The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen pro...The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.展开更多
Improving the comprehensive performance of anion exchange membranes(AEMs)has a decisive impact on the wide application of anion exchange membrane fuel cells(AEMFCs).Herein,we prepared a series of new poly(phenanthrene...Improving the comprehensive performance of anion exchange membranes(AEMs)has a decisive impact on the wide application of anion exchange membrane fuel cells(AEMFCs).Herein,we prepared a series of new poly(phenanthrene-co-p-terphenyl piperidinium)(PPTP3F_(x)-DIL)AEMs with different fluorinated monomers for high performance AEMFCs.The polymerization of fluorinated monomers with other aryl monomers can effectively promote the separation of microphase in the membrane.It also has a high OH-conductivity at a low swelling.The membrane(PPTP3F_(4)-DIL)prepared by polycondensation of 2,2,2-trifluoro-1-(p-tolyl)ethan 1-one monomer achieves a high conductivity of 168.5 mS cm^(-1)at 80℃.At the same time,the water uptake is 40.0%and the swelling ratio is 12.1%.In addition,these membranes also have good mechanical properties and alkaline stability.After 1440 h of treatment in a NaOH(2 M)solution at 80℃,PPTP3F_(x)-DIL still maintains excellent tensile strength(>30.3 MPa)and elongation at break(>43.4%),and the conductivity retention of the PPTP3F_(1)-DIL membrane is 90.3%.The PPTP3F_(4)-DIL-based single cell exhibits a high peak power density(918.1 mW cm^(-2))and excellent durability(100 h)at 80℃.Therefore,these PPTP3F_(x)-DIL membranes have a wide range of applications in AEMFCs.展开更多
Although electrocatalytic water splitting holds significant promise for hydrogen production,unfavorable reaction energy barriers and kinetic properties lead to unsatisfactory conversion efficiency.Herein,we provide an...Although electrocatalytic water splitting holds significant promise for hydrogen production,unfavorable reaction energy barriers and kinetic properties lead to unsatisfactory conversion efficiency.Herein,we provide an innovative strategy to optimize the electrochemical activity of the Fe/Ni_(2)P catalyst through near-infrared(NIR)-induced photothermal effect.The Fe/Ni_(2)P-NIR yields a current density of 10 mA cm^(-2)at ultralow overpotentials of 16 mV for the hydrogen evolution reaction(HER)and 167 mV for the oxygen evolution reaction(OER),with Tafel slopes of 38.7 and 46.2 mV dec^(-1),respectively.This bifunctional catalyst also delivers 10 mA cm^(-2)at a low voltage of 1.40 V for overall water splitting.The NIR photoinduced local thermal effect activates abundant catalytic sites,accelerates charge and mass transfer,and improves intrinsic reaction kinetics.Guided by density functional theory(DFT)calculations,the photothermal effect reduces the energy barriers of the rate-determining steps(RDS)for^(*)H desorption on Fe/Ni_(2)P during HER and^(*)O formation on its reconstructed active phase NiFeOOH during OER.We realized photothermal-electrochemical integration with Fe/Ni_(2)P-NIR in an anion exchange membrane(AEM)electrolyzer,attaining 500 mA cm^(-2)at 1.76 V,with excellent stability over 50 h.This strategy may significantly advance energy conversion technology towards economic hydrogen production through water electrolysis.展开更多
Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and ...Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time.展开更多
The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, e...The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.展开更多
基金supported by the KRISS(Korea Research Institute of Standards and Science)MPI Lab.program。
文摘The increasing demand for hydrogen energy to address environmental issues and achieve carbon neutrality has elevated interest in green hydrogen production,which does not rely on fossil fuels.Among various hydrogen production technologies,anion exchange membrane water electrolyzer(AEMWE)has emerged as a next-generation technology known for its high hydrogen production efficiency and its ability to use non-metal catalysts.However,this technology faces significant challenges,particularly in terms of the membrane durability and low ionic conductivity.To address these challenges,research efforts have focused on developing membranes with a new backbone structure and anion exchange groups to enhance durability and ionic conductivity.Notably,the super-acid-catalyzed condensation(SACC)synthesis method stands out due to its user convenience,the ability to create high molecular weight(MW)polymers,and the use of oxygen-tolerant organic catalysts.Although the synthesis of anion exchange membranes(AEMs)using the SACC method began in 2015,and despite growing interest in this synthesis approach,there remains a scarcity of review papers focusing on AEMs synthesized using the SACC method.The review covers the basics of SACC synthesis,presents various polymers synthesized using this method,and summarizes the development of these polymers,particularly their building blocks including aryl,ketone,and anion exchange groups.We systematically describe the effects of changes in the molecular structure of each polymer component,conducted by various research groups,on the mechanical properties,conductivity,and operational stability of the membrane.This review will provide insights into the development of AEMs with superior performance and operational stability suitable for water electrolysis applications.
