Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by com...Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by completely removing the material from the ablation region within the release material layer at high energy densities.However,this R/R separation method often results in a significant amount of release material and carbonized debris remaining on the surface of the device wafer,severely reducing product yields and cleaning efficiency for ultra-thin device wafers.Here,we proposed an interfacial separation strategy based on laser-induced hot stamping effect and thermoelastic stress wave,which enables stress-free separation of wafer bonding pairs at the interface of the release layer and the adhesive layer(R/A separation).By comprehensively analyzing the micro-morphology and material composition of the release material,we elucidated the laser debonding behavior of bonded pairs under different separation modes.Additionally,we calculated the ablation threshold of the release material in the case of wafer bonding and established the processing window for different separation methods.This work offers a fresh perspective on the development and application of laser debonding technology.The proposed R/A interface separation method is versatile,controllable,and highly reliable,and does not leave release materials and carbonized debris on device wafers,demonstrating strong industrial adaptability,which greatly facilitates the application and development of advanced packaging for ultra-thin chips.展开更多
OBJECTIVE:To evaluate the therapeutic effects of Xiahuo Pingwei San(夏藿平胃散,XHPWS)on ulcerative colitis(UC)in mice and to explore the underlying mechanisms through a network pharmacology approach.METHODS:Ultra-perf...OBJECTIVE:To evaluate the therapeutic effects of Xiahuo Pingwei San(夏藿平胃散,XHPWS)on ulcerative colitis(UC)in mice and to explore the underlying mechanisms through a network pharmacology approach.METHODS:Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF/MS)was utilized to identify the chemical composition and authenticate the active constituents of XHPWS,ensuring rigorous quality control across batches.A dextran sulfate sodium(DSS)-induced UC model was established in C57BL/6 mice,which were treated with XHPWS in vivo.The efficacy against UC was assessed by measuring parameters such as body weight,disease activity index(DAI)scores,and colon length.Levels of inflammatory cytokines,including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-alpha(TNF-α),in colonic tissue were evaluated using enzymelinked immunosorbent assay(ELISA).Histological analysis of colon sections was conducted using hematoxylin and eosin staining.A network pharmacology approach was employed to explore the mechanisms of XHPWS and to predict its potential targets in UC treatment.Predicted protein expressions in colonic tissue were validated using immune-ohistochemistry(IHC)and Western blotting techniques.RESULTS:XHPWS effectively alle via ted DSS-induced UC symptoms in mice,as evidenced by restored body weight,reduced colon shortening,and decreased DAI scores.Histopathological examination revealed that XHPWS significantly reduced intestinal inflammatory infiltration,restored intestinal epithelial permeability,and increased goblet cell count.Network pharmacology analysis identified 63 active compounds in XHPWS and suggested that it might target 35 potential proteins associated with UC treatment.Functional enrichment analysis indicated that the protective mechanism of XHPWS could be related to the advanced glycation end products-receptor for advanced glycation end products(AGE-RAGE)signaling pathway.Notably,quercetin,kaempferol,wogonin,and nobiletin,the main components of XHPWS,showed strong correlations with the core targets.Additionally,experimental validation demonstrated that XHPWS significantly decreased levels of inflammatory cytokines interleukin 6(IL-6),interleukin 1 beta(IL-1β),and tumor necrosis factor alpha(TNF-α)in UC mice,while downregulating the expression of proteins related to the AGE-RAGE pathway.CONCLUSION:Our study demonstrated that XHPWS effectively alle via tes colitis symptoms and inflammation in UC mice,potentially through the regulation of the AGE-RAGE pathway.These findings provide strong evidence for the therapeutic potential of XHPWS in UC treatment,thereby broadening its clinical applications.展开更多
Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the el...Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.展开更多
This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinom...This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinoma(HCC).This meta-analysis suggests that therapeutic combinations have greater efficacy than do standard treatments.The article highlights the key insights that have the potential to shift current clinical practice and enhance outcomes for patients with advanced HCC.Additionally,this article discusses further research that can be conducted to optimize these treatments and achieve personalized care for patients with HCC.展开更多
BACKGROUND Owing to the absence of specific symptoms in early-stage gastric cancer,most patients are diagnosed at intermediate or advanced stages.As a result,treatment often shifts from surgery to other therapies,with...BACKGROUND Owing to the absence of specific symptoms in early-stage gastric cancer,most patients are diagnosed at intermediate or advanced stages.As a result,treatment often shifts from surgery to other therapies,with chemotherapy and targeted therapies being the primary options for advanced gastric cancer treatment.A total of 116 patients with advanced gastric cancer,admitted from January 2021 to December 2023,were selected and divided into two groups of 58 each using the random number table method.The control group received FOLFOX4 chemothe-rapy(oxaliplatin+calcium+folinate+5-fluorouracil)combined with intravenous sindilizumab.The observation group received the same treatment as the control group,supplemented by oral administration of Senqi Shiyiwei granules.Both groups underwent treatment cycles of 3 weeks,with a minimum of two cycles.The therapeutic efficacy,immune mechanisms,and treatment-related toxicity and side effects were compared between the groups.The objective remission rate in the observation group(55.17%)was higher than that of the control group(36.21%)(P<0.05).After two treatment cycle,CD3+,CD4+,and CD4+/CD8+levels were higher in the observation group compared to the control group,while CD8+,regulatory T cells,and natural killer cells were lower(P<0.05).Additionally,the incidence of leukopenia,nausea,and vomiting was lower in observed group(P<0.05).No significant differences were observed in the incidence of other adverse reactions(P>0.05).CONCLUSION Adjuvant therapy with Shenqixian granules may enhance the efficacy of simudizumab combined with FOLFOX4 chemotherapy in advanced gastric cancer and the immune function by increasing immune cell counts,making it a valuable option in clinical treatment.展开更多
