Advanced Process Control (APC) is necessary for oil refining and chemical process in China, but some problems have emerged in the application of APC techniques in this field. This paper discusses the conditions of A...Advanced Process Control (APC) is necessary for oil refining and chemical process in China, but some problems have emerged in the application of APC techniques in this field. This paper discusses the conditions of APC application concerning process design, distributed control system (DCS) choice and regular control. It analyzes the problems and strategies in APC application. Some suggestions are proposed for the enterprise to benefit from APC application.展开更多
Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that ...Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that are readily available,cost-effective,and exhibit minimal ecological toxicity.These LVSOs have the ability to generate or promote the generation of strong oxidants or reductants,which makes them widely used in advanced oxidation processes(AOPs)and advanced reduction processes(ARPs).This article provides a comprehensive review of the recent advancements in AOPs and ARPs involving LVSOs,alongside an examination of the fundamental principles governing the generation of active species within these processes.LVSOs fulfill three primary functions in AOPs:Serving as sources of reactive oxygen species(ROS),auxiliary agents,and activators.Particular attention is devoted to elucidating the reaction mechanisms through which LVSOs,in conjunction with metal ions,metal oxides,ultraviolet light(UV),and ozone,produce potent oxidizing agents in both homogeneous and heterogeneous systems.Regarding ARPs,this review delineates the mechanisms by which LVSOs generate strong reducing agents,including hydrated electrons,hydrogen radicals,and sulfite radicals,under UV irradiation,while also exploring the interactions between these reductants and pollutants.The review identifies existing gaps within the current framework and proposes future research avenues to address these challenges.展开更多
Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials...Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.展开更多
The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,...The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,UV/H_(2)O_(2),UV/Fenton,UV/persulfate,UV/chlorine,UV/ozone,and UV/peracetic acid.In this review,we collated recent advances in application of UV-AOPs for the abatement of fiuoroquinolones(FQs)as widely used class of antibiotics.Representative FQs of ciprofioxacin,norfioxacin,ofioxacin,and enrofioxacin were most extensively studied in the state-of-art studies.The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous fiow UV reactors were compared towards practical applications in UV-AOPs.Generally,degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix.Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs.Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.展开更多
ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high...ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS*complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.展开更多
A novel inverted advanced treatment process of ozone/hydrogen peroxide(O_(3)/H_(2)O_(2))and biological activated carbon fluidized bed(BACFB)before the conventional process has been developed to treat the high-algae-la...A novel inverted advanced treatment process of ozone/hydrogen peroxide(O_(3)/H_(2)O_(2))and biological activated carbon fluidized bed(BACFB)before the conventional process has been developed to treat the high-algae-laden reservoir water,which aims to enhance the removal of dissolved organic matter(DOM),odorants as well as the precursors of disinfection by-products(DBPs).Before and after the renovation,the average value of chemical oxygen demand(determined by potassium permanganate method)in the filter effluent decreased from 2.18 to 1.15 mg/L.Likewise,the average concentrations of turbidity dropped from 0.640 to 0.098 NTU,indicating substantial improvement following the renovation.Formation potential of DBPs such as trihalomethanes and haloacetic acids were also reduced greatly.The results of the polarity rapid analysis method indicated that ozonation primarily removed non-polar and positively charged organic matter,while coagulation-sedimentation targeted non-positive organic matter.The results of fluorescence spectroscopy and highresolution mass spectrometry indicated that the new process effectively removed DOM,and decreased the number of nitrogen-containing compounds.Additionally,the inverted O_(3)/H_(2)O_(2) and BACFB process promoted the dynamic transformation between DOM components and significantly reduced overall aromatic content.This study provided a promising solution for treating high-algae-laden source water and verified the feasibility and effectiveness of this novel process in practice.展开更多
Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environ...Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environment will induce diseases and pose a powerful threat to human health and safety,and environmental ecology.In recent years,advanced oxidation processes(AOPs),particularly photocatalysis,electrocatalysis,and ozone catalysis have been developed as widespread and effective techniques for hospital sewage treatments.However,there is a lack of systematic comparison and review of the prior studies on hospital sewage treatment using AOPs systems.This review elaborates on the mechanisms,removal efficiencies,and advantages/disadvantages of these AOPs systems for hospital wastewater decontamination and disinfection.Meanwhile,some novel and potential technologies such as photo-electrocatalysis,electro-peroxone,Fenton/Fenton-like,and piezoelectric catalysis are also included and summarized.Moreover,we further summarize and compare the capacity of these AOPs to treat the actual hospital wastewater under the impact of the water matrix and pH,and estimate the economic cost of these technologies for practical application.Finally,the future development directions of AOPs for hospital wastewater decontamination and disinfection have been prospected.Overall,this study provides a comparison and overview of these AOP systems in an attempt to raise extensive concerns about hospital wastewater decontamination and disinfection technologies and guide researchers to discover the future directions of technologies optimization,which would be a crucial step forward in the field of hospital sewage treatment.展开更多
Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is...Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is restricted due to its unsatisfactory oxidant activation efficiency.Fortunately,recently remarkable research on deep activation mechanisms and modification of MNO_(x)have been undertaken to improve its reactivity.Herein,modification enhancement mechanisms of MNO_(x)to efficiently degrade various organic contaminants were discussed and highlighted,including metal doping,coupling with other metal oxides,composite with carbonaceous material,and compounding with other support.The activation mechanisms of different MNO_(x)and derivative-modified material(such as doped MNO_(x),metal oxide-MNO_(x)hybrids,and MNO_(x)-carbonaceous material hybrids)were summarized in great details,which was specifically categorized into both radical and non-radical pathways.The effects of pH,inorganic ions,and natural organic matter on degradation reactions are also discussed.Finally,future research directions and perspectives are presented to provide a clear interpretation on the MNO_(x)initiated AOPs.展开更多
In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their hi...In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.展开更多
Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibi...Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.展开更多
Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-c...Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.展开更多
Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including...Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.展开更多
Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stab...Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites,thus meeting fundamental requirements for practical application.The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts(SACs)prepared based on silicon-based materials(mesoporous silica,silicon-based minerals,and organosilicon materials)has unique advantages such as structural stability(especially important under strong oxidation conditions)and environmental protection.In this paper,the preparation strategies for the silicon-based SACs were assessed first,and the structural characteristics of various silicon-based SACs are systematically discussed,their application process and mechanism in Fenton-like process to achieve water purification are investigated,and the progress of Fenton-like process in density functional theory(DFT)of siliconbased derived single atom catalysts is summarized.In this paper,the preparation strategies and applications of silicon-based derived SACs are analyzed in depth,and their oxidation activities and pathways to different pollutants in water are reviewed.In addition,this paper also summarizes the device design and application of silicon-based derived SACs,and prospects the future development of silicon-based SACs in Fenton-like applications.展开更多
This article reviews advanced process and electron device technology of integrated circuits,including recent featuring progress and potential solutions for future development.In 5 years,for pushing the performance of ...This article reviews advanced process and electron device technology of integrated circuits,including recent featuring progress and potential solutions for future development.In 5 years,for pushing the performance of fin field-effect transistors(FinFET)to its limitations,several processes and device boosters are provided.Then,the three-dimensional(3 D)integration schemes with alternative materials and device architectures will pave paths for future technology evolution.Finally,it could be concluded that Moore’s law will undoubtedly continue in the next 15 years.展开更多
In recent years,with the emergence of new pollutants,the effective treatment of wastewater has become very important.Persulfate-based advanced oxidation processes have been successfully applied to the treatment of was...In recent years,with the emergence of new pollutants,the effective treatment of wastewater has become very important.Persulfate-based advanced oxidation processes have been successfully applied to the treatment of wastewater,such as wastewater containing antibiotics,pharmaceuticals and personal care products,dyes,endocrine-disrupting chemicals,chlorinated organic pollutants,and phenolics,for the degradation of refractory organic contaminants.This paper summarizes the production of sulfate radicals,which can be generated by the activation of persulfate via conventional and emerging approaches.The existing problems of persulfate-based advanced oxidation processes were analyzed in detail,including residual sulfates,coexisting factors(coexisting inorganic anions and natural organic matter),and energy consumption.This paper proposes corresponding possible solutions to the problems mentioned above,and this paper could provide a reference for the application of persulfate-based advanced oxidation processes in actual wastewater treatment.展开更多
Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing at...Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing attentions and various technologies have been developed,among which advanced oxidation processes(AOPs)are more effectively and promising.Progresses on five representative types of AOPs,including Fenton(like)oxidation,electrochemical oxidation,photocatalytic oxidation,ozonation and discharge plasma oxidation for heavy metal complexe s degradation are summarized in this review.Their rationales,advantages,applications,challenges and prospects are introduced independently.Combinations among these AOPs,such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation,are also comprehensively highlighted.Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively.展开更多
Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and...Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and Ce-based catalysts have exhibited excellent performance.Recently,the development and application of Ce-based catalysts in various AOPs have been reported.Our study conducts the first review in this rapid growing field.This paper clarifies the variety and properties of Ce-based catalysts.Their applications in different AOP systems (catalytic ozonation,photodegradation,Fenton-like reactions,sulfate radicalbased AOPs,and catalytic sonochemistry) are discussed.Different Ce-based catalysts suit different reaction systems and produce different active radicals.Finally,future research directions of Ce-based catalysts in AOP systems are suggested.展开更多
Herein,we prepa red novel three-dimensional(3D)gear-s haped Co3O4@C(Co3O4 modified by amorphous carbon)and sheet-like SnO2/CC(SnO2 grow on the carbon cloth)as anode and cathode to achieve efficient removal of 4-nitrop...Herein,we prepa red novel three-dimensional(3D)gear-s haped Co3O4@C(Co3O4 modified by amorphous carbon)and sheet-like SnO2/CC(SnO2 grow on the carbon cloth)as anode and cathode to achieve efficient removal of 4-nitrophenol(4-NP)in the presence of peroxymonosulfate(PMS)and simultaneous electrocatalytic reduction of CO2,respectively.In this process,4-NP was mineralized into CO2 by the Co3O4@C,and the generated CO2 was reduced into HCOOH by the sheet-like SnO2/CC cathode.Compared with the pure Co0.5(Co3O4 was prepared using 0.5 g urea)with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP(60 mL,10 mg/L)increased from 74.5%-85.1%in 60 min using the Co0.5 modified by amorphous carbon(Co0.5@C).Furthermore,when the voltage of 1.0 V was added in the anodic system of Co0.5@C with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP increased from 85.1%-99.1%when Pt was used as cathode.In the experiments of 4-NP degradation coupled with simultaneous electrocatalytic CO2 reduction,the degradation efficiency of 4-NP was 99.0%in the anodic system of Co0.5@C with addition of PMS(30 mg,0.5 g/L),while the Faraday efficiency(FE)of HCOOH was 24.1%at voltage of-1.3 V using the SnO2/CC as cathode.The results showed that the anode of Co3O4 modified by amorphous carbon can markedly improve the degradation efficiency of 4-NP,while the cathode of SnO2/CC can greatly improve the FE and selectivity of CO2 reduction to HCOOH and the stability of cathode.Finally,the promotion mechanism was proposed to explain the degradation of organic pollutants and reduction of CO2 into HCOOH in the process of electrocatalysis coupled with advanced oxidation processes(AOPs)and simultaneous CO2 reduction.展开更多
In the field of advanced oxidation processes(AOPs) of wastewater, many materials can be used as heterogeneous catalysts. The role of these catalysts is to activate oxidants and generate reactive oxygen species(ROS) to...In the field of advanced oxidation processes(AOPs) of wastewater, many materials can be used as heterogeneous catalysts. The role of these catalysts is to activate oxidants and generate reactive oxygen species(ROS) to decompose refractory pollutants. Perovskite oxide, an emerging catalyst in the field of AOPs, has been extensively studied in wastewater treatment. Nevertheless, the application of perovskite in AOP systems still faces some problems, such as leaching of metal ions, a small surface area, a low number of active sites, etc. Herein, this critical review comparatively examines the activation mechanisms of peroxymonosulfate, hydrogen peroxide, and peroxydisulfate. Furthermore, the formation pathways of oxidizing species based on recent advances in experimental and theoretical studies were evaluated. In addition, the impacts of water parameters and constituents such as initial p H, oxidant concentration, catalyst dosage,natural organic matter, halide, phosphate, and carbonate were discussed. Finally, a critical discussion and prospects of mechanism exploration and possible materials development are proposed to confront the existing challenges in the application of perovskite oxides in AOPs.展开更多
In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond...In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...展开更多
文摘Advanced Process Control (APC) is necessary for oil refining and chemical process in China, but some problems have emerged in the application of APC techniques in this field. This paper discusses the conditions of APC application concerning process design, distributed control system (DCS) choice and regular control. It analyzes the problems and strategies in APC application. Some suggestions are proposed for the enterprise to benefit from APC application.
基金supported by Natural Science Foundation of China(Nos.52070133,42107073,42477075)Natural Science Foundation of Sichuan Province(No.2024NSFSC0130)+2 种基金the Sichuan Science and Technology Program(No.2024NSFTD0014)Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse(No.2023SSY02061)Key R&D Program of Heilongjiang Province(No.2023ZX02C01)。
文摘Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that are readily available,cost-effective,and exhibit minimal ecological toxicity.These LVSOs have the ability to generate or promote the generation of strong oxidants or reductants,which makes them widely used in advanced oxidation processes(AOPs)and advanced reduction processes(ARPs).This article provides a comprehensive review of the recent advancements in AOPs and ARPs involving LVSOs,alongside an examination of the fundamental principles governing the generation of active species within these processes.LVSOs fulfill three primary functions in AOPs:Serving as sources of reactive oxygen species(ROS),auxiliary agents,and activators.Particular attention is devoted to elucidating the reaction mechanisms through which LVSOs,in conjunction with metal ions,metal oxides,ultraviolet light(UV),and ozone,produce potent oxidizing agents in both homogeneous and heterogeneous systems.Regarding ARPs,this review delineates the mechanisms by which LVSOs generate strong reducing agents,including hydrated electrons,hydrogen radicals,and sulfite radicals,under UV irradiation,while also exploring the interactions between these reductants and pollutants.The review identifies existing gaps within the current framework and proposes future research avenues to address these challenges.
