controlled under atmospheric conditions at 1520℃for 5 h.As the tunable Eu^(2+)/Eu^(3+)component in LAS:Eu glasses,the wavelength conversion of photoluminescence is achieved upon the395 nm excitation,where LAS:0.7Eu exhibits a color coordinate of(0.334,0.314).According to calculation,the energy transfer mechanism between Eu^(2+)and Eu^(3+)in glasses is dipole-dipole interactions dominate.Meanwhile,relative X-ray excited luminescence(XEL)intensity of the single Eu^(2+)doped glass can reach 38.6%of that of Bi_(4)Ge_(3)O_(12)(BGO)crystal.The temperature-dependent emission spectra of the LAS:Eu glasses were tested under photoluminescence and X-ray excitation,and the thermal activation energy was calculated.These results demonstrate the potential of LAS:Eu glass for applications as lightemitting diode(LED)materials and scintillators in nuclear radiation detection.展开更多
基金Project supported by"Pioneer"and"Leading Goose"R&D Program of Zhejiang(2022C01046)the National Natural Science Foundation of China(12375183,61505193,12275262,11975220,51972291)Natural Science Foundation of Zhejiang(LGG22E020001)。
文摘A series of Eu^(2+)/Eu^(3+)doped 20La_(2)O_(3)-20Al_(2)O_(3)-60SiO_(2)glasses(LAS:Eu)were fabricated via melting quenching method in air atmosphere.By introducing the reducing agent Si_(3)N_(4),the ratio of Eu^(2+)/Eu^(3+)in glasses can be controlled under atmospheric conditions at 1520℃for 5 h.As the tunable Eu^(2+)/Eu^(3+)component in LAS:Eu glasses,the wavelength conversion of photoluminescence is achieved upon the395 nm excitation,where LAS:0.7Eu exhibits a color coordinate of(0.334,0.314).According to calculation,the energy transfer mechanism between Eu^(2+)and Eu^(3+)in glasses is dipole-dipole interactions dominate.Meanwhile,relative X-ray excited luminescence(XEL)intensity of the single Eu^(2+)doped glass can reach 38.6%of that of Bi_(4)Ge_(3)O_(12)(BGO)crystal.The temperature-dependent emission spectra of the LAS:Eu glasses were tested under photoluminescence and X-ray excitation,and the thermal activation energy was calculated.These results demonstrate the potential of LAS:Eu glass for applications as lightemitting diode(LED)materials and scintillators in nuclear radiation detection.