With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and...With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and facilitates transportation.Active food packaging,however,not only fulfills these fundamental functions but also actively interacts with the food or its environment to extend shelf life and enhance food safety.From current research advancements and market applications,active food packaging demonstrates the following prominent development trends.展开更多
The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(M...The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry.展开更多
Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable al...Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable alternative to conventional plastic packaging,edible films offer effective barriers against moisture,gases,and microbial contamination while being biodegradable,biocompatible,and environmentally friendly.In this study,novel active food packaging materials(in film form)were developed by incorporating starch,carrageenan,nanocellulose(NC),Aloe vera,and hibiscus flower extract.The effects of varying the matrix composition(26.5–73.5 wt.%starch/carrageenan),NC concentration(2.77-17.07 wt.%),and particle type(fibers or crystals)on the film structure and characteristics were analyzed using various methods.Scanning electron microscopy demonstrated good homogeneity and effective dispersion of NC within the blendmatrix.An increased carrageenan content in the filmimproved wettability,moisture absorption,solubility,and water vapor permeability.The mechanical properties of the films were enhanced by NC incorporation and higher carrageenan content.The developed films also exhibited effective UV radiation barriers and biodegradability.Films with low carrageenan content(less than 33.3%)and high NC content(7%,10% crystals or 10%,15% fibers)exhibited optimal properties,including enhanced water resistance,hydrophobicity,and mechanical strength,along with reduced water vapor permeability.However,the high water solubility and moisture absorption(above 55% and 14%,respectively)indicated their unsuitability as packaging materials for food products with wet surfaces and high humidity.The results suggest that these films are well suited for use as edible food packaging for fruits and vegetables.展开更多
Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that ...Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that are readily available,cost-effective,and exhibit minimal ecological toxicity.These LVSOs have the ability to generate or promote the generation of strong oxidants or reductants,which makes them widely used in advanced oxidation processes(AOPs)and advanced reduction processes(ARPs).This article provides a comprehensive review of the recent advancements in AOPs and ARPs involving LVSOs,alongside an examination of the fundamental principles governing the generation of active species within these processes.LVSOs fulfill three primary functions in AOPs:Serving as sources of reactive oxygen species(ROS),auxiliary agents,and activators.Particular attention is devoted to elucidating the reaction mechanisms through which LVSOs,in conjunction with metal ions,metal oxides,ultraviolet light(UV),and ozone,produce potent oxidizing agents in both homogeneous and heterogeneous systems.Regarding ARPs,this review delineates the mechanisms by which LVSOs generate strong reducing agents,including hydrated electrons,hydrogen radicals,and sulfite radicals,under UV irradiation,while also exploring the interactions between these reductants and pollutants.The review identifies existing gaps within the current framework and proposes future research avenues to address these challenges.展开更多
Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of h...Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of high-quality sintered bodies in the air,severely limiting their widespread adoption in power electronics packaging.This study presents a novel approach to the synthesis of Cu nanoparticles capped with oleylamine ligands.By employing a simple solvent-cleaning process,effective control of the density of oleylamine ligands on particle surfaces was achieved,resulting in high-performance Cu nanoparticles with both oxidation resistance and air-sintering susceptibility.Moreover,through our research,the solvent-cleaning mechanism was clarified,a model for the oleylamine ligand decomposition was developed,the air-sintering behavior of Cu nanoparticles was analyzed,and the impacts of both the sintered bodies and interfaces on the sintering performance were explained.Additionally,Cu nanoparticles subjected to 5 cleaning rounds followed by sintering at 280℃and 5 MPa in air were confirmed to be able to produce the highest shear strength(49.2±3.51 MPa)and lowest resistivity(6.15±0.32μΩ·cm).Based on these results,flexible capacitive pressure sensors with Cu sintered electrodes were fabricated and demonstrated a stable pressure-capacitance response over the temperature range of 25-250℃.These findings underscore the impressive robustness and durability of sintered structures and the potential for high-temperature applications of oleylamine-capped Cu nanoparticles.Our study provides reliable application demonstrations for the low-cost manufacture of high-performance power electronics packaging structures that can operate in high-current-density,high-heat-flow-density,high-temperature,and high-stress environments.展开更多
Based on the concept of sustainable design,we are committed to seeking innovative solutions and designinga complete express packaging recycling machine.The device consists of a vibration device,a compression device,a ...Based on the concept of sustainable design,we are committed to seeking innovative solutions and designinga complete express packaging recycling machine.The device consists of a vibration device,a compression device,a winding device and an electronic control system to promote the recycling of resources and environmental protection.This device can further improve the recycling efficiency and feasibility.It provides new ideas and solutions for the express industry and promotes the development of sustainable design in the field of express packaging recycling and reuse devices.展开更多
The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering r...The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications.展开更多