基金supported by the Research Platform Open Fund Project of Zhejiang Industry and Trade Vocation College(No.Kf202203)the Scientific Research Project of CCCC First Harbor Engineering Company Ltd.(No.2022-7-2)+3 种基金the National Natural Science Foundation of China(No.22406142)the Fellowship of China National Postdoctoral Program for Innovative Talents(No.BX20230262)the Fellowship of China Postdoctoral Science Foundation(No.2023M732636)the Shanghai Post-doctoral Excellence Program(No.2023755).
文摘Efficient and innovative nano-catalytic oxidation technologies offer a breakthrough in removing emerging contaminants(ECs)from water,surpassing the limitations of traditional methods.Environmental functional materials(EFMs),particularly high-end oxidation systems using eco-friendly nanomaterials,show promise for absorbing and degrading ECs.This literature review presents a comprehensive analysis of diverse traditional restoration techniques-biological,physical,and chemical-assessing their respective applications and limitations in pesticide-contaminated water purification.Through meticulous comparison,we unequivocally advocate for the imperative integration of environmentally benign nanomaterials,notably titanium-based variants,in forthcoming methodologies.Our in-depth exploration scrutinizes the catalytic efficacy,underlying mechanisms,and adaptability of pioneering titanium-based nanomaterials across a spectrum of environmental contexts.Additionally,strategic recommendations are furnished to surmount challenges and propel the frontiers of implementing eco-friendly nanomaterials in practical water treatment scenarios.
基金the financial support from National Natural Science Foundation of China(Nos.52100204 and 52330005)Beijing Outstanding Young Scientist Program(No.BJJWZYJH01201910004016)。
文摘The widespread occurrence of antibiotics in wastewater aroused serious attention.UV-based advanced oxidation processes(UV-AOPs)are powerful technologies in removing antibiotics in wastewater,which include UV/catalyst,UV/H_(2)O_(2),UV/Fenton,UV/persulfate,UV/chlorine,UV/ozone,and UV/peracetic acid.In this review,we collated recent advances in application of UV-AOPs for the abatement of fiuoroquinolones(FQs)as widely used class of antibiotics.Representative FQs of ciprofioxacin,norfioxacin,ofioxacin,and enrofioxacin were most extensively studied in the state-of-art studies.The evolvement of gas-state and solid-state UV light sources was presented and batch and continuous fiow UV reactors were compared towards practical applications in UV-AOPs.Generally,degradation of FQs followed the pseudo-first order kinetics in UV-AOPs and strongly affected by the operating factors and components of water matrix.Participation of reactive species and transformation mechanisms of FQs were compared among different UV-AOPs.Challenges and future prospects were pointed out for providing insights into the practical application of UV-AOPs for antibiotic remediation in wastewater.
基金supported by the Natural Science Foundation of Inner Mongolia Autonomous Region of China(Grant No.2024LHMS05048).
文摘ing electrons from BPA molecules,the N-CNTs/PDS system effectively minimised oxidant wastage and mitigated the risk of secondary pollution,ensuring efficient utilisation of active sites on N-CNTs and sustaining a high catalytic rate.The formation of the N-CNTs-PDS*complex significantly enhanced BPA degradation and mineralisation,thereby optimising PDS consumption.These findings highlight the unparalleled advantages of the N-CNTs/PDS system in managing complex wastewater,offering a promising and innovative solution for treating complex industrial wastewater and advancing environmental remediation efforts.
