Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercom...Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.展开更多
To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths ...To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.展开更多
In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjuste...In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.展开更多
This study aimed to explore how core self-evaluations and gender influence interpersonal adjustment and depression risk.Participants were 1748 college students(female=59.73%,male=40.27%,mean age=18.71 years,SD=0.78 yea...This study aimed to explore how core self-evaluations and gender influence interpersonal adjustment and depression risk.Participants were 1748 college students(female=59.73%,male=40.27%,mean age=18.71 years,SD=0.78 years).The students completed the Interpersonal Adjustment Scale for College Students,Center for Epidemiological Studies Depression Scale,and Core Self-evaluation Scale.The results of Linear regression and mediated moderated effects modeling revealed that college students with higher interpersonal adjustment and core self-evaluation scores were at lower risk for depression.Core self-evaluation mediated the relationship between interpersonal adjustment and depression in college students for lower risk for depression.Gender moderated the relationship between interpersonal adjustment and core self-evaluation in college students for higher risk for depression in female students.From thesefindings,we conclude that interpersonal adjustment and core self-evaluation are significant for screening depression risk college students.Moreover,female students may benefit from targeted interventions aimed at their interpersonal adjustment for reducing their risk of depression.展开更多
Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face...Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face limitations due to their substantial size,weight,cost,and deployment complexity.Moreover,the conventional oil pump method for buoyancy adjustment exhibits slow response times,resulting in increased unsteady gliding depth ratios.These constraints limit their application in shallow water environments such as ports,coastal waters,and inland water bodies.This paper presents the TL-200,a small-sized underwater glider that incorporates an integrated buoyancy-driven and attitude adjustment mechanism.Through the implementation of an innovative buoyancy drive unit,the TL-200 achieves enhanced buoyancy regulation response while maintaining a simplified structure compared to conventional gliders.A dynamic model for the TL-200 was developed and validated through comparative analysis of numerical results and experimental data.Utilizing this dynamic model,motion simulations were conducted to examine the influence of metacentric height on motion parameters.Additionally,the study evaluated the gliding efficiency and energy consumption of the TL-200 under varying buoyancy adjustments.The findings demonstrate the effectiveness of this small-sized underwater glider's integrated buoyancy-driven and attitude adjustment mechanism.展开更多
The Yangtze River Delta(YRD)region has witnessed a consistent decrease in NO_(2),CO,and PM_(2.5) from 2016 to 2023.However,ozone has exhibited fluctuating patterns.Quantifying ozone contributions from emissions,both w...The Yangtze River Delta(YRD)region has witnessed a consistent decrease in NO_(2),CO,and PM_(2.5) from 2016 to 2023.However,ozone has exhibited fluctuating patterns.Quantifying ozone contributions from emissions,both within and outside the YRD,is essential for understanding city-cluster-scale ozone pollution(CCSOP).To address these concerns,a comprehensive approach combining Kolmogorov-Zurbenko filtering,Empirical Orthogonal Function,Absolute Principal Component Score,andMultiple Linear Regression methods(KZ-EOF-APCs-MLR)was employed to quantify the impacts of meteorological factors,local and non-local emission contributions of ozone(LECO and NECO).Emission changes were identified as the predominant factor shaping annual fluctuations in ambient ozone.Notably,during the previous andmiddle stages of the COVID-19 pandemic(from2017 to 2021),emissions reductions led to a marked decrease in YRD ozone levels(-7.01μg/m^(3)),with a pronounced rebound post-pandemic(2022 to 2023)(+8.04μg/m^(3)).Seasonally,the emissioninduced ozone exhibited fluctuating upward trend during autumn and winter,suggesting a transition of ozone pollution towards colder seasons.Spatially,high LECO concentrated in the eastern YRD(EYRD)across spring,autumn,and winter,becoming prominent in the central YRD(CYRD)during summer.During CCSOP,the CYRD exhibited the highest LECO and exceedance frequency(20.82μg/m^(3) and 45.27%).LECO explained a large portion of ozone variability during CCSOP,particularly in the EYRD,while NECO showed less explanatory power but consistently high contributions(148.05±15.52μg/m^(3)).These findings offer valuable insights for a deeper understanding of the evolving patterns of ozone pollution and the issue of CCSOP in the YRD.展开更多
Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively ...Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively adjusted the drying time of various paint types under different seasons and temperatures.Eventually,a painting solution suitable for our company has been developed.According to this process,the painting quality has been significantly improved,costs have been saved,the labor intensity has been reduced,and production efficiency has been remarkably enhanced.展开更多
BACKGROUND Ovarian cancer patients often face complex treatment processes and psychological challenges,with different treatment modalities potentially affecting patients’psychological adjustment abilities.AIM To expl...BACKGROUND Ovarian cancer patients often face complex treatment processes and psychological challenges,with different treatment modalities potentially affecting patients’psychological adjustment abilities.AIM To explore the differences in psychological adjustment patterns among ovarian cancer patients receiving surgery,chemotherapy,targeted therapy,and combined therapy,and to analyze their relationship with clinical outcomes.METHODS A retrospective analysis was conducted on the clinical data of 286 ovarian cancer patients who received different treatment modalities from January 2020 to December 2023.Patients were divided into surgery group(n=78),chemotherapy group(n=65),targeted therapy group(n=61),and combined therapy group(n=82).The Self-Rating Anxiety Scale,Self-Rating Depression Scale,and Psychological Adjustment to Cancer Scale were used to assess psychological status,while quality of life,treatment adherence,and two-year survival rate data were collected.Some patients(n=76)received systematic psychological intervention,and the intervention effects were evaluated.RESULTS Patients in the combined therapy group had significantly higher Self-Rating Anxiety Scale(56.3±7.2)and Self-Rating Depression Scale(58.4±6.9)scores than other groups,with the highest incidence of anxiety(58.5%)and depression(62.2%);the targeted therapy group scored highest in the positive coping dimension(28.5±3.6)and had the lowest incidence of anxiety and depression(29.5%/31.1%).Logistic regression analysis showed that positive coping(odds ratio=2.86,95%confidence interval:1.75-4.68)and utilization of social support(odds ratio=2.13,95%confidence interval:1.42-3.56)were protective factors for good treatment adherence.Longitudinal assessment showed that although all patients experienced increased anxiety and depression symptoms at 3 months of treatment,the targeted therapy group and surgery group showed significant improvement at 6 months(P<0.05),while the combined therapy group showed no significant improvement.Psychological intervention effectively improved patients’treatment adherence(by 22.7%)and quality of life(by 15.6 points),with the best effect in the combined therapy group(anxiety incidence decreased by 30.5%,P<0.001).CONCLUSION Different treatment modalities significantly affect the psychological adjustment abilities of ovarian cancer patients,with combined therapy patients facing greater psychological challenges,while targeted therapy patients exhibit healthier psychological adjustment patterns.展开更多
Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned a...Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.展开更多
BACKGROUND Patients with gastric cancer often experience slow postoperative recovery and psychological stress,necessitating enhanced nursing care to improve their prognosis.AIM To analyze the impact of a timing-theory...BACKGROUND Patients with gastric cancer often experience slow postoperative recovery and psychological stress,necessitating enhanced nursing care to improve their prognosis.AIM To analyze the impact of a timing-theory-guided three-stage integrated nursing intervention(TSIN)on the postoperative recovery of patients undergoing gastric cancer surgery.METHODS Total 84 patients that underwent gastric cancer surgeries between June 2022 and June 2024 were selected and divided into a control group and an observation group based on perioperative nursing methods.The control group(n=42)received routine nursing care,whereas the observation group(n=42)received a timing-theory-guided TSIN.The psychological adjustment capabilities,psychological stress,cancer-related fatigue levels,postoperative recovery,and quality of life of the two groups were compared.RESULTS Compared to the control group,the observation group took lesser time to get out of bed,achieve gastrointestinal motility,have the first mealtime,along with a shorter hospital stay(P<0.05).Before nursing,there were no significant differences between groups’parameters or scores(P>0.05).After nursing,the scores for psychological stress and cancer-related fatigue decreased.In contrast,the scores for psychological adjustment capabilities and quality of life increased,with more significant improvements observed in the observation group,showing significant differences within and between the groups(P<0.05).CONCLUSION Timing theory-guided TSIN can improve the psychological adjustment capabilities of patients undergoing gastric cancer surgery,reduce psychological stress and cancer-related fatigue,accelerate postoperative recovery,and improve the quality of life.展开更多