The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based pac...The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based packaging.Among the many types of biopolymers,chitosan is widely used and researched due to its non-toxic,antimicrobial,and antifungal properties.Chitosan is widely available since it is a compound extracted from seafood waste,especially shrimps and crabs.The biodegradability and biocompatibility of chitosan also showed good potential for various applications.These characteristics and propertiesmake chitosan an attractive biopolymer to be implemented as food packaging in films and coatings.Chitosan has been tested in maintaining and increasing the shelf life of food,especially seafood such as fish and shrimp,and post-harvest products such as fruits and vegetables.In addition to its various advantages,the properties and characteristics of chitosan need to be improved to produce optimal preservation.The properties and characteristics of chitosan are improved by adding various types of additive materials such as biopolymers,plant extracts,essential oils,and metal nanoparticles.Research shows that material additives and nanotechnology can improve the quality of chitosan-based food packaging for various types of food by enhancing mechanical properties,thermal stability,antimicrobial activity,and antioxidant activity.This review provides a perspective on the recent development and properties enhancement of chitosan composite with additives and nanotechnology,as well as this material’s challenges and prospects as food packaging.展开更多
Carbon fibers(CFs)with notable comprehensive properties,such as light weight,high specific strength,and stiffness,have garnered considerable interest in both academic and industrial fields due to their diverse and adv...Carbon fibers(CFs)with notable comprehensive properties,such as light weight,high specific strength,and stiffness,have garnered considerable interest in both academic and industrial fields due to their diverse and advanced applications.However,the commonly utilized precursors,such as polyacrylonitrile and pitch,exhibit a lack of environmental sustainability,and their costs are heavily reliant on fluctuating petroleum prices.To meet the substantial market demand for CFs,significant efforts have been made to develop cost-effective and sustainable CFs derived from biomass.Lignin,the most abundant polyphenolic compound in nature,is emerging as a promising precursor which is well-suited for the production of CFs due to its renewable nature,low cost,high carbon content,and aromatic structures.Nevertheless,the majority of lignin raw materials are currently derived from pulping and biorefining industrial by-products,which are diverse and heterogeneous in nature,restricting the industrialization of lignin-derived CFs.This review classifies fossil-derived and biomass-derived CFs,starting from the sources and chemical structures of raw lignin,and outlines the preparation methods linked to the performance of lignin-derived CFs.A comprehensive discussion is presented on the relationship between the structural characteristics of lignin,spinning preparation,and structure-morphology-property of ligninderived CFs.Additionally,the potential applications of these materials in various domains,including energy,catalysis,composites,and other advanced products,are also described with the objective of spotlighting the unique merits of lignin.Finally,the current challenges faced and future prospects for the advancement of lignin-derived CFs are proposed.展开更多
The advanced driver assistance system(ADAS)primarily serves to assist drivers in monitoring the speed of the car and helps them make the right decision,which leads to fewer fatal accidents and ensures higher safety.In...The advanced driver assistance system(ADAS)primarily serves to assist drivers in monitoring the speed of the car and helps them make the right decision,which leads to fewer fatal accidents and ensures higher safety.In the artificial Intelligence domain,machine learning(ML)was developed to make inferences with a degree of accuracy similar to that of humans;however,enormous amounts of data are required.Machine learning enhances the accuracy of the decisions taken by ADAS,by evaluating all the data received from various vehicle sensors.This study summarizes all the critical algorithms used in ADAS technologies and presents the evolution of ADAS technology.Initially,ADAS technology is introduced,along with its evolution,to understand the objectives of developing this technology.Subsequently,the critical algorithms used in ADAS technology,which include face detection,head-pose estimation,gaze estimation,and link detection are discussed.A further discussion follows on the impact of ML on each algorithm in different environments,leading to increased accuracy at the expense of additional computing,to increase efficiency.The aim of this study was to evaluate all the methods with or without ML for each algorithm.展开更多
Photoinitiators(PIs),as an important component of UV inks,are widely used in the printing of paper food packaging.Nevertheless,there is limited information concerning the identification of PIs in food packaging and th...Photoinitiators(PIs),as an important component of UV inks,are widely used in the printing of paper food packaging.Nevertheless,there is limited information concerning the identification of PIs in food packaging and their potential migration rules under natural storage condition.In this study,23 target PIs detected in paper food packaging were dominated by benzophenones(BZPs),followed by amine co-initiators(ACIs),thioxanthones(TXs)and phosphine oxides(POs).The concentration of ΣPIs ranged between 48.3 and 1.11×10^(5)ng/g.Meanwhile,the concentration ofΣPIs were found to be significantly higher in Corrugated paper compared to Polyethylene(PE)coated paper,Composite paper and White card paper.Benzophenone(BP)was found as the dominant PI congener in Corrugated paper,with the concentration ranging from 923-3.66×10^(4)ng/g.The migration quantity ofΣPIs increased in a time-dependent manner in the first 13 days and then eventually reached equilibrium.Low temperatures had a certain inhibitory effect on the migration of PIs from paper packaging to food.Under high exposure scenario,the EDIs of ΣPIs for children,adolescents,and adults were 31.4 ng/(kg bw·day),17.2 ng/(kg bw·day),and 14.4 ng/(kg bw·day),respectively,all of which did not exceed the reference dose,indicating that dietary intake of PIs does not pose any health risks to the human body.展开更多
Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CA...Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CAR-NK cell therapy has enabled the development of“off-the-shelf”products that bypass the lengthy and expensive cell manufacturing process1.展开更多
Interest in the use of cellulose nanomaterial’s continues to grow,both in research and industry,not only due to the abundance of raw materials,low toxicity and sustainability,but also due to the attractive physical a...Interest in the use of cellulose nanomaterial’s continues to grow,both in research and industry,not only due to the abundance of raw materials,low toxicity and sustainability,but also due to the attractive physical and chemical properties that make nanocelluloses useful for a wide range of end-use applications.Among the large number of potential uses,and nanocelluloses modification and processing strategies,the chosen topic of this review focuses exclusively on plant-derived cellulose microfibers/nanofibers(CNF)and cellulose nanocrystals(CNC)processed into 2D structures—nanopapers and nanofilms—fabricated as self-standing films or applied as coatings.The end uses considered are:combinationwith standard papers and cardboards for packaging,mendingmaterial for the conservation and protection of cellulosic heritage artifacts,and component-parts of complex designs of functional devices for energy harvesting and storage.In these contexts,nanocelluloses provide high mechanical and ecofriendly properties,transparency and tunable haze,as well as flexibility/bendability in the resulting films.All these characteristics make them extremely attractive to a market seeking for sustainable,light weight and low cost raw materials for the production of goods.General perspectives on the current advantages and disadvantages of using CNF and CNC in the selected areas are also reviewed.展开更多
