Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that ...Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that are readily available,cost-effective,and exhibit minimal ecological toxicity.These LVSOs have the ability to generate or promote the generation of strong oxidants or reductants,which makes them widely used in advanced oxidation processes(AOPs)and advanced reduction processes(ARPs).This article provides a comprehensive review of the recent advancements in AOPs and ARPs involving LVSOs,alongside an examination of the fundamental principles governing the generation of active species within these processes.LVSOs fulfill three primary functions in AOPs:Serving as sources of reactive oxygen species(ROS),auxiliary agents,and activators.Particular attention is devoted to elucidating the reaction mechanisms through which LVSOs,in conjunction with metal ions,metal oxides,ultraviolet light(UV),and ozone,produce potent oxidizing agents in both homogeneous and heterogeneous systems.Regarding ARPs,this review delineates the mechanisms by which LVSOs generate strong reducing agents,including hydrated electrons,hydrogen radicals,and sulfite radicals,under UV irradiation,while also exploring the interactions between these reductants and pollutants.The review identifies existing gaps within the current framework and proposes future research avenues to address these challenges.展开更多
Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials...Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.展开更多
The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,...The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,UV/H_(2)O_(2),UV/Fenton,UV/persulfate,UV/chlorine,UV/ozone,and UV/peracetic acid.In this review,we collated recent advances in application of UV-AOPs for the abatement of fiuoroquinolones(FQs)as widely used class of antibiotics.Representative FQs of ciprofioxacin,norfioxacin,ofioxacin,and enrofioxacin were most extensively studied in the state-of-art studies.The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous fiow UV reactors were compared towards practical applications in UV-AOPs.Generally,degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix.Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs.Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.展开更多
ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high...ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS*complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.展开更多
A novel inverted advanced treatment process of ozone/hydrogen peroxide(O_(3)/H_(2)O_(2))and biological activated carbon fluidized bed(BACFB)before the conventional process has been developed to treat the high-algae-la...A novel inverted advanced treatment process of ozone/hydrogen peroxide(O_(3)/H_(2)O_(2))and biological activated carbon fluidized bed(BACFB)before the conventional process has been developed to treat the high-algae-laden reservoir water,which aims to enhance the removal of dissolved organic matter(DOM),odorants as well as the precursors of disinfection by-products(DBPs).Before and after the renovation,the average value of chemical oxygen demand(determined by potassium permanganate method)in the filter effluent decreased from 2.18 to 1.15 mg/L.Likewise,the average concentrations of turbidity dropped from 0.640 to 0.098 NTU,indicating substantial improvement following the renovation.Formation potential of DBPs such as trihalomethanes and haloacetic acids were also reduced greatly.The results of the polarity rapid analysis method indicated that ozonation primarily removed non-polar and positively charged organic matter,while coagulation-sedimentation targeted non-positive organic matter.The results of fluorescence spectroscopy and highresolution mass spectrometry indicated that the new process effectively removed DOM,and decreased the number of nitrogen-containing compounds.Additionally,the inverted O_(3)/H_(2)O_(2) and BACFB process promoted the dynamic transformation between DOM components and significantly reduced overall aromatic content.This study provided a promising solution for treating high-algae-laden source water and verified the feasibility and effectiveness of this novel process in practice.展开更多
Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environ...Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environment will induce diseases and pose a powerful threat to human health and safety,and environmental ecology.In recent years,advanced oxidation processes(AOPs),particularly photocatalysis,electrocatalysis,and ozone catalysis have been developed as widespread and effective techniques for hospital sewage treatments.However,there is a lack of systematic comparison and review of the prior studies on hospital sewage treatment using AOPs systems.This review elaborates on the mechanisms,removal efficiencies,and advantages/disadvantages of these AOPs systems for hospital wastewater decontamination and disinfection.Meanwhile,some novel and potential technologies such as photo-electrocatalysis,electro-peroxone,Fenton/Fenton-like,and piezoelectric catalysis are also included and summarized.Moreover,we further summarize and compare the capacity of these AOPs to treat the actual hospital wastewater under the impact of the water matrix and pH,and estimate the economic cost of these technologies for practical application.Finally,the future development directions of AOPs for hospital wastewater decontamination and disinfection have been prospected.Overall,this study provides a comparison and overview of these AOP systems in an attempt to raise extensive concerns about hospital wastewater decontamination and disinfection technologies and guide researchers to discover the future directions of technologies optimization,which would be a crucial step forward in the field of hospital sewage treatment.展开更多