基金supported by the Haiyou Program for Industry Leading Talent Innovation Team Project(No.1362022088)。
文摘A novel inverted advanced treatment process of ozone/hydrogen peroxide(O_(3)/H_(2)O_(2))and biological activated carbon fluidized bed(BACFB)before the conventional process has been developed to treat the high-algae-laden reservoir water,which aims to enhance the removal of dissolved organic matter(DOM),odorants as well as the precursors of disinfection by-products(DBPs).Before and after the renovation,the average value of chemical oxygen demand(determined by potassium permanganate method)in the filter effluent decreased from 2.18 to 1.15 mg/L.Likewise,the average concentrations of turbidity dropped from 0.640 to 0.098 NTU,indicating substantial improvement following the renovation.Formation potential of DBPs such as trihalomethanes and haloacetic acids were also reduced greatly.The results of the polarity rapid analysis method indicated that ozonation primarily removed non-polar and positively charged organic matter,while coagulation-sedimentation targeted non-positive organic matter.The results of fluorescence spectroscopy and highresolution mass spectrometry indicated that the new process effectively removed DOM,and decreased the number of nitrogen-containing compounds.Additionally,the inverted O_(3)/H_(2)O_(2) and BACFB process promoted the dynamic transformation between DOM components and significantly reduced overall aromatic content.This study provided a promising solution for treating high-algae-laden source water and verified the feasibility and effectiveness of this novel process in practice.
基金the National Natural Science Foundation of China(Nos.52170088 and 52070133)China Postdoctoral Science Foundation(No.2021M690844)Sichuan Science and Technology Program(No.2021JDRC0027)for financially supporting this study.
文摘Hospital sewage contains various harmful pharmaceutical contaminants(e.g.,antibiotics,anti-inflammatory agents,and painkillers)and pathogens(e.g.,bacteria,viruses,and parasites),whose direct discharge into the environment will induce diseases and pose a powerful threat to human health and safety,and environmental ecology.In recent years,advanced oxidation processes(AOPs),particularly photocatalysis,electrocatalysis,and ozone catalysis have been developed as widespread and effective techniques for hospital sewage treatments.However,there is a lack of systematic comparison and review of the prior studies on hospital sewage treatment using AOPs systems.This review elaborates on the mechanisms,removal efficiencies,and advantages/disadvantages of these AOPs systems for hospital wastewater decontamination and disinfection.Meanwhile,some novel and potential technologies such as photo-electrocatalysis,electro-peroxone,Fenton/Fenton-like,and piezoelectric catalysis are also included and summarized.Moreover,we further summarize and compare the capacity of these AOPs to treat the actual hospital wastewater under the impact of the water matrix and pH,and estimate the economic cost of these technologies for practical application.Finally,the future development directions of AOPs for hospital wastewater decontamination and disinfection have been prospected.Overall,this study provides a comparison and overview of these AOP systems in an attempt to raise extensive concerns about hospital wastewater decontamination and disinfection technologies and guide researchers to discover the future directions of technologies optimization,which would be a crucial step forward in the field of hospital sewage treatment.
基金the National Natural Science Foundation of China(Nos.52170088 and 52070133)for financial support。
文摘Manganese oxides(MNO_(x)),as low-toxicity and high-abundance catalysts,have been demonstrated to hold great promise for application in advanced oxidation processes(AOPs).However,further application of this material is restricted due to its unsatisfactory oxidant activation efficiency.Fortunately,recently remarkable research on deep activation mechanisms and modification of MNO_(x)have been undertaken to improve its reactivity.Herein,modification enhancement mechanisms of MNO_(x)to efficiently degrade various organic contaminants were discussed and highlighted,including metal doping,coupling with other metal oxides,composite with carbonaceous material,and compounding with other support.The activation mechanisms of different MNO_(x)and derivative-modified material(such as doped MNO_(x),metal oxide-MNO_(x)hybrids,and MNO_(x)-carbonaceous material hybrids)were summarized in great details,which was specifically categorized into both radical and non-radical pathways.The effects of pH,inorganic ions,and natural organic matter on degradation reactions are also discussed.Finally,future research directions and perspectives are presented to provide a clear interpretation on the MNO_(x)initiated AOPs.
基金financially supported by National Natural Science Foundation of China(Nos.U22A20403,22006047)Natural Science Foundation of Hebei Province(Nos.E2021203140,B2021203016)Hebei Industrial Innovation and Entrepreneurship team(No.215A7608D)。
文摘In some industrial wastewater,heavy metals combine with organic complexing agents to form heavy metal complexes(HMCs).These HMCs can be difficult to decompose and remove through conventional techniques due to their higher stability than free heavy metal ions.In recent years,persulfate based advanced oxidation processes(PS-based AOPs)have been recognized as a viable technique for HMCs degradation.Nevertheless,a comprehensive and in-depth understanding of the relevant HMCs decomplexation mechanisms in PS-based AOPs is still lacking.This review delineates the current progress of HMCs decomplexation in PS-based AOPs.We discuss the distinctions between the two widely used oxidant types in PS-based AOPs techniques.Moreover,we summarize and highlight the decomplexation mechanisms based on electron and energy transfer,and degradation pathways of HMCs.We also emphasize the effects of environmental water constituents,namely p H,inorganic ions,and natural organic matter(NOM),on HMCs decomplexation.Ultimately,we identify the existing challenges and perspectives that will steer the direction of advancing PS-based AOPs to remove HMCs.