Objective:To study the measures and effects of advanced lung cancer patients in terms of complication prevention and care.Methods:50 cases of advanced lung cancer patients were selected for data study during January-D...Objective:To study the measures and effects of advanced lung cancer patients in terms of complication prevention and care.Methods:50 cases of advanced lung cancer patients were selected for data study during January-December 2023,where the patients were divided into two groups.The study group used complication prevention and nursing care,while the control group used conventional care.The differences between the groups were compared.Results:Compared with the control group,the study group had significantly fewer complications,significantly lower psychological state scores,significantly higher quality of life scores,and significantly lower pain scores(P<0.05).Comparing the psychological state scores,quality of life scores,and pain scores before care,both groups showed insignificant differences(P>0.05).Conclusion:The results of patients with advanced lung cancer are ideal after the application of measures in the area of complication prevention and care.展开更多
基金the National Natural Science Foundation of China(62174170)the Natural Science Foundation of Guangdong Province(2024A1515010123)+4 种基金the Shenzhen Science and Technology Program(20220807020526001)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDB0670000)the Shenzhen Science and Technology Program(KJZD20230923114708018,KJZD20230923114710022)the Talent Support Project of Guangdong(2021TX06C101)the Shenzhen Basic Research(JCYJ20210324115406019).
文摘Laser debonding technology has been widely used in advanced chip packaging,such as fan-out integration,2.5D/3D ICs,and MEMS devices.Typically,laser debonding of bonded pairs(R/R separation)is typically achieved by completely removing the material from the ablation region within the release material layer at high energy densities.However,this R/R separation method often results in a significant amount of release material and carbonized debris remaining on the surface of the device wafer,severely reducing product yields and cleaning efficiency for ultra-thin device wafers.Here,we proposed an interfacial separation strategy based on laser-induced hot stamping effect and thermoelastic stress wave,which enables stress-free separation of wafer bonding pairs at the interface of the release layer and the adhesive layer(R/A separation).By comprehensively analyzing the micro-morphology and material composition of the release material,we elucidated the laser debonding behavior of bonded pairs under different separation modes.Additionally,we calculated the ablation threshold of the release material in the case of wafer bonding and established the processing window for different separation methods.This work offers a fresh perspective on the development and application of laser debonding technology.The proposed R/A interface separation method is versatile,controllable,and highly reliable,and does not leave release materials and carbonized debris on device wafers,demonstrating strong industrial adaptability,which greatly facilitates the application and development of advanced packaging for ultra-thin chips.
基金the Guangdong Provincial Basic and Applied Basic Research Project:Mechanistic Study on the Regulation of Inflammatory Microenvironment and Improvement of Ulcerative Colitis by Lingnan Traditional Medicine Ficus Pandurata Hance through Wilms'Tumor 1-associating Protein-Mediated RNA Methyltransferase Promoting Toll Like Receptor 4 m6A Modification(2023A1515011699)the Zhongshan Medical Research Project:Mechanistic Study on the Action of Xiahuo Pingwei San in the Treatment of Ulcerative Colitis(2022A020446)。
文摘OBJECTIVE:To evaluate the therapeutic effects of Xiahuo Pingwei San(夏藿平胃散,XHPWS)on ulcerative colitis(UC)in mice and to explore the underlying mechanisms through a network pharmacology approach.METHODS:Ultra-performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry(UPLC-Q-TOF/MS)was utilized to identify the chemical composition and authenticate the active constituents of XHPWS,ensuring rigorous quality control across batches.A dextran sulfate sodium(DSS)-induced UC model was established in C57BL/6 mice,which were treated with XHPWS in vivo.The efficacy against UC was assessed by measuring parameters such as body weight,disease activity index(DAI)scores,and colon length.Levels of inflammatory cytokines,including interleukin-6(IL-6),interleukin-1β(IL-1β),and tumor necrosis factor-alpha(TNF-α),in colonic tissue were evaluated using enzymelinked immunosorbent assay(ELISA).Histological analysis of colon sections was conducted using hematoxylin and eosin staining.A network pharmacology approach was employed to explore the mechanisms of XHPWS and to predict its potential targets in UC treatment.Predicted protein expressions in colonic tissue were validated using immune-ohistochemistry(IHC)and Western blotting techniques.RESULTS:XHPWS effectively alle via ted DSS-induced UC symptoms in mice,as evidenced by restored body weight,reduced colon shortening,and decreased DAI scores.Histopathological examination revealed that XHPWS significantly reduced intestinal inflammatory infiltration,restored intestinal epithelial permeability,and increased goblet cell count.Network pharmacology analysis identified 63 active compounds in XHPWS and suggested that it might target 35 potential proteins associated with UC treatment.Functional enrichment analysis indicated that the protective mechanism of XHPWS could be related to the advanced glycation end products-receptor for advanced glycation end products(AGE-RAGE)signaling pathway.Notably,quercetin,kaempferol,wogonin,and nobiletin,the main components of XHPWS,showed strong correlations with the core targets.Additionally,experimental validation demonstrated that XHPWS significantly decreased levels of inflammatory cytokines interleukin 6(IL-6),interleukin 1 beta(IL-1β),and tumor necrosis factor alpha(TNF-α)in UC mice,while downregulating the expression of proteins related to the AGE-RAGE pathway.CONCLUSION:Our study demonstrated that XHPWS effectively alle via tes colitis symptoms and inflammation in UC mice,potentially through the regulation of the AGE-RAGE pathway.These findings provide strong evidence for the therapeutic potential of XHPWS in UC treatment,thereby broadening its clinical applications.