Industrial wastewater should be treated with caution due to its potential environmental risks.In this study,a polymerization-based cathode/Fe^(3+)/peroxydisulfate(PDS)process was employed for the first time to treat a...Industrial wastewater should be treated with caution due to its potential environmental risks.In this study,a polymerization-based cathode/Fe^(3+)/peroxydisulfate(PDS)process was employed for the first time to treat a raw coking wastewater,which can achieve simulta-neous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers.The results confirm that several dominant organic contaminants in coking wastewater such as phenol,cresols,quinoline and indole can be induced to poly-merize by self-coupling or cross-coupling.The total chemical oxygen demand(COD)abate-ment from coking wastewater is 46.8%and the separable organic-polymer formed from or-ganic contaminants accounts for 62.8%of the abated COD.Dissolved organic carbon(DOC)abatement of 41.9%is achieved with about 89%less PDS consumption than conventional degradation-based process.Operating conditions such as PDS concentration,Fe3+concen-tration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals.ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl^(-),Br^(-),I^(-),NH_(4)^(+),SCN^(-)and CN^(-),suggest-ing that these inorganic ionsmay be involved in the polymerization.The specific consump-tion of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC.The values are much lower than those of the degradation-based processes in treating the same coking wastewater,and also are lower than those of most processes previously reported for coking wastewater treatment.展开更多
Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is...Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is restricted due to its unsatisfactory oxidant activation efficiency.Fortunately,recently remarkable research on deep activation mechanisms and modification of MNO_(x)have been undertaken to improve its reactivity.Herein,modification enhancement mechanisms of MNO_(x)to efficiently degrade various organic contaminants were discussed and highlighted,including metal doping,coupling with other metal oxides,composite with carbonaceous material,and compounding with other support.The activation mechanisms of different MNO_(x)and derivative-modified material(such as doped MNO_(x),metal oxide-MNO_(x)hybrids,and MNO_(x)-carbonaceous material hybrids)were summarized in great details,which was specifically categorized into both radical and non-radical pathways.The effects of pH,inorganic ions,and natural organic matter on degradation reactions are also discussed.Finally,future research directions and perspectives are presented to provide a clear interpretation on the MNO_(x)initiated AOPs.展开更多
Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibi...Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.展开更多
In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their hi...In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.展开更多
Nonradical oxidation has received wide attention in advanced oxidation processes for environmental remediation.Understanding the relationship between material characteristics and their ability to initiate nonradical o...Nonradical oxidation has received wide attention in advanced oxidation processes for environmental remediation.Understanding the relationship between material characteristics and their ability to initiate nonradical oxidation processes is the key to better material design and performance.Herein,a novel titanium-based metal-organic framework MIL-125-Ti/H_(2)O_(2) system was established to show a highly selective degradation efficacy toward tetracycline antibiotics.MIL-125-Ti with the abundance of TiO6 octahedra units was found to effectively activate H_(2)O_(2) under dark conditions by forming an oxidative Ti-peroxo complex.The presence of the Ti-peroxo complex,confirmed by UV-visible spectrophotometer,fourier transform infrared spectroscopy,and X-ray photoelectron spectroscopy characterizations,showed superior degradation(>95%removal rate)of oxytetracycline hydrochloride(OTC),doxycycline hydrochloride,chlortetracycline hydrochloride,and tetracycline.Density functional theory calculations were performed to assist the elucidation on the mechanism of H_(2)O_(2) activation and antibiotics degradation.The MIL-125-Ti/H_(2)O_(2) system was highly resistant to halogens and background organics,and could well maintain its original catalytic activity in actual water matrices.It retained the ability to degrade 75%of OTC within ten test cycles.This study provides new insight into the nonradical oxidation process initiated by the unique Ti-peroxo complex of Ti-based MOF.展开更多
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c...Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.展开更多