Fingerprint features,as unique and stable biometric identifiers,are crucial for identity verification.However,traditional centralized methods of processing these sensitive data linked to personal identity pose signifi...Fingerprint features,as unique and stable biometric identifiers,are crucial for identity verification.However,traditional centralized methods of processing these sensitive data linked to personal identity pose significant privacy risks,potentially leading to user data leakage.Federated Learning allows multiple clients to collaboratively train and optimize models without sharing raw data,effectively addressing privacy and security concerns.However,variations in fingerprint data due to factors such as region,ethnicity,sensor quality,and environmental conditions result in significant heterogeneity across clients.This heterogeneity adversely impacts the generalization ability of the global model,limiting its performance across diverse distributions.To address these challenges,we propose an Adaptive Federated Fingerprint Recognition algorithm(AFFR)based on Federated Learning.The algorithm incorporates a generalization adjustment mechanism that evaluates the generalization gap between the local models and the global model,adaptively adjusting aggregation weights to mitigate the impact of heterogeneity caused by differences in data quality and feature characteristics.Additionally,a noise mechanism is embedded in client-side training to reduce the risk of fingerprint data leakage arising from weight disclosures during model updates.Experiments conducted on three public datasets demonstrate that AFFR significantly enhances model accuracy while ensuring robust privacy protection,showcasing its strong application potential and competitiveness in heterogeneous data environments.展开更多
How the strong segmentation of cascade reservoir dams and the spatiotemporal changes of sediment retention volume affect the river morphology adjustment in the reservoir area is a scientific issue worthy of exploratio...How the strong segmentation of cascade reservoir dams and the spatiotemporal changes of sediment retention volume affect the river morphology adjustment in the reservoir area is a scientific issue worthy of exploration.This study aims to reveal the adjustment mechanism of the thalweg longitudinal profile of cascade reservoirs.This study focuses on the Xiangjiaba and Xiluodu reservoirs located in the lower reaches of the Jinsha River.Utilizing multi-period observational data of thalweg elevation in reservoir reaches both before and after dam construction,the research employs statistical,geomorphological,and sedimentological methodologies to analyze variation characteristics in the measured curves,trend curves,and theoretical fitting curves of the thalweg longitudinal profile.The investigation ultimately reveals two distinct adjustment patterns in the longitudinal profiles of these cascade reservoirs:the concave curve type and the convex curve type.The former is characterized by weak riverbed scouring and silting changed to rapid aggradation in the upstream section of the reservoir area after dam closure,then changed to slow aggradation in the whole reservoir area,which is the common feature of reservoirs that were built earlier and are relatively located in the downstream(such as the Xiangjiaba Reservoir).The latter is characterized by a straight line or concave curve type with weak riverbed scouring and silting before the dam closure changed to a convex curve type with strong siltation after dam closure,which is the characteristic of reservoirs that were built later and are relatively located in the upstream(such as the Xiluodu Reservoir).The adjustment of the cascade reservoir longitudinal profile is controlled by the spatiotemporal changes of the sediment deposition volume and sedimentation rate in the reservoir area,and the alternating changes of the hydrodynamic gradient and regulation mode affect the spatial heterogeneity of the sedimentation rate.The research results are helpful for understanding the adjustment mechanism of the cascade reservoir longitudinal profile in similar areas and have a guiding role in predicting the adjustment trend of the cascade reservoir longitudinal profile without observation data.展开更多
This longitudinal study examined the association between parental autonomy support and school-aged children’s adjustment across four major domains of school functioning,as well as the mediating role of children’s ex...This longitudinal study examined the association between parental autonomy support and school-aged children’s adjustment across four major domains of school functioning,as well as the mediating role of children’s executive function.Participants were 476 school-aged children(girl:49.2%,M_(age)=10.49 years,SD=1.32 years),who completed the Psychological Autonomy Support Scale,the Behavior Rating Inventory of Executive Function–2,and the Primary School Students’Psychological Suzhi Scale at baseline and at two subsequent follow-up assessments.Results from unconditional latent growth curve models and structural equation modeling indicated that paternal autonomy