基金supported by grants from the Research Grants Council of the Hong Kong SAR,China(T21-705/20-N and 16210221).
文摘Antibiotic resistant bacteria(ARB)with antibiotic resistance genes(ARGs)can reduce or eliminate the effectiveness of antibiotics and thus threaten human health.The United Nations Environment Programme considers antibiotic resistance the first of six emerging issues of concern.Advanced oxidation processes(AOPs)that combine ultraviolet(UV)irradiation and chemical oxidation(primarily chlorine,hydrogen peroxide,and persulfate)have attracted increasing interest as advanced water and wastewater treatment technologies.These integrated technologies have been reported to significantly elevate the efficiencies of ARB inactivation and ARG degradation compared with direct UV irradiation or chemical oxidation alone due to the generation of multiple reactive species.In this study,the performance and underlying mechanisms of UV/chlorine,UV/hydrogen peroxide,and UV/persulfate processes for controlling ARB and ARGs were reviewed based on recent studies.Factors affecting the process-specific efficiency in controlling ARB and ARGs were discussed,including biotic factors,oxidant dose,UV fluence,pH,and water matrix properties.In addition,the cost-effectiveness of the UV-based AOPs was evaluated using the concept of electrical energy per order.The UV/chlorine process exhibited a higher efficiency with lower energy consumption than other UV-based AOPs in the wastewater matrix,indicating its potential for ARB inactivation and ARG degradation in wastewater treatment.Further studies are required to address the trade-off between toxic byproduct formation and the energy efficiency of the UV/chlorine process in real wastewater to facilitate its optimization and application in the control of ARB and ARGs.
基金supported by National Natural Science Foundation of China(52003240)Zhejiang Provincial Natural Science Foundation of China(LQ21B070007)China Postdoctoral Science Foundation(2022M722818).
文摘Realizing fast and continuous generation of reactive oxygen species(ROSs)via iron-based advanced oxidation processes(AOPs)is significant in the environmental and biological fields.However,current AOPs assisted by co-catalysts still suffer from the poor mass/electron transfer and non-durable promotion effect,giving rise to the sluggish Fe^(2+)/Fe^(3+)cycle and low dynamic concentration of Fe^(2+)for ROS production.Herein,we present a three-dimensional(3D)macroscale co-catalyst functionalized with molybdenum disulfide(MoS_(2))to achieve ultra-efficient Fe^(2+)regeneration(equilibrium Fe^(2+)ratio of 82.4%)and remarkable stability(more than 20 cycles)via a circulating flow-through process.Unlike the conventional batch-type reactor,experiments and computational fluid dynamics simulations demonstrate that the optimal utilization of the 3D active area under the flow-through mode,initiated by the convectionenhanced mass/charge transfer for Fe^(2+)reduction and then strengthened by MoS_(2)-induced flow rotation for sufficient reactant mixing,is crucial for oxidant activation and subsequent ROS generation.Strikingly,the flow-through co-catalytic system with superwetting capabilities can even tackle the intricate oily wastewater stabilized by different surfactants without the loss of pollutant degradation efficiency.Our findings highlight an innovative co-catalyst system design to expand the applicability of AOPs based technology,especially in large-scale complex wastewater treatment.
基金supported by the National Natural Science Foundation of China(Nos.22206050 and 52270047).
文摘Fenton and Fenton-like processes,which could produce highly reactive species to degrade organic contaminants,have been widely used in the field of wastewater treatment.Therein,the chemistry of Fenton process including the nature of active oxidants,the complicated reactions involved,and the behind reason for its strongly pH-dependent performance,is the basis for the application of Fenton and Fenton-like processes in wastewater treatment.Nevertheless,the conflicting views still exist about the mechanism of the Fenton process.For instance,reaching a unanimous consensus on the nature of active oxidants(hydroxyl radical or tetravalent iron)in this process remains challenging.This review comprehensively examined the mechanism of the Fenton process including the debate on the nature of active oxidants,reactions involved in the Fenton process,and the behind reason for the pH-dependent degradation of contaminants in the Fenton process.Then,we summarized several strategies that promote the Fe(Ⅱ)/Fe(Ⅲ)cycle,reduce the competitive consumption of active oxidants by side reactions,and replace the Fenton reagent,thus improving the performance of the Fenton process.Furthermore,advances for the future were proposed including the demand for the high-accuracy identification of active oxidants and taking advantages of the characteristic of target contaminants during the degradation of contaminants by the Fenton process.