Heterogeneous catalysts promoting efficient production of reactive species and dynamically stabilized electron transfer mechanisms for peroxomonosulfates(PMS)still lack systematic investigation.Herein,a more stable ma...Heterogeneous catalysts promoting efficient production of reactive species and dynamically stabilized electron transfer mechanisms for peroxomonosulfates(PMS)still lack systematic investigation.Herein,a more stable magnetic layered double oxides(CFLDO/N-C),was designed using self-polymerization and high temperature carbonization of dopamine.The CFLDO/N-C/PMS system effectively activated PMS to remove 99%(k=0.737 min^(-1))of tetracycline(TC)within 10 min.The CFLDO/N-C/PMS system exhibited favorable resistance to inorganic anions and natural organics,as well as satisfactory suitability for multiple pollutants.The magnetic properties of the catalyst facilitated the separation of catalysts from the liquid phase,resulting in excellent reproducibility and effectively reducing the leaching of metal ions.An electronic bridge was constructed between cobalt(the active platform of the catalyst)and PMS,inducing PMS to break the O-O bond to generate the active species.The combination of static analysis and dynamic evolution confirmed the effective adsorption of PMS on the catalyst surface as well as the strong radical-assisted electron transfer process.Eventually,we further identified the sites where the reactive species attacked the TC and evaluated the toxicity of the intermediates.These findings offer innovative insights into the rapid degradation of pollutants achieved by transition metals in SR-AOPs and its mechanistic elaboration.展开更多
S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB...S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.展开更多
Advanced oxidation processes (AOPs) exhibit significant potential forwater disinfection dueto their generation of large quantities of highly oxidizing free radicals. However, the neglectof viable but nonculturable (VB...Advanced oxidation processes (AOPs) exhibit significant potential forwater disinfection dueto their generation of large quantities of highly oxidizing free radicals. However, the neglectof viable but nonculturable (VBNC) cells obscures their true disinfection efficacy and potentialenvironmental health risks. Therefore, the study evaluated the disinfection effectivenessand mechanisms of typical AOPs, including Fe/H_(2)O_(2), Fe/persulfate (PS), and O_(3), fromthe perspective of the production of VBNC bacteria. The results indicate that Fe/PS exhibitsthe strongest bacterial inactivation rate (99.94%), and the cells lose their ability to reactivate.Fe/H_(2)O_(2) and O_(3) induce more cells to enter the VBNC state compared to Fe/PS. Moreover,different AOPs result in varying levels of free radical production and utilization efficiency,with SO(4)^(·−) and O_(3) exhibiting greater selectivity in deactivating bacteria comparedto HO^(·). The inhibition of VBNC bacteria production by Fe/PS treatment may be attributed tothe combined action of HO^(·) and SO(4)^(·−) on microorganisms, leading to oxidative stress andmetabolic disruption in bacteria through the inhibition of biofilm formation and aminoacyltRNAbiosynthesis (p < 0.05), thereby causing direct bacterial death rather than entry intothe VBNC state. In contrast, Fe/H_(2)O_(2) and O_(3) result in the upregulation of the metabolismof alanine, aspartate, and glutamate, as well as styrene degradation capacity by the bacteria,leading to the production of more VBNC bacteria. Overall, the study offers insights intomitigating potential biological risks in water disinfection and developing environmentallyfriendly and efficient disinfection technologies.展开更多
Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illust...Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.展开更多
Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for d...Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.展开更多
Mg alloys with a combination of high strength and excellent ductility are increasingly required for structural applications.This study investigates the influence of advanced processing techniques on the mechanical pro...Mg alloys with a combination of high strength and excellent ductility are increasingly required for structural applications.This study investigates the influence of advanced processing techniques on the mechanical properties and microstructural evolution of Mg-Gd-Y-Zn-Zr alloys.Utilizing a combination of double extrusion and stepwise hot rolling followed by aging treatments,significant enhancements in the mechanical performance of these alloys are demonstrated.The processing techniques applied lead to notable refinement in grain-size and modifications in the microstructure,including the transformation of LPSO phases from 18R to 24R and the dispersion of β phase particles.These microstructural transformations contribute to a substantial increase in yield-strength,ultimate-tensile-strength,and ductility.Furthermore,findings reveal that these improvements are also supported by alterations in material texture,which influence dislocation dynamics as indicated by changes in Kernel Average Misorientation(KAM)values.The combined effect of grain boundary(GB)strengthening,phase distribution,and texture modification elucidates the observed mechanical enhancements.This research provides valuable insights into the design and optimization of Mg-Gd-Y-Zn-Zr alloys for critical applications in aerospace and automotive industries where high strength and ductility are paramount.展开更多
Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stab...Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites,thus meeting fundamental requirements for practical application.The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts(SACs)prepared based on silicon-based materials(mesoporous silica,silicon-based minerals,and organosilicon materials)has unique advantages such as structural stability(especially important under strong oxidation conditions)and environmental protection.In this paper,the preparation strategies for the silicon-based SACs were assessed first,and the structural characteristics of various silicon-based SACs are systematically discussed,their application process and mechanism in Fenton-like process to achieve water purification are investigated,and the progress of Fenton-like process in density functional theory(DFT)of siliconbased derived single atom catalysts is summarized.In this paper,the preparation strategies and applications of silicon-based derived SACs are analyzed in depth,and their oxidation activities and pathways to different pollutants in water are reviewed.In addition,this paper also summarizes the device design and application of silicon-based derived SACs,and prospects the future development of silicon-based SACs in Fenton-like applications.展开更多