support was a significant predictor of children’s adjustment across all four school domains.In contrast,maternal autonomy support was significantly associated only with interpersonal adjustment.Both the intercept(initial level)and slope(rate of change)of children’s executive function significantly predicted their adjustment in all four domains.Notably,the initial level of executive function fully mediated the association between paternal autonomy support and school adjustment,whereas the rate of change in executive function did not serve as a significant mediator.Thesefindings underscore the importance of promoting parental autonomy-supportive behaviors-particularly among fathers-as a means to enhance children’s executive functioning and,consequently,their school adjustment.展开更多
China’s endeavors to mitigate recurrent crop residue burning(CRB)and improve air quality have yielded positive results owing to recent pollution prevention policies.Nonetheless,persistent challenges remain,particular...China’s endeavors to mitigate recurrent crop residue burning(CRB)and improve air quality have yielded positive results owing to recent pollution prevention policies.Nonetheless,persistent challenges remain,particularly in the Northeast China(NEC),where low temperature complicates crop residue management.Here,we examined the effects of cropping pattern adjustment on variations of CRB patterns in NEC during 2001-2021,utilizing the Moderate-resolution Imaging Spectroradiometer(MODIS)burned area dataset,the Visible Infrared Imaging Radiometer Suite(VIIRS)active fire dataset,and the high-accuracy crop planting area maps.Our results revealed an overall upward trend of 805.96 km^(2)/yr in NEC CRB from 2001 to 2021.The corn CRB area accounted for more than 50%of the total CRB area in each CRB-intensive year(2013-2021),and the increasing corn CRB generally aligns with the growing corn cultivation fields.A seasonal shift in CRB was found around 2017,with intensive CRB activities transitioning from both autumn and spring to primarily spring,particularly in the Songnen Plain and Sanjiang Plain.The changing trend of PM2.5 concentration aligned spatially with the shift.Moreover,the CRBs in spring of 2020 and 2021 were more severe than the major burning seasons in previous years,likely due to the disruptions during COVID-19 lockdowns.In certain years,the explanatory power of spring CRB on PM2.5 concentration was comparable to that of other natural factors,such as precipitation.This study underscores the critical need for sustained and region-specific strategies to tackle the challenges posed by CRBs.展开更多
Acupuncture,an ancient Chinese medical practice,has been a living heritage for thousands of years.It has helped countless patients,playing a significant role in the field of medicine long before modern medicine emerge...Acupuncture,an ancient Chinese medical practice,has been a living heritage for thousands of years.It has helped countless patients,playing a significant role in the field of medicine long before modern medicine emerged.The origin of acupuncture can be traced back to ancient times when people used stone tools to relieve pain.Over time,this simple method gradually developed into a profound and comprehensive medical system.Its therapeutic principles are in line with traditional Chinese medicine,focusing on holistic treatment,meridian(经脉)adjustment and the balance of bodily functions.展开更多
Dynamic stress adjustment in deep-buried high geostress hard rock tunnels frequently triggers catastrophic failures such as rockbursts and collapses.While a comprehensive understanding of this process is critical for ...Dynamic stress adjustment in deep-buried high geostress hard rock tunnels frequently triggers catastrophic failures such as rockbursts and collapses.While a comprehensive understanding of this process is critical for evaluating surrounding rock stability,its dynamic evolution are often overlooked in engineering practice.This study systematically summarizes a novel classification framework for stress adjustment types—stabilizing(two-zoned),shallow failure(three-zoned),and deep failure(four-zoned)—characterized by distinct stress adjustment stages.A dynamic interpretation technology system is developed based on microseismic monitoring,integrating key microseismic parameters(energy index EI,apparent stressσa,microseismic activity S),seismic source parameter space clustering,and microseismic paths.This approach enables precise identification of evolutionary stages,stress adjustment types,and failure precursors,thereby elucidating the intrinsic linkage between geomechanical processes(stress redistribution)and failure risks.The study establishes criteria and procedures for identifying stress adjustment types and their associated failure risks,which were successfully applied in the Grand Canyon Tunnel of the E-han Highway to detect 50 instances of disaster risks.The findings offer invaluable insights into understanding the evolution process of stress adjustment and pinpointing the disaster risks linked to hard rock in comparable high geostress tunnels.展开更多