基金supported by National Natural Science Foundation of China(No.52170086)Natural Science Foundation of Shandong Province(No.ZR2021ME013)+1 种基金Natural science Foundation of Shaanxi province(No.2024JC-YBQN-0252)Special Scientific Research Project of Hanzhong City-Shaanxi University of Technology Co-construction State Key Laboratory(No.SXJ2106)。
文摘Enhancing the corrosion resistance of carriers within Fenton-like systems and inhibiting the migration and aggregation of single atoms in reaction environments are essential for maintaining both high activity and stability at catalytic sites,thus meeting fundamental requirements for practical application.The Fenton-like process of activating various strong oxidants by silicon-based single atom catalysts(SACs)prepared based on silicon-based materials(mesoporous silica,silicon-based minerals,and organosilicon materials)has unique advantages such as structural stability(especially important under strong oxidation conditions)and environmental protection.In this paper,the preparation strategies for the silicon-based SACs were assessed first,and the structural characteristics of various silicon-based SACs are systematically discussed,their application process and mechanism in Fenton-like process to achieve water purification are investigated,and the progress of Fenton-like process in density functional theory(DFT)of siliconbased derived single atom catalysts is summarized.In this paper,the preparation strategies and applications of silicon-based derived SACs are analyzed in depth,and their oxidation activities and pathways to different pollutants in water are reviewed.In addition,this paper also summarizes the device design and application of silicon-based derived SACs,and prospects the future development of silicon-based SACs in Fenton-like applications.
基金the support from the members of Integrated Circuit Advanced Process R&D Center,Institute of Microelectronics,Chinese Academy of Sciencessupported in part by the National Key Project of Science and Technology of China(No.2017ZX02315001-002)。
文摘This article reviews advanced process and electron device technology of integrated circuits,including recent featuring progress and potential solutions for future development.In 5 years,for pushing the performance of fin field-effect transistors(FinFET)to its limitations,several processes and device boosters are provided.Then,the three-dimensional(3 D)integration schemes with alternative materials and device architectures will pave paths for future technology evolution.Finally,it could be concluded that Moore’s law will undoubtedly continue in the next 15 years.
基金the National Natural Science Foundation of China(No.51678185)Talents of High Level Scientific Research Foundation of Qingdao Agricultural University(No.6651120004).
文摘In recent years,with the emergence of new pollutants,the effective treatment of wastewater has become very important.Persulfate-based advanced oxidation processes have been successfully applied to the treatment of wastewater,such as wastewater containing antibiotics,pharmaceuticals and personal care products,dyes,endocrine-disrupting chemicals,chlorinated organic pollutants,and phenolics,for the degradation of refractory organic contaminants.This paper summarizes the production of sulfate radicals,which can be generated by the activation of persulfate via conventional and emerging approaches.The existing problems of persulfate-based advanced oxidation processes were analyzed in detail,including residual sulfates,coexisting factors(coexisting inorganic anions and natural organic matter),and energy consumption.This paper proposes corresponding possible solutions to the problems mentioned above,and this paper could provide a reference for the application of persulfate-based advanced oxidation processes in actual wastewater treatment.
基金the National Natural Science Foundation of China(NSFC)(No.41672237)the Beijing Natural Science Foundation(No.8192040)。
文摘Heavy metal complexes with high mobility are widely distributed in wastewater from modern industries,which are mo re stable and refracto ry than free heavy metal ions.Their re movals from wastewater draw increasing attentions and various technologies have been developed,among which advanced oxidation processes(AOPs)are more effectively and promising.Progresses on five representative types of AOPs,including Fenton(like)oxidation,electrochemical oxidation,photocatalytic oxidation,ozonation and discharge plasma oxidation for heavy metal complexe s degradation are summarized in this review.Their rationales,advantages,applications,challenges and prospects are introduced independently.Combinations among these AOPs,such as electrochemical Fenton oxidation and photoelectrocatalytic oxidation,are also comprehensively highlighted.Future efforts should be made to reduce acid requirement and scale up for practical applications of AOPs for heavy metal complex degradation efficiently and cost-effectively.