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
基金supported by Natural Science Foundation of China(Nos.52070133,42107073,42477075)Natural Science Foundation of Sichuan Province(No.2024NSFSC0130)+2 种基金the Sichuan Science and Technology Program(No.2024NSFTD0014)Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse(No.2023SSY02061)Key R&D Program of Heilongjiang Province(No.2023ZX02C01)。
文摘Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that are readily available,cost-effective,and exhibit minimal ecological toxicity.These LVSOs have the ability to generate or promote the generation of strong oxidants or reductants,which makes them widely used in advanced oxidation processes(AOPs)and advanced reduction processes(ARPs).This article provides a comprehensive review of the recent advancements in AOPs and ARPs involving LVSOs,alongside an examination of the fundamental principles governing the generation of active species within these processes.LVSOs fulfill three primary functions in AOPs:Serving as sources of reactive oxygen species(ROS),auxiliary agents,and activators.Particular attention is devoted to elucidating the reaction mechanisms through which LVSOs,in conjunction with metal ions,metal oxides,ultraviolet light(UV),and ozone,produce potent oxidizing agents in both homogeneous and heterogeneous systems.Regarding ARPs,this review delineates the mechanisms by which LVSOs generate strong reducing agents,including hydrated electrons,hydrogen radicals,and sulfite radicals,under UV irradiation,while also exploring the interactions between these reductants and pollutants.The review identifies existing gaps within the current framework and proposes future research avenues to address these challenges.
基金supported by the Research Platform Open Fund Project of Zhejiang Industry and Trade Vocation College(No.Kf202203)the Scientific Research Project of CCCC First Harbor Engineering Company Ltd.(No.2022-7-2)+3 种基金the National Natural Science Foundation of China(No.22406142)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20230262)the Fellowship of China Postdoctoral Science Foundation(No.2023M732636)the Shanghai Post-doctoral Excellence Program(No.2023755).
文摘Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.
基金the financial support from National Natural Science Foundation of China(Nos.52100204 and 52330005)Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910004016)。
文摘The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,UV/H_(2)O_(2),UV/Fenton,UV/persulfate,UV/chlorine,UV/ozone,and UV/peracetic acid.In this review,we collated recent advances in application of UV-AOPs for the abatement of fiuoroquinolones(FQs)as widely used class of antibiotics.Representative FQs of ciprofioxacin,norfioxacin,ofioxacin,and enrofioxacin were most extensively studied in the state-of-art studies.The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous fiow UV reactors were compared towards practical applications in UV-AOPs.Generally,degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix.Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs.Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2024LHMS05048).
文摘ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS*complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.
基金supported by the Haiyou Program for Industry Leading Talent Innovation Team Project(No.1362022088)。
文摘A novel inverted advanced treatment process of ozone/hydrogen peroxide(O_(3)/H_(2)O_(2))and biological activated carbon fluidized bed(BACFB)before the conventional process has been developed to treat the high-algae-laden reservoir water,which aims to enhance the removal of dissolved organic matter(DOM),odorants as well as the precursors of disinfection by-products(DBPs).Before and after the renovation,the average value of chemical oxygen demand(determined by potassium permanganate method)in the filter effluent decreased from 2.18 to 1.15 mg/L.Likewise,the average concentrations of turbidity dropped from 0.640 to 0.098 NTU,indicating substantial improvement following the renovation.Formation potential of DBPs such as trihalomethanes and haloacetic acids were also reduced greatly.The results of the polarity rapid analysis method indicated that ozonation primarily removed non-polar and positively charged organic matter,while coagulation-sedimentation targeted non-positive organic matter.The results of fluorescence spectroscopy and highresolution mass spectrometry indicated that the new process effectively removed DOM,and decreased the number of nitrogen-containing compounds.Additionally,the inverted O_(3)/H_(2)O_(2) and BACFB process promoted the dynamic transformation between DOM components and significantly reduced overall aromatic content.This study provided a promising solution for treating high-algae-laden source water and verified the feasibility and effectiveness of this novel process in practice.
基金the National Natural Science Foundation of China(Nos.52170088 and 52070133)China Postdoctoral Science Foundation(No.2021M690844)Sichuan Science and Technology Program(No.2021JDRC0027)for financially supporting this study.