In this article,a three-dimensional cooperative guidance problem for highly maneuvering targets is investigated under the assumption of perfect information.Inspired by the coverage strategy,the cooperative guidance pr...In this article,a three-dimensional cooperative guidance problem for highly maneuvering targets is investigated under the assumption of perfect information.Inspired by the coverage strategy,the cooperative guidance problem is decomposed into one-on-one guidance problems against predictive interception points.To expand the coverage area of each missile,these one-on-one guidance problems are formulated as flight path angle tracking problems,and the optimal error dynamics is extended to derive the guidance law analytically.In addition,through the introduction of the coverage probability model,the dynamic coverage strategy is proposed.The predictive interception points are updated online by maximizing the coverage probability,which aims to achieve successful interception despite variations in target acceleration.Furthermore,a switching strategy of the guidance command is designed for collision avoidance.Simulation results demonstrate that the missile group can cooperatively intercept a highly maneuvering target under the proposed guidance law.展开更多
The demand for high-precision large-aperture antennas has continued to increase owing to the expanding application of spaceborne deployable active phased array antennas in remote sensing observation,satellite communic...The demand for high-precision large-aperture antennas has continued to increase owing to the expanding application of spaceborne deployable active phased array antennas in remote sensing observation,satellite communication,navigation positioning,and deep space exploration.However,deployment errors in deployable mechanisms,particularly hinge-induced deflection errors during array surface deployment,degrade on-orbit surface accuracy.This study proposes an active adjustment strategy that installs compliant parallel mechanisms on the backplane of antenna subarrays to regulate surface splicing precision.For one-dimensional(1D)deployable antennas,a two-translation one-rotation(2T1R)parallel mechanism configuration is employed for precision adjustment,whereas two-dimensional(2D)deployable antennas adopt a one-translation two-rotation(1T2R)configuration.A reconfigurable parallel mechanism architecture satisfying space deployment constraints-the 3PSS-2RPU-UPR/RPU parallel mechanism-is designed via configuration synthesis.The degrees of freedom(DOF)are verified via the screw theory,with complete inverse kinematics solutions derived.Search algorithms further quantify the adjustment workspace while clarifying the coupling relationships between DOFs.Equivalent compliant parallel mechanism models are obtained using the rigid-body replacement method,followed by a compliance analysis and motion simulation of compliant joints(notched flexure hinges and leaf-spring flexure prismatic joints).A systematic investigation of the deformation characteristics under different actuation modes confirmed the validity of the equivalent models.Ground experiments demonstrated close agreement between the measured and simulated adjustments,with open-loop adjustment errors constituting less than 10%of the adjustment range,thereby validating the feasibility of the method.The precision adjustment mechanism achieved configuration switching(2T1R/1T2R)through an inverted central limb design,integrating dual-mode compensation into a reconfigurable system.展开更多
Since the beginning of this year,the international environment has been complex and volatile,the international economic and trade order has suffered severe setbacks,and instability and uncertainty have increased signi...Since the beginning of this year,the international environment has been complex and volatile,the international economic and trade order has suffered severe setbacks,and instability and uncertainty have increased significantly.Faced with this complex situation,China's textile industry has adhered to the general principle of seeking progress while maintaining stability,steadily advancing the optimization and adjustment of its industrial structure,and deepening the transformation and upgrading of foreign trade.Supported by the country's more proactive and effective macroeconomic policies,the economy remained generally stable in the first half of the year,with exports maintaining growth despite significant pressure,and its resilience being consolidated and unleashed.Looking ahead to the second half of 2025,the textile industry will continue to face numerous challenges while consolidating its stable and positive development foundation.展开更多