基金support of the National Natural Science Foundation of China(Grant 22278340&22078272)。
文摘Improving the comprehensive performance of anion exchange membranes(AEMs)has a decisive impact on the wide application of anion exchange membrane fuel cells(AEMFCs).Herein,we prepared a series of new poly(phenanthrene-co-p-terphenyl piperidinium)(PPTP3F_(x)-DIL)AEMs with different fluorinated monomers for high performance AEMFCs.The polymerization of fluorinated monomers with other aryl monomers can effectively promote the separation of microphase in the membrane.It also has a high OH-conductivity at a low swelling.The membrane(PPTP3F_(4)-DIL)prepared by polycondensation of 2,2,2-trifluoro-1-(p-tolyl)ethan 1-one monomer achieves a high conductivity of 168.5 mS cm^(-1)at 80℃.At the same time,the water uptake is 40.0%and the swelling ratio is 12.1%.In addition,these membranes also have good mechanical properties and alkaline stability.After 1440 h of treatment in a NaOH(2 M)solution at 80℃,PPTP3F_(x)-DIL still maintains excellent tensile strength(>30.3 MPa)and elongation at break(>43.4%),and the conductivity retention of the PPTP3F_(1)-DIL membrane is 90.3%.The PPTP3F_(4)-DIL-based single cell exhibits a high peak power density(918.1 mW cm^(-2))and excellent durability(100 h)at 80℃.Therefore,these PPTP3F_(x)-DIL membranes have a wide range of applications in AEMFCs.
基金the support from the Basic Science Center Program for Ordered Energy Conversion of the National Natural Science Foundation of China(No.52488201)the National Key R&D Program of China(2021YFF0500504)the Fundamental Research Funds for the Central Universities。
文摘Although electrocatalytic water splitting holds significant promise for hydrogen production,unfavorable reaction energy barriers and kinetic properties lead to unsatisfactory conversion efficiency.Herein,we provide an innovative strategy to optimize the electrochemical activity of the Fe/Ni_(2)P catalyst through near-infrared(NIR)-induced photothermal effect.The Fe/Ni_(2)P-NIR yields a current density of 10 mA cm^(-2)at ultralow overpotentials of 16 mV for the hydrogen evolution reaction(HER)and 167 mV for the oxygen evolution reaction(OER),with Tafel slopes of 38.7 and 46.2 mV dec^(-1),respectively.This bifunctional catalyst also delivers 10 mA cm^(-2)at a low voltage of 1.40 V for overall water splitting.The NIR photoinduced local thermal effect activates abundant catalytic sites,accelerates charge and mass transfer,and improves intrinsic reaction kinetics.Guided by density functional theory(DFT)calculations,the photothermal effect reduces the energy barriers of the rate-determining steps(RDS)for^(*)H desorption on Fe/Ni_(2)P during HER and^(*)O formation on its reconstructed active phase NiFeOOH during OER.We realized photothermal-electrochemical integration with Fe/Ni_(2)P-NIR in an anion exchange membrane(AEM)electrolyzer,attaining 500 mA cm^(-2)at 1.76 V,with excellent stability over 50 h.This strategy may significantly advance energy conversion technology towards economic hydrogen production through water electrolysis.