文摘Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environment will induce diseases and pose a powerful threat to human health and safety,and environmental ecology.In recent years,advanced oxidation processes(AOPs),particularly photocatalysis,electrocatalysis,and ozone catalysis have been developed as widespread and effective techniques for hospital sewage treatments.However,there is a lack of systematic comparison and review of the prior studies on hospital sewage treatment using AOPs systems.This review elaborates on the mechanisms,removal efficiencies,and advantages/disadvantages of these AOPs systems for hospital wastewater decontamination and disinfection.Meanwhile,some novel and potential technologies such as photo-electrocatalysis,electro-peroxone,Fenton/Fenton-like,and piezoelectric catalysis are also included and summarized.Moreover,we further summarize and compare the capacity of these AOPs to treat the actual hospital wastewater under the impact of the water matrix and pH,and estimate the economic cost of these technologies for practical application.Finally,the future development directions of AOPs for hospital wastewater decontamination and disinfection have been prospected.Overall,this study provides a comparison and overview of these AOP systems in an attempt to raise extensive concerns about hospital wastewater decontamination and disinfection technologies and guide researchers to discover the future directions of technologies optimization,which would be a crucial step forward in the field of hospital sewage treatment.
基金supported by the National Natural Sci-ence Foundation of China(No.52170078)Zheng-Qian Liu gratefully acknowledges the China Scholarship Council(No.202106165001)for financial support.
文摘Industrial wastewater should be treated with caution due to its potential environmental risks.In this study,a polymerization-based cathode/Fe^(3+)/peroxydisulfate(PDS)process was employed for the first time to treat a raw coking wastewater,which can achieve simulta-neous organics abatement and recovery by converting organic contaminants into separable solid organic-polymers.The results confirm that several dominant organic contaminants in coking wastewater such as phenol,cresols,quinoline and indole can be induced to poly-merize by self-coupling or cross-coupling.The total chemical oxygen demand(COD)abate-ment from coking wastewater is 46.8%and the separable organic-polymer formed from or-ganic contaminants accounts for 62.8%of the abated COD.Dissolved organic carbon(DOC)abatement of 41.9%is achieved with about 89%less PDS consumption than conventional degradation-based process.Operating conditions such as PDS concentration,Fe3+concen-tration and current density can affect the COD/DOC abatement and organic-polymer yield by regulating the generation of reactive radicals.ESI-MS result shows that some organic-polymers are substituted by inorganic ions such as Cl^(-),Br^(-),I^(-),NH_(4)^(+),SCN^(-)and CN^(-),suggest-ing that these inorganic ionsmay be involved in the polymerization.The specific consump-tion of this coking wastewater treatment is 27 kWh/kg COD and 95 kWh/kg DOC.The values are much lower than those of the degradation-based processes in treating the same coking wastewater,and also are lower than those of most processes previously reported for coking wastewater treatment.
基金the National Natural Science Foundation of China(Nos.52170088 and 52070133)for financial support。
文摘Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is restricted due to its unsatisfactory oxidant activation efficiency.Fortunately,recently remarkable research on deep activation mechanisms and modification of MNO_(x)have been undertaken to improve its reactivity.Herein,modification enhancement mechanisms of MNO_(x)to efficiently degrade various organic contaminants were discussed and highlighted,including metal doping,coupling with other metal oxides,composite with carbonaceous material,and compounding with other support.The activation mechanisms of different MNO_(x)and derivative-modified material(such as doped MNO_(x),metal oxide-MNO_(x)hybrids,and MNO_(x)-carbonaceous material hybrids)were summarized in great details,which was specifically categorized into both radical and non-radical pathways.The effects of pH,inorganic ions,and natural organic matter on degradation reactions are also discussed.Finally,future research directions and perspectives are presented to provide a clear interpretation on the MNO_(x)initiated AOPs.
基金supported by grants from the Research Grants Council of the Hong Kong SAR,China(T21-705/20-N and 16210221).
文摘Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.
基金financially supported by National Natural Science Foundation of China(Nos.U22A20403,22006047)Natural Science Foundation of Hebei Province(Nos.E2021203140,B2021203016)Hebei Industrial Innovation and Entrepreneurship team(No.215A7608D)。
文摘In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.