In the traditional blast furnace(BF)ironmaking process in China,a notable deviation exists between the theoretical and actual yield of hot metal,leading to unexpected iron loss and restricting the improvement of produ...In the traditional blast furnace(BF)ironmaking process in China,a notable deviation exists between the theoretical and actual yield of hot metal,leading to unexpected iron loss and restricting the improvement of production capacity,which cannot adapt to the increasingly intensified smelting rhythm.Focusing on a BF in a Chinese steel enterprise,a deep neural network algorithm was designed to model the impact of multiple parameters on actual yield of hot metal in a single BF smelting cycle,successfully accomplishing the theoretical computation and real-time prediction of yield of hot metal for subsequent,unknown BF smelting cycle.Test results show that the proposed algorithm demonstrates an impressive prediction accuracy of 86.7% within an error range of±10 t and can swiftly complete the training and convergence process in 32.5 s.By integrating prediction results with Nomogram,a regulatory mechanism was engineered to minimize the deviation between theoretical and actual yield of hot metal.This mechanism ensures the yield enhancement of hot metal through dynamic adjustments of BF operational parameters.Industrial-scale application experiments confirmed that the intelligent operation and optimization system,developed in the laboratory,can maintain the yield deviation of hot metal within a stable range of 30 t,achieving a maximum reduction in iron loss rate of 17.65%compared to that before system operation.The findings provide robust support for the yield increase and efficiency improvement of the experimental BF.展开更多
基金supported by the National Natural Science Foundation of China(Grant No.41875126)the National Key Scientific and Technological Infrastructure project “Earth System Numerical Simulation Facility”(EarthLab)。
文摘Solar radiation modification,a scheme aimed at mitigating rapid global warming triggered by anthropogenic greenhouse gas emissions,has been explored through the G1ext experiment under the Geoengineering Model Intercomparison Project(GeoMIP) framework,utilizing the Chinese Academy of Sciences Earth System Model version 2(CAS-ESM2.0).This paper briefly describes the basic configuration and experimental design of the CAS-ESM2.0 for G1ext,which involves a sudden reduction in solar irradiance to counterbalance the radiative forcing of an abrupt quadrupling of atmospheric CO_(2) concentration,running for 100 years.Preliminary results show that this model can reproduce well the compensatory effect of a uniform decrease in global solar radiation on the radiative forcing resulting from an abrupt quadrupling of CO_(2) concentration.Like other Earth system models,CAS-ESM2.0 reasonably captures variations in radiative adjustments,surface air temperature,and precipitation patterns,both globally and locally,under the G1ext scenario.The generated datasets have been released on the Earth System Grid Federation data server,providing insight into the potential efficacy and impact of solar geoengineering strategies.
文摘To realize effective co-phasing adjustment in large-aperture sparse-aperture telescopes,a multichannel stripe tracking approach is employed,allowing simultaneous interferometric measurements of multiple optical paths and circumventing the need for pairwise measurements along the mirror boundaries in traditional interferometric methods.This approach enhances detection efficiency and reduces system complexity.Here,the principles of the multibeam interference process and construction of a co-phasing detection module based on direct optical fiber connections were analyzed using wavefront optics theory.Error analysis was conducted on the system surface obtained through multipath interference.Potential applications of the interferometric method were explored.Finally,the principle was verified by experiment,an interferometric fringe contrast better than 0.4 is achieved through flat field calibration and incoherent digital synthesis.The dynamic range of the measurement exceeds 10 times of the center wavelength of the working band(1550 nm).Moreover,a resolution better than one-tenth of the working center wavelength(1550 nm)was achieved.Simultaneous three-beam interference can be achieved,leading to a 50%improvement in detection efficiency.This method can effectively enhance the efficiency of sparse aperture telescope co-phasing,meeting the requirements for observations of 8-10 m telescopes.This study provides a technological foundation for observing distant and faint celestial objects.
文摘In order to study the preferred skin color for printing images,two CMYK images from ISO 400 and one from iStock,including five skin color images of East Asian females was selected in this study.The images were adjusted with the CMYK printing ink volume variation of the single,double and triple channels in the given 280%total ink limit conditions.A larger number of color vision normal observers were organized to carry out the color preference evaluation experiment,and the selected preferred skin colors were analyzed.The distribution range of the chromaticity values for skin color images were obtained and the results indicated that there are three regions for printing skin color preferences,and the observers have a memory preference for brighter,fairer skin colors in young female and a reddish skin colors in girl,which can provide the guidance for color adjustment of printed skin color images.
基金supported by the Education Working Committee of the Xinjiang Uygur Autonomous Region Party Committee(grant number 2023GZYB10).