基金supported by the National Key Research and Development Program of China(2022YFC3205300)the National Natural Science Foundation of China(22176124).
文摘Current research on heterogeneous advanced oxidation processes(HAOPs)predominantly emphasizes catalyst iteration and innovation.Significant efforts have been made to regulate the electron structure and optimize the electron distribution,thereby increasing the catalytic activity.However,this focus often overshadows an equally essential aspect of HAOPs:the adsorption effect.Adsorption is a critical initiator for triggering the interaction of oxidants and contaminants with heterogeneous catalysts.The efficacy of these interactions is influenced by a variety of physicochemical properties,including surface chemistry and pore sizes,which determine the affinities between contaminants and material surfaces.This dispar ity in affinity is pivotal because it underpins the selective removal of contaminants,especially in complex waste streams containing diverse contaminants and competing matrices.Consequently,understanding and mastering these interfacial interactions is fundamentally indispensable not only for improving pro cess efficiency but also for enhancing the selectivity of contaminant removal.Herein,we highlight the importance of adsorption-driven interfacial interactions for fundamentally elucidating the catalytic mechanisms of HAOPs.Such interactions dictate the overall performance of the treatment processes by balancing the adsorption,reaction,and desorption rates on the catalyst surfaces.Elucidating the adsorption effect not only shifts the paradigm in understanding HAOPs but also improves their practical ity in water treatment and wastewater decontamination.Overall,we propose that revisiting adsorption driven interfacial interactions holds great promise for optimizing catalytic processes to develop effective HAOP strategies.
文摘This study examines the pivotal findings of the network meta-analysis of Zhou et al,which evaluated the efficacy of hepatic arterial infusion chemotherapy and combination therapies for advanced hepatocellular carcinoma(HCC).This meta-analysis suggests that therapeutic combinations have greater efficacy than do standard treatments.The article highlights the key insights that have the potential to shift current clinical practice and enhance outcomes for patients with advanced HCC.Additionally,this article discusses further research that can be conducted to optimize these treatments and achieve personalized care for patients with HCC.
文摘BACKGROUND Owing to the absence of specific symptoms in early-stage gastric cancer,most patients are diagnosed at intermediate or advanced stages.As a result,treatment often shifts from surgery to other therapies,with chemotherapy and targeted therapies being the primary options for advanced gastric cancer treatment.A total of 116 patients with advanced gastric cancer,admitted from January 2021 to December 2023,were selected and divided into two groups of 58 each using the random number table method.The control group received FOLFOX4 chemothe-rapy(oxaliplatin+calcium+folinate+5-fluorouracil)combined with intravenous sindilizumab.The observation group received the same treatment as the control group,supplemented by oral administration of Senqi Shiyiwei granules.Both groups underwent treatment cycles of 3 weeks,with a minimum of two cycles.The therapeutic efficacy,immune mechanisms,and treatment-related toxicity and side effects were compared between the groups.The objective remission rate in the observation group(55.17%)was higher than that of the control group(36.21%)(P<0.05).After two treatment cycle,CD3+,CD4+,and CD4+/CD8+levels were higher in the observation group compared to the control group,while CD8+,regulatory T cells,and natural killer cells were lower(P<0.05).Additionally,the incidence of leukopenia,nausea,and vomiting was lower in observed group(P<0.05).No significant differences were observed in the incidence of other adverse reactions(P>0.05).CONCLUSION Adjuvant therapy with Shenqixian granules may enhance the efficacy of simudizumab combined with FOLFOX4 chemotherapy in advanced gastric cancer and the immune function by increasing immune cell counts,making it a valuable option in clinical treatment.
文摘With the growing demands for food safety,quality,and environmental protection,active food packaging is playing an increasingly vital role in the food industry.Traditional food packaging primarily protects products and facilitates transportation.Active food packaging,however,not only fulfills these fundamental functions but also actively interacts with the food or its environment to extend shelf life and enhance food safety.From current research advancements and market applications,active food packaging demonstrates the following prominent development trends.
基金the University of Cartagena for funding through the Strengthening Project Acta 048-2023.