基金supported by the National Natural Science Foundation of China(Nos.21777116,22176150)the Fundamental Research Funds for the Central Universities。
文摘Nonradical oxidation has received wide attention in advanced oxidation processes for environmental remediation.Understanding the relationship between material characteristics and their ability to initiate nonradical oxidation processes is the key to better material design and performance.Herein,a novel titanium-based metal-organic framework MIL-125-Ti/H_(2)O_(2) system was established to show a highly selective degradation efficacy toward tetracycline antibiotics.MIL-125-Ti with the abundance of TiO6 octahedra units was found to effectively activate H_(2)O_(2) under dark conditions by forming an oxidative Ti-peroxo complex.The presence of the Ti-peroxo complex,confirmed by UV-visible spectrophotometer,fourier transform infrared spectroscopy,and X-ray photoelectron spectroscopy characterizations,showed superior degradation(>95%removal rate)of oxytetracycline hydrochloride(OTC),doxycycline hydrochloride,chlortetracycline hydrochloride,and tetracycline.Density functional theory calculations were performed to assist the elucidation on the mechanism of H_(2)O_(2) activation and antibiotics degradation.The MIL-125-Ti/H_(2)O_(2) system was highly resistant to halogens and background organics,and could well maintain its original catalytic activity in actual water matrices.It retained the ability to degrade 75%of OTC within ten test cycles.This study provides new insight into the nonradical oxidation process initiated by the unique Ti-peroxo complex of Ti-based MOF.
基金supported by National Natural Science Foundation of China(52003240)Zhejiang Provincial Natural Science Foundation of China(LQ21B070007)China Postdoctoral Science Foundation(2022M722818).
文摘Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.
基金supported by the Natural Science Foundation of China(62105292)the Shaanxi Fundamental Science Research Project for Mathematics and Physics(Grant no.22JSY015)+3 种基金the Young Talent Fund of Xi’an Association for Science and Technology(959202313020)the National Natural Science Foundation of Shaanxi Province(No.2021GXLH-Z-0 and 2020JZ-02)the project of Innovative Team of Shaanxi Province(2020TD001)the China Fundamental Research Funds for the Central Universities
文摘Heterogeneous catalysts promoting efficient production of reactive species and dynamically stabilized electron transfer mechanisms for peroxomonosulfates(PMS)still lack systematic investigation.Herein,a more stable magnetic layered double oxides(CFLDO/N-C),was designed using self-polymerization and high temperature carbonization of dopamine.The CFLDO/N-C/PMS system effectively activated PMS to remove 99%(k=0.737 min^(-1))of tetracycline(TC)within 10 min.The CFLDO/N-C/PMS system exhibited favorable resistance to inorganic anions and natural organics,as well as satisfactory suitability for multiple pollutants.The magnetic properties of the catalyst facilitated the separation of catalysts from the liquid phase,resulting in excellent reproducibility and effectively reducing the leaching of metal ions.An electronic bridge was constructed between cobalt(the active platform of the catalyst)and PMS,inducing PMS to break the O-O bond to generate the active species.The combination of static analysis and dynamic evolution confirmed the effective adsorption of PMS on the catalyst surface as well as the strong radical-assisted electron transfer process.Eventually,we further identified the sites where the reactive species attacked the TC and evaluated the toxicity of the intermediates.These findings offer innovative insights into the rapid degradation of pollutants achieved by transition metals in SR-AOPs and its mechanistic elaboration.
基金financially supported by the National Natural Science Foundation of China(Nos.51602018 and 51902018)the Natural Science Foundation of Beijing Municipality(No.2154052)+3 种基金the China Postdoctoral Science Foundation(No.2014M560044)the Fundamental Research Funds for the Central Universities(No.FRF-MP-20-22)USTB Research Center for International People-to-people Exchange in Science,Technology and Civilization(No.2022KFYB007)Education and Teaching Reform Foundation at University of Science and Technology Beijing(Nos.2023JGC027,KC2022QYW06,and KC2022TS09)。
文摘S and Co co-doped carbon catalysts were prepared via pyrolysis of MOF-71 and thiourea mixtures at 800℃at a mass ratio of MOF-71 to thiourea of 1:0.1 to effectively activate peroxymonosulfate(PMS)for methylene blue(MB)degradation.The effects of two different mixing routes were identified on the MB degradation performance.Particularly,the catalyst obtained by the alcohol solvent evaporation(MOF-AEP)mixing route could degrade 95.60%MB(50 mg/L)within 4 min(degradation rate:K=0.78 min^(-1)),which was faster than that derived from the direct grinding method(MOF-DGP,80.97%,K=0.39 min^(-1)).X-ray photoelectron spectroscopy revealed that the Co-S content of MOF-AEP(43.39at%)was less than that of MOF-DGP(54.73at%),and the proportion of C-S-C in MOF-AEP(13.56at%)was higher than that of MOF-DGP(10.67at%).Density functional theory calculations revealed that the adsorption energy of Co for PMS was -2.94 eV when sulfur was doped as C-S-C on the carbon skeleton,which was higher than that when sulfur was doped next to cobalt in the form of Co-S bond(-2.86 eV).Thus,the C-S-C sites might provide more contributions to activate PMS compared with Co-S.Furthermore,the degradation parameters,including pH and MOF-AEP dosage,were investigated.Finally,radical quenching experiments and electron paramagnetic resonance(EPR)measurements revealed that ^(1)O_(2)might be the primary catalytic species,whereas·O~(2-)might be the secondary one in degrading MB.