文摘This study aimed to explore how core self-evaluations and gender influence interpersonal adjustment and depression risk.Participants were 1748 college students(female=59.73%,male=40.27%,mean age=18.71 years,SD=0.78 years).The students completed the Interpersonal Adjustment Scale for College Students,Center for Epidemiological Studies Depression Scale,and Core Self-evaluation Scale.The results of Linear regression and mediated moderated effects modeling revealed that college students with higher interpersonal adjustment and core self-evaluation scores were at lower risk for depression.Core self-evaluation mediated the relationship between interpersonal adjustment and depression in college students for lower risk for depression.Gender moderated the relationship between interpersonal adjustment and core self-evaluation in college students for higher risk for depression in female students.From thesefindings,we conclude that interpersonal adjustment and core self-evaluation are significant for screening depression risk college students.Moreover,female students may benefit from targeted interventions aimed at their interpersonal adjustment for reducing their risk of depression.
基金financially supported by the National Key Research and Development Program of China(Grant No.2023YFC3008001)the National Natural Science Foundation of China(Grant No.52371357)the Guangdong Basic and Applied Basic Research Foundation(Grant No.2023A1515240035)。
文摘Underwater Gliders(UGs)have emerged as vital instruments in marine research,offering distinct advantages including low operational costs,extended range capabilities,and superior durability.Traditional UGs,however,face limitations due to their substantial size,weight,cost,and deployment complexity.Moreover,the conventional oil pump method for buoyancy adjustment exhibits slow response times,resulting in increased unsteady gliding depth ratios.These constraints limit their application in shallow water environments such as ports,coastal waters,and inland water bodies.This paper presents the TL-200,a small-sized underwater glider that incorporates an integrated buoyancy-driven and attitude adjustment mechanism.Through the implementation of an innovative buoyancy drive unit,the TL-200 achieves enhanced buoyancy regulation response while maintaining a simplified structure compared to conventional gliders.A dynamic model for the TL-200 was developed and validated through comparative analysis of numerical results and experimental data.Utilizing this dynamic model,motion simulations were conducted to examine the influence of metacentric height on motion parameters.Additionally,the study evaluated the gliding efficiency and energy consumption of the TL-200 under varying buoyancy adjustments.The findings demonstrate the effectiveness of this small-sized underwater glider's integrated buoyancy-driven and attitude adjustment mechanism.
基金supported by the National Natural Science Foundation of China(Nos.U19A2044,42105132,42030609,41975037)the National Key Research and Development Programof China(No.2022YFC3700303).
文摘The Yangtze River Delta(YRD)region has witnessed a consistent decrease in NO_(2),CO,and PM_(2.5) from 2016 to 2023.However,ozone has exhibited fluctuating patterns.Quantifying ozone contributions from emissions,both within and outside the YRD,is essential for understanding city-cluster-scale ozone pollution(CCSOP).To address these concerns,a comprehensive approach combining Kolmogorov-Zurbenko filtering,Empirical Orthogonal Function,Absolute Principal Component Score,andMultiple Linear Regression methods(KZ-EOF-APCs-MLR)was employed to quantify the impacts of meteorological factors,local and non-local emission contributions of ozone(LECO and NECO).Emission changes were identified as the predominant factor shaping annual fluctuations in ambient ozone.Notably,during the previous andmiddle stages of the COVID-19 pandemic(from2017 to 2021),emissions reductions led to a marked decrease in YRD ozone levels(-7.01μg/m^(3)),with a pronounced rebound post-pandemic(2022 to 2023)(+8.04μg/m^(3)).Seasonally,the emissioninduced ozone exhibited fluctuating upward trend during autumn and winter,suggesting a transition of ozone pollution towards colder seasons.Spatially,high LECO concentrated in the eastern YRD(EYRD)across spring,autumn,and winter,becoming prominent in the central YRD(CYRD)during summer.During CCSOP,the CYRD exhibited the highest LECO and exceedance frequency(20.82μg/m^(3) and 45.27%).LECO explained a large portion of ozone variability during CCSOP,particularly in the EYRD,while NECO showed less explanatory power but consistently high contributions(148.05±15.52μg/m^(3)).These findings offer valuable insights for a deeper understanding of the evolving patterns of ozone pollution and the issue of CCSOP in the YRD.
文摘Through the analysis of the actual situation and process of painting industrial steel components in Hechang Company,we have modified the mixing ratio of paint,thinner,and curing agent.Additionally,we have effectively adjusted the drying time of various paint types under different seasons and temperatures.Eventually,a painting solution suitable for our company has been developed.According to this process,the painting quality has been significantly improved,costs have been saved,the labor intensity has been reduced,and production efficiency has been remarkably enhanced.