文摘The extensive use of polymeric materials in single-use packaging has driven the need to develop biodegradable alternatives.This study investigates the incorporation of graphene oxide(GO)and Moringa oleifera seed oil(MOSO)into a gelatin matrix to create polymer films and evaluate their potential as active packaging materials.The properties of these films were evaluated using structural,thermal,mechanical,optical,and physicochemical methods to determine their suitability for food packaging applications.The results showed that GO and MOSO were homogeneously dispersed in the gelatin matrix,forming colloidal particles(around 5μm in diameter).The addition of GO increased opacity by approximately 20 times the base value while MOSO affected light transmittance without impacting opacity.Mechanical properties were affected differently,GO acted as a crosslinking agent reducing elongation and increasing tensile strength at break,on the other hand MOSO acted as a plasticizer,making films more plastic increasing elongation a 30%.These effects counteracted each other,and similar behavior was recorded in differential scanning calorimetry.The films exhibited an improved water vapor resistance,which is crucial for food packaging.These findings indicate that the incorporation of GO and MOSO into a gelatin matrix may produce biodegradable polymer films with enhanced properties,suitable for active packaging in the food industry.
基金funded by the Russian Federation represented by the Ministry of Science and Higher Education,Russia,grant number 075-15-2022-1231 on 18.10.2022National Research Foundation(NRF),South Africa,grant number 150508Brazilian National Council for Scientific and Technological Development(CNPq),Brazil,grant number 440057/2022-1.
文摘Petrochemical plastics are widely used for food protection and preservation;however,they exhibit poor biodegradability,resisting natural degradation through physical,chemical,or enzymatic processes.As a sustainable alternative to conventional plastic packaging,edible films offer effective barriers against moisture,gases,and microbial contamination while being biodegradable,biocompatible,and environmentally friendly.In this study,novel active food packaging materials(in film form)were developed by incorporating starch,carrageenan,nanocellulose(NC),Aloe vera,and hibiscus flower extract.The effects of varying the matrix composition(26.5–73.5 wt.%starch/carrageenan),NC concentration(2.77-17.07 wt.%),and particle type(fibers or crystals)on the film structure and characteristics were analyzed using various methods.Scanning electron microscopy demonstrated good homogeneity and effective dispersion of NC within the blendmatrix.An increased carrageenan content in the filmimproved wettability,moisture absorption,solubility,and water vapor permeability.The mechanical properties of the films were enhanced by NC incorporation and higher carrageenan content.The developed films also exhibited effective UV radiation barriers and biodegradability.Films with low carrageenan content(less than 33.3%)and high NC content(7%,10% crystals or 10%,15% fibers)exhibited optimal properties,including enhanced water resistance,hydrophobicity,and mechanical strength,along with reduced water vapor permeability.However,the high water solubility and moisture absorption(above 55% and 14%,respectively)indicated their unsuitability as packaging materials for food products with wet surfaces and high humidity.The results suggest that these films are well suited for use as edible food packaging for fruits and vegetables.
基金supported by Natural Science Foundation of China(Nos.52070133,42107073,42477075)Natural Science Foundation of Sichuan Province(No.2024NSFSC0130)+2 种基金the Sichuan Science and Technology Program(No.2024NSFTD0014)Key Laboratory of Jiangxi Province for Persistent Pollutants Prevention Control and Resource Reuse(No.2023SSY02061)Key R&D Program of Heilongjiang Province(No.2023ZX02C01)。
文摘Low-valent sulfur oxy-acid salts(LVSOs)represent a category of oxygen-containing salts characterized by their potent reducing capabilities.Notably,sulfite,dithionite,and thiosulfate are prevalent reducing agents that are readily available,cost-effective,and exhibit minimal ecological toxicity.These LVSOs have the ability to generate or promote the generation of strong oxidants or reductants,which makes them widely used in advanced oxidation processes(AOPs)and advanced reduction processes(ARPs).This article provides a comprehensive review of the recent advancements in AOPs and ARPs involving LVSOs,alongside an examination of the fundamental principles governing the generation of active species within these processes.LVSOs fulfill three primary functions in AOPs:Serving as sources of reactive oxygen species(ROS),auxiliary agents,and activators.Particular attention is devoted to elucidating the reaction mechanisms through which LVSOs,in conjunction with metal ions,metal oxides,ultraviolet light(UV),and ozone,produce potent oxidizing agents in both homogeneous and heterogeneous systems.Regarding ARPs,this review delineates the mechanisms by which LVSOs generate strong reducing agents,including hydrated electrons,hydrogen radicals,and sulfite radicals,under UV irradiation,while also exploring the interactions between these reductants and pollutants.The review identifies existing gaps within the current framework and proposes future research avenues to address these challenges.
基金supported by the Natural Science Foundation of Fujian Province(No.2022J01044)the Digital Twin and Intelligent Transportation Maintenance Engineering Research Centre of Genting Applied Technology R&D Platform at Xiamen City University.
文摘Cu nanoparticles exhibit excellent properties as high-temperature-resistant,conductive,heat-dissipating,and connecting materials.However,their susceptibility to oxidation poses a major challenge to the production of high-quality sintered bodies in the air,severely limiting their widespread adoption in power electronics packaging.This study presents a novel approach to the synthesis of Cu nanoparticles capped with oleylamine ligands.By employing a simple solvent-cleaning process,effective control of the density of oleylamine ligands on particle surfaces was achieved,resulting in high-performance Cu nanoparticles with both oxidation resistance and air-sintering susceptibility.Moreover,through our research,the solvent-cleaning mechanism was clarified,a model for the oleylamine ligand decomposition was developed,the air-sintering behavior of Cu nanoparticles was analyzed,and the impacts of both the sintered bodies and interfaces on the sintering performance were explained.Additionally,Cu nanoparticles subjected to 5 cleaning rounds followed by sintering at 280℃and 5 MPa in air were confirmed to be able to produce the highest shear strength(49.2±3.51 MPa)and lowest resistivity(6.15±0.32μΩ·cm).Based on these results,flexible capacitive pressure sensors with Cu sintered electrodes were fabricated and demonstrated a stable pressure-capacitance response over the temperature range of 25-250℃.These findings underscore the impressive robustness and durability of sintered structures and the potential for high-temperature applications of oleylamine-capped Cu nanoparticles.Our study provides reliable application demonstrations for the low-cost manufacture of high-performance power electronics packaging structures that can operate in high-current-density,high-heat-flow-density,high-temperature,and high-stress environments.