基金supported by Shandong Provincial Natural Science Foundation,China(Nos.ZR2020ZD34 and ZR2023YQ031)the National Natural Science Foundation of China(Nos.42077391 and 42377428)the Instrument Improvement Funds of ShandongUniversity Public Technology Platform(No.ts20230108).
文摘Advanced oxidation processes (AOPs) exhibit significant potential forwater disinfection dueto their generation of large quantities of highly oxidizing free radicals. However, the neglectof viable but nonculturable (VBNC) cells obscures their true disinfection efficacy and potentialenvironmental health risks. Therefore, the study evaluated the disinfection effectivenessand mechanisms of typical AOPs, including Fe/H_(2)O_(2), Fe/persulfate (PS), and O_(3), fromthe perspective of the production of VBNC bacteria. The results indicate that Fe/PS exhibitsthe strongest bacterial inactivation rate (99.94%), and the cells lose their ability to reactivate.Fe/H_(2)O_(2) and O_(3) induce more cells to enter the VBNC state compared to Fe/PS. Moreover,different AOPs result in varying levels of free radical production and utilization efficiency,with SO(4)^(·−) and O_(3) exhibiting greater selectivity in deactivating bacteria comparedto HO^(·). The inhibition of VBNC bacteria production by Fe/PS treatment may be attributed tothe combined action of HO^(·) and SO(4)^(·−) on microorganisms, leading to oxidative stress andmetabolic disruption in bacteria through the inhibition of biofilm formation and aminoacyltRNAbiosynthesis (p < 0.05), thereby causing direct bacterial death rather than entry intothe VBNC state. In contrast, Fe/H_(2)O_(2) and O_(3) result in the upregulation of the metabolismof alanine, aspartate, and glutamate, as well as styrene degradation capacity by the bacteria,leading to the production of more VBNC bacteria. Overall, the study offers insights intomitigating potential biological risks in water disinfection and developing environmentallyfriendly and efficient disinfection technologies.
基金financially supported by National Key R&D Program International Cooperation Project(2023YFE0108100)Natural Science Foundation of China(No.52170085)+2 种基金Key Project of Natural Science Foundation of Tianjin(No.21JCZDJC00320)Tianjin Post-graduate Students Research and Innovation Project(2021YJSB013)Fundamental Research Funds for the Central Universities,Nankai University.
文摘Biomass-derived heteroatom self-doped cathode catalysts has attracted considerable interest for electrochemical advanced oxidation processes(EAOPs)due to its high performance and sustainable synthesis.Herein,we illustrated the morphological fates of waste leaf-derived graphitic carbon(WLGC)produced from waste ginkgo leaves via pyrolysis temperature regulation and used as bifunctional cathode catalyst for simultaneous H_(2)O_(2) electrochemical generation and organic pollutant degradation,discovering S/N-self-doping shown to facilitate a synergistic effect on reactive oxygen species(ROS)generation.Under the optimum temperature of 800℃,the WLGC exhibited a H_(2)O_(2) selectivity of 94.2%and tetracycline removal of 99.3%within 60 min.Density functional theory calculations and in-situ Fourier transformed infrared spectroscopy verified that graphitic N was the critical site for H_(2)O_(2) generation.While pyridinic N and thiophene S were the main active sites responsible for OH generation,N vacancies were the active sites to produce ^(1)O_(2) from O_(2).The performance of the novel cathode for tetracycline degradation remains well under a wide pH range(3–11),maintaining excellent stability in 10 cycles.It is also industrially applicable,achieving satisfactory performance treating in real water matrices.This system facilitates both radical and non-radical degradation,offering valuable advances in the preparation of cost-effective and sustainable electrocatalysts and hold strong potentials in metal-free EAOPs for organic pollutant degradation.