基金supported by the National Natural Science Foundation of China(52272222)the Taishan Scholar Young Talent Program(tsqn201909114,tsqn201909123)the University Youth Innovation Team of Shandong Province(202201010318)。
文摘Electrocatalytic toluene(TL)oxidation to produce benzoic acid(BAC)process is largely hindered due to sluggish kinetics associated with the transformation of the rate-determining step,because of weak TL adsorption and high rate-determining step energy barrier for difficult to dehydrogenate.Herein,we report Mn_(x)Ce_(1-x)O_(2)/CNT catalyst for accelerated reaction kinetics.Theoretical and experimental studies indicate that Ce sites promote TL adsorption and polyvalent Mn modulates the electronic structure of Ce sites reducing the rate-determining step energy barrier.This results in increasing^(*)C_(6)H_(5)CH_(2)coverage and effectively accelerating TL oxidation reaction(TOR)kinetics.Excitingly,the Faraday efficiency(FE)and BAC yield of optimized Mn_(0.6)Ce_(0.4)O_(2)/CNT at 2.6 V vs.RHE could reach 85.9%and 653.9 mg h^(-1)cm^(-2),respectively.In addition,the Mn_(0.6)Ce_(0.4)O_(2)/CNT displays a high selectivity of 96.3%for BAC.Combining the TL oxidation reaction with hydrogen evolution reaction,the anion exchange membrane electrolyzer of Mn_(0.6)Ce_(0.4)O_(2)/CNT(+)||Pt/C(-)can reach 100 mA cm^(-2)at the voltage of 3.0 V,in which the BAC yield is 579.4 mg h^(-1)cm^(-2)and the FE is 83.6%.This work achieved high selectivity of TOR at industrial-relevant current densities of 100 mA cm^(-2)at the low voltage for the first time.
基金financially supported by the Key Program of National Natural Science Foundation of China(No.41530320)China Natural Science Foundation for Young Scientists(No.41404093)+1 种基金Key National Research Project of China(Nos2016YFC0303100 and 2017YFC0601900)China Natural Science Foundation(No.41774125)
文摘The airborne electromagnetic (AEM) method has a high sampling rate and survey flexibility. However, traditional numerical modeling approaches must use high-resolution physical grids to guarantee modeling accuracy, especially for complex geological structures such as anisotropic earth. This can lead to huge computational costs. To solve this problem, we propose a spectral-element (SE) method for 3D AEM anisotropic modeling, which combines the advantages of spectral and finite-element methods. Thus, the SE method has accuracy as high as that of the spectral method and the ability to model complex geology inherited from the finite-element method. The SE method can improve the modeling accuracy within discrete grids and reduce the dependence of modeling results on the grids. This helps achieve high-accuracy anisotropic AEM modeling. We first introduced a rotating tensor of anisotropic conductivity to Maxwell's equations and described the electrical field via SE basis functions based on GLL interpolation polynomials. We used the Galerkin weighted residual method to establish the linear equation system for the SE method, and we took a vertical magnetic dipole as the transmission source for our AEM modeling. We then applied fourth-order SE calculations with coarse physical grids to check the accuracy of our modeling results against a 1D semi-analytical solution for an anisotropic half-space model and verified the high accuracy of the SE. Moreover, we conducted AEM modeling for different anisotropic 3D abnormal bodies using two physical grid scales and three orders of SE to obtain the convergence conditions for different anisotropic abnormal bodies. Finally, we studied the identification of anisotropy for single anisotropic abnormal bodies, anisotropic surrounding rock, and single anisotropic abnormal body embedded in an anisotropic surrounding rock. This approach will play a key role in the inversion and interpretation of AEM data collected in regions with anisotropic geology.