基金Yingkou Institute of Technology school level scientificresearch project(Grant:ZDIL202302).
文摘Based on the concept of sustainable design,we are committed to seeking innovative solutions and designinga complete express packaging recycling machine.The device consists of a vibration device,a compression device,a winding device and an electronic control system to promote the recycling of resources and environmental protection.This device can further improve the recycling efficiency and feasibility.It provides new ideas and solutions for the express industry and promotes the development of sustainable design in the field of express packaging recycling and reuse devices.
文摘The food industry prioritizes food safety throughout the entire production process.This involves closely monitoring and evaluating all potential sources of biological or chemical contamination,starting from entering raw materials into the production chain and continuing to the final product.Biofilms on food surfaces or containers can harbor dangerous pathogens,such as Listeria monocytogenes.Therefore,it is essential to continuously manage microbial contamination on food contact surfaces to prevent foodborne infections.Recently,there has been increasing interest in using nanomaterials as surface coatings with antimicrobial properties in the food industry,especially since traditional disinfectants or antibiotics may contribute to developing resistance.However,the use of antibiofilm materials for long-term food storage remains underexplored,and there is a notable lack of focused reviews on nanomaterialbased antibiofilm coatings specifically for long-term food preservation.This review aims to consolidate recently reported nanoparticle-based antibiofilm food packaging materials.We discuss the effectiveness of various metal and metal oxide nanoparticles and biopolymer nanocomposites in combating biofilms.Additionally,we highlight the growing importance of biodegradable nanocomposite materials for antibiofilm food packaging.Furthermore,we explore the mechanisms of action,processing methods,and safety aspects of these nanomaterials being developed for food packaging applications.
基金Penelitian Tesis Magister(PTM)Research Grant from Indonesian Government Kemdikbudristek with contract number 036/E5/PG.02.00.PL/2024.PPM1 2024 Research Grant from Faculty of Industrial Technology,ITB.
文摘The continuous increase in petroleum-based plastic food packaging has led to numerous environmental concerns.One effort to reduce the use of plastic packaging in food is through preservation using biopolymer-based packaging.Among the many types of biopolymers,chitosan is widely used and researched due to its non-toxic,antimicrobial,and antifungal properties.Chitosan is widely available since it is a compound extracted from seafood waste,especially shrimps and crabs.The biodegradability and biocompatibility of chitosan also showed good potential for various applications.These characteristics and propertiesmake chitosan an attractive biopolymer to be implemented as food packaging in films and coatings.Chitosan has been tested in maintaining and increasing the shelf life of food,especially seafood such as fish and shrimp,and post-harvest products such as fruits and vegetables.In addition to its various advantages,the properties and characteristics of chitosan need to be improved to produce optimal preservation.The properties and characteristics of chitosan are improved by adding various types of additive materials such as biopolymers,plant extracts,essential oils,and metal nanoparticles.Research shows that material additives and nanotechnology can improve the quality of chitosan-based food packaging for various types of food by enhancing mechanical properties,thermal stability,antimicrobial activity,and antioxidant activity.This review provides a perspective on the recent development and properties enhancement of chitosan composite with additives and nanotechnology,as well as this material’s challenges and prospects as food packaging.
基金National Natural Science Foundation of China,Grant/Award Numbers:32171717,32271814Natural Science Foundation of Tianjin Municipality,Grant/Award Numbers:24JCJQJC00030,22JCYBJC01560,23JCZDJC00630China Postdoctoral Science Foundation,Grant/Award Number:2023M740562。
文摘Carbon fibers(CFs)with notable comprehensive properties,such as light weight,high specific strength,and stiffness,have garnered considerable interest in both academic and industrial fields due to their diverse and advanced applications.However,the commonly utilized precursors,such as polyacrylonitrile and pitch,exhibit a lack of environmental sustainability,and their costs are heavily reliant on fluctuating petroleum prices.To meet the substantial market demand for CFs,significant efforts have been made to develop cost-effective and sustainable CFs derived from biomass.Lignin,the most abundant polyphenolic compound in nature,is emerging as a promising precursor which is well-suited for the production of CFs due to its renewable nature,low cost,high carbon content,and aromatic structures.Nevertheless,the majority of lignin raw materials are currently derived from pulping and biorefining industrial by-products,which are diverse and heterogeneous in nature,restricting the industrialization of lignin-derived CFs.This review classifies fossil-derived and biomass-derived CFs,starting from the sources and chemical structures of raw lignin,and outlines the preparation methods linked to the performance of lignin-derived CFs.A comprehensive discussion is presented on the relationship between the structural characteristics of lignin,spinning preparation,and structure-morphology-property of ligninderived CFs.Additionally,the potential applications of these materials in various domains,including energy,catalysis,composites,and other advanced products,are also described with the objective of spotlighting the unique merits of lignin.Finally,the current challenges faced and future prospects for the advancement of lignin-derived CFs are proposed.