基金University Synergy Innovation Program of Anhui Province(GXXT-2022-083)Science and Technology Plan Project of Wuhu City,China(2023kx12)Anhui Provincial Department of Education New Era Education Project(2023xscx070)。
文摘Owing to outstanding hydrophilicity and ionic interaction,layered double hydroxides(LDHs)have emerged as a promising carrier for high performance catalysts.However,the synthesis of new specialized catalytic LDHs for degradation of antibiotics still faces some challenges.In this study,a CoFe_(2)O_(4)/MgAl-LDH composite catalyst was synthesized using a hydrothermal coprecipitation method.Comprehensive characterization reveals that the surface of MgAl-LDH is covered with nanometer CoFe_(2)O_(4) particles.The specific surface area of CoFe_(2)O_(4)/MgAl-LDH is 82.84 m^(2)·g^(-)1,which is 2.34 times that of CoFe_(2)O_(4).CoFe_(2)O_(4)/MgAl-LDH has a saturation magnetic strength of 22.24 A·m^(2)·kg^(-1) facilitating efficient solid-liquid separation.The composite catalyst was employed to activate peroxymonosulfate(PMS)for the efficient degradation of tetracycline hydrochloride(TCH).It is found that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH significantly exceeds that of CoFe_(2)O_(4).The maximum TCH removal reaches 98.2%under the optimal conditions([TCH]=25 mg/L,[PMS]=1.5 mmol/L,CoFe_(2)O_(4)/MgAl-LDH=0.20 g/L,pH 7,and T=25℃).Coexisting ions in the solution,such as SO_(4)^(2-),Cl-,H_(2)PO_(4)^(-),and CO_(3)^(2-),have a negligible effect on catalytic performance.Cyclic tests demonstrate that the catalytic performance of CoFe_(2)O_(4)/MgAl-LDH remains 67.2%after five cycles.Mechanism investigations suggest that O_(2)^(•-)and ^(1)O_(2) produced by CoFe_(2)O_(4)/MgAl-LDH play a critical role in the catalytic degradation.
基金financially supported by the financial supports from the National Natural Science Foundation of China(Grant No.52027805).
文摘Mg alloys with a combination of high strength and excellent ductility are increasingly required for structural applications.This study investigates the influence of advanced processing techniques on the mechanical properties and microstructural evolution of Mg-Gd-Y-Zn-Zr alloys.Utilizing a combination of double extrusion and stepwise hot rolling followed by aging treatments,significant enhancements in the mechanical performance of these alloys are demonstrated.The processing techniques applied lead to notable refinement in grain-size and modifications in the microstructure,including the transformation of LPSO phases from 18R to 24R and the dispersion of β phase particles.These microstructural transformations contribute to a substantial increase in yield-strength,ultimate-tensile-strength,and ductility.Furthermore,findings reveal that these improvements are also supported by alterations in material texture,which influence dislocation dynamics as indicated by changes in Kernel Average Misorientation(KAM)values.The combined effect of grain boundary(GB)strengthening,phase distribution,and texture modification elucidates the observed mechanical enhancements.This research provides valuable insights into the design and optimization of Mg-Gd-Y-Zn-Zr alloys for critical applications in aerospace and automotive industries where high strength and ductility are paramount.
基金supported by National Natural Science Foundation of China(No.52170086)Natural Science Foundation of Shandong Province(No.ZR2021ME013)+1 种基金Natural science Foundation of Shaanxi province(No.2024JC-YBQN-0252)Special Scientific Research Project of Hanzhong City-Shaanxi University of Technology Co-construction State Key Laboratory(No.SXJ2106)。
文摘Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites,thus meeting fundamental requirements for practical application.The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts(SACs)prepared based on silicon-based materials(mesoporous silica,silicon-based minerals,and organosilicon materials)has unique advantages such as structural stability(especially important under strong oxidation conditions)and environmental protection.In this paper,the preparation strategies for the silicon-based SACs were assessed first,and the structural characteristics of various silicon-based SACs are systematically discussed,their application process and mechanism in Fenton-like process to achieve water purification are investigated,and the progress of Fenton-like process in density functional theory(DFT)of siliconbased derived single atom catalysts is summarized.In this paper,the preparation strategies and applications of silicon-based derived SACs are analyzed in depth,and their oxidation activities and pathways to different pollutants in water are reviewed.In addition,this paper also summarizes the device design and application of silicon-based derived SACs,and prospects the future development of silicon-based SACs in Fenton-like applications.