基金supported by National Water Pollution Control and Treatment Science and Technology Major Project (No.2018ZX07110003)the National Natural Science Foundation of China (No.51779068)。
文摘Refractory organic pollutants in water threaten human health and environmental safety,and advanced oxidation processes (AOPs) are effective for the degradation of these pollutants.Catalysts play vital role in AOPs,and Ce-based catalysts have exhibited excellent performance.Recently,the development and application of Ce-based catalysts in various AOPs have been reported.Our study conducts the first review in this rapid growing field.This paper clarifies the variety and properties of Ce-based catalysts.Their applications in different AOP systems (catalytic ozonation,photodegradation,Fenton-like reactions,sulfate radicalbased AOPs,and catalytic sonochemistry) are discussed.Different Ce-based catalysts suit different reaction systems and produce different active radicals.Finally,future research directions of Ce-based catalysts in AOP systems are suggested.
基金the National Natural Science Foundation of China(Nos.51878325,51868050,51622806,51378246 and 51720105001)the Natural Science Foundation of Jiangxi Province(Nos.20162BCB22017,20165BCB18008,20171ACB20017,20133ACB21001 and 20171BAB206049)the Graduate Innovation Fund of Jiangxi Province(No.YC2018-S360)。
文摘Herein,we prepa red novel three-dimensional(3D)gear-s haped Co3O4@C(Co3O4 modified by amorphous carbon)and sheet-like SnO2/CC(SnO2 grow on the carbon cloth)as anode and cathode to achieve efficient removal of 4-nitrophenol(4-NP)in the presence of peroxymonosulfate(PMS)and simultaneous electrocatalytic reduction of CO2,respectively.In this process,4-NP was mineralized into CO2 by the Co3O4@C,and the generated CO2 was reduced into HCOOH by the sheet-like SnO2/CC cathode.Compared with the pure Co0.5(Co3O4 was prepared using 0.5 g urea)with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP(60 mL,10 mg/L)increased from 74.5%-85.1%in 60 min using the Co0.5 modified by amorphous carbon(Co0.5@C).Furthermore,when the voltage of 1.0 V was added in the anodic system of Co0.5@C with PMS(30 mg,0.5 g/L),the degradation efficiency of 4-NP increased from 85.1%-99.1%when Pt was used as cathode.In the experiments of 4-NP degradation coupled with simultaneous electrocatalytic CO2 reduction,the degradation efficiency of 4-NP was 99.0%in the anodic system of Co0.5@C with addition of PMS(30 mg,0.5 g/L),while the Faraday efficiency(FE)of HCOOH was 24.1%at voltage of-1.3 V using the SnO2/CC as cathode.The results showed that the anode of Co3O4 modified by amorphous carbon can markedly improve the degradation efficiency of 4-NP,while the cathode of SnO2/CC can greatly improve the FE and selectivity of CO2 reduction to HCOOH and the stability of cathode.Finally,the promotion mechanism was proposed to explain the degradation of organic pollutants and reduction of CO2 into HCOOH in the process of electrocatalysis coupled with advanced oxidation processes(AOPs)and simultaneous CO2 reduction.
基金financial support from National Key R&D Program of China (No.2019YFD1100200)National Natural Science Foundation of China (Nos.51878431,51961145106)+2 种基金Shanghai Rising-Star Program (No.20QC1401200)Shanghai Science and Technology Committee (No.19DZ1208400)State Key Laboratory of Pollution Control and Resource Reuse Foundation,(No.PCRRE20002)。
文摘In the field of advanced oxidation processes(AOPs) of wastewater, many materials can be used as heterogeneous catalysts. The role of these catalysts is to activate oxidants and generate reactive oxygen species(ROS) to decompose refractory pollutants. Perovskite oxide, an emerging catalyst in the field of AOPs, has been extensively studied in wastewater treatment. Nevertheless, the application of perovskite in AOP systems still faces some problems, such as leaching of metal ions, a small surface area, a low number of active sites, etc. Herein, this critical review comparatively examines the activation mechanisms of peroxymonosulfate, hydrogen peroxide, and peroxydisulfate. Furthermore, the formation pathways of oxidizing species based on recent advances in experimental and theoretical studies were evaluated. In addition, the impacts of water parameters and constituents such as initial p H, oxidant concentration, catalyst dosage,natural organic matter, halide, phosphate, and carbonate were discussed. Finally, a critical discussion and prospects of mechanism exploration and possible materials development are proposed to confront the existing challenges in the application of perovskite oxides in AOPs.
文摘In this study,advanced oxidation processes(AOPs) such as anodic oxidation(AO),UV/H_2O_2 and Fenton processes(FP) were investigated for the degradation of salicylic acid(SA) in lab-scale experiments.Boron-doped diamond(BDD) film electrodes using Ta as substrates were employed for AO of SA.In the case of FP and UV/H_2O_2,most favorable experimental conditions were determined for each process and these were used for comparing with AO process.The study showed that the FP was the most effective process under aci...