文摘The advanced driver assistance system(ADAS)primarily serves to assist drivers in monitoring the speed of the car and helps them make the right decision,which leads to fewer fatal accidents and ensures higher safety.In the artificial Intelligence domain,machine learning(ML)was developed to make inferences with a degree of accuracy similar to that of humans;however,enormous amounts of data are required.Machine learning enhances the accuracy of the decisions taken by ADAS,by evaluating all the data received from various vehicle sensors.This study summarizes all the critical algorithms used in ADAS technologies and presents the evolution of ADAS technology.Initially,ADAS technology is introduced,along with its evolution,to understand the objectives of developing this technology.Subsequently,the critical algorithms used in ADAS technology,which include face detection,head-pose estimation,gaze estimation,and link detection are discussed.A further discussion follows on the impact of ML on each algorithm in different environments,leading to increased accuracy at the expense of additional computing,to increase efficiency.The aim of this study was to evaluate all the methods with or without ML for each algorithm.
基金supported by the National Natural Science Foundation of China(Nos.22106169,22136006,and 22021003)。
文摘Photoinitiators(PIs),as an important component of UV inks,are widely used in the printing of paper food packaging.Nevertheless,there is limited information concerning the identification of PIs in food packaging and their potential migration rules under natural storage condition.In this study,23 target PIs detected in paper food packaging were dominated by benzophenones(BZPs),followed by amine co-initiators(ACIs),thioxanthones(TXs)and phosphine oxides(POs).The concentration of ΣPIs ranged between 48.3 and 1.11×10^(5)ng/g.Meanwhile,the concentration ofΣPIs were found to be significantly higher in Corrugated paper compared to Polyethylene(PE)coated paper,Composite paper and White card paper.Benzophenone(BP)was found as the dominant PI congener in Corrugated paper,with the concentration ranging from 923-3.66×10^(4)ng/g.The migration quantity ofΣPIs increased in a time-dependent manner in the first 13 days and then eventually reached equilibrium.Low temperatures had a certain inhibitory effect on the migration of PIs from paper packaging to food.Under high exposure scenario,the EDIs of ΣPIs for children,adolescents,and adults were 31.4 ng/(kg bw·day),17.2 ng/(kg bw·day),and 14.4 ng/(kg bw·day),respectively,all of which did not exceed the reference dose,indicating that dietary intake of PIs does not pose any health risks to the human body.
基金supported by grants from the Noncommunicable Chronic Diseases-National Science and Technology Major Project(Grant No.2023ZD0501300)Science Technology Department of Zhejiang Province(Grant No.2021C03117)+2 种基金National Natural Science Foundation of China(Grant No.82350104 and 82170219)Natural Science Foundation of Zhejiang Province,China(Grant No.LY23H080004 and LY24H080001)Medical Health Science and Technology Project of Zhejiang Provincial Health Commission(Grant No.2021KY199)。
文摘Chimeric antigen receptor natural killer(CAR-NK)cell therapy is an alternative immunotherapy that provides robust tumor-eliminating effects without inducing life-threatening toxicities and graft-versus-host disease.CAR-NK cell therapy has enabled the development of“off-the-shelf”products that bypass the lengthy and expensive cell manufacturing process1.
基金funded by Consejo Nacional de Investigaciones Cientificas y Tecnicas(CONICET,Argentina),grant number PIP 0991by Universidad Nacional de Mar del Plata(UNMdP,Argentina),grant number 15/G686-ING690/23.
文摘Interest in the use of cellulose nanomaterial’s continues to grow,both in research and industry,not only due to the abundance of raw materials,low toxicity and sustainability,but also due to the attractive physical and chemical properties that make nanocelluloses useful for a wide range of end-use applications.Among the large number of potential uses,and nanocelluloses modification and processing strategies,the chosen topic of this review focuses exclusively on plant-derived cellulose microfibers/nanofibers(CNF)and cellulose nanocrystals(CNC)processed into 2D structures—nanopapers and nanofilms—fabricated as self-standing films or applied as coatings.The end uses considered are:combinationwith standard papers and cardboards for packaging,mendingmaterial for the conservation and protection of cellulosic heritage artifacts,and component-parts of complex designs of functional devices for energy harvesting and storage.In these contexts,nanocelluloses provide high mechanical and ecofriendly properties,transparency and tunable haze,as well as flexibility/bendability in the resulting films.All these characteristics make them extremely attractive to a market seeking for sustainable,light weight and low cost raw materials for the production of goods.General perspectives on the current advantages and disadvantages of using CNF and CNC in the selected areas are also reviewed.
文摘Objective:To study the measures and effects of advanced lung cancer patients in terms of complication prevention and care.Methods:50 cases of advanced lung cancer patients were selected for data study during January-December 2023,where the patients were divided into two groups.The study group used complication prevention and nursing care,while the control group used conventional care.The differences between the groups were compared.Results:Compared with the control group,the study group had significantly fewer complications,significantly lower psychological state scores,significantly higher quality of life scores,and significantly lower pain scores(P<0.05).Comparing the psychological state scores,quality of life scores,and pain scores before care,both groups showed insignificant differences(P>0.05).Conclusion:The results of patients with advanced lung cancer are ideal after the application of measures in the area of complication prevention and care.