文摘BACKGROUND Ovarian cancer patients often face complex treatment processes and psychological challenges,with different treatment modalities potentially affecting patients’psychological adjustment abilities.AIM To explore the differences in psychological adjustment patterns among ovarian cancer patients receiving surgery,chemotherapy,targeted therapy,and combined therapy,and to analyze their relationship with clinical outcomes.METHODS A retrospective analysis was conducted on the clinical data of 286 ovarian cancer patients who received different treatment modalities from January 2020 to December 2023.Patients were divided into surgery group(n=78),chemotherapy group(n=65),targeted therapy group(n=61),and combined therapy group(n=82).The Self-Rating Anxiety Scale,Self-Rating Depression Scale,and Psychological Adjustment to Cancer Scale were used to assess psychological status,while quality of life,treatment adherence,and two-year survival rate data were collected.Some patients(n=76)received systematic psychological intervention,and the intervention effects were evaluated.RESULTS Patients in the combined therapy group had significantly higher Self-Rating Anxiety Scale(56.3±7.2)and Self-Rating Depression Scale(58.4±6.9)scores than other groups,with the highest incidence of anxiety(58.5%)and depression(62.2%);the targeted therapy group scored highest in the positive coping dimension(28.5±3.6)and had the lowest incidence of anxiety and depression(29.5%/31.1%).Logistic regression analysis showed that positive coping(odds ratio=2.86,95%confidence interval:1.75-4.68)and utilization of social support(odds ratio=2.13,95%confidence interval:1.42-3.56)were protective factors for good treatment adherence.Longitudinal assessment showed that although all patients experienced increased anxiety and depression symptoms at 3 months of treatment,the targeted therapy group and surgery group showed significant improvement at 6 months(P<0.05),while the combined therapy group showed no significant improvement.Psychological intervention effectively improved patients’treatment adherence(by 22.7%)and quality of life(by 15.6 points),with the best effect in the combined therapy group(anxiety incidence decreased by 30.5%,P<0.001).CONCLUSION Different treatment modalities significantly affect the psychological adjustment abilities of ovarian cancer patients,with combined therapy patients facing greater psychological challenges,while targeted therapy patients exhibit healthier psychological adjustment patterns.
基金supported by the Hunan Provin〓〓cial Natural Science Foundation for Excellent Young Scholars(Grant No.2023JJ20045)the National Natural Science Foundation of China(Grant No.12372189)。
文摘Photomechanics is a crucial branch of solid mechanics.The localization of point targets constitutes a fundamental problem in optical experimental mechanics,with extensive applications in various missions of unmanned aerial vehicles.Localizing moving targets is crucial for analyzing their motion characteristics and dynamic properties.Reconstructing the trajectories of points from asynchronous cameras is a significant challenge.It encompasses two coupled sub-problems:Trajectory reconstruction and camera synchronization.Present methods typically address only one of these sub-problems individually.This paper proposes a 3D trajectory reconstruction method for point targets based on asynchronous cameras,simultaneously solving both sub-problems.Firstly,we extend the trajectory intersection method to asynchronous cameras to resolve the limitation of traditional triangulation that requires camera synchronization.Secondly,we develop models for camera temporal information and target motion,based on imaging mechanisms and target dynamics characteristics.The parameters are optimized simultaneously to achieve trajectory reconstruction without accurate time parameters.Thirdly,we optimize the camera rotations alongside the camera time information and target motion parameters,using tighter and more continuous constraints on moving points.The reconstruction accuracy is significantly improved,especially when the camera rotations are inaccurate.Finally,the simulated and real-world experimental results demonstrate the feasibility and accuracy of the proposed method.The real-world results indicate that the proposed algorithm achieved a localization error of 112.95 m at an observation distance range of 15-20 km.
文摘BACKGROUND Patients with gastric cancer often experience slow postoperative recovery and psychological stress,necessitating enhanced nursing care to improve their prognosis.AIM To analyze the impact of a timing-theory-guided three-stage integrated nursing intervention(TSIN)on the postoperative recovery of patients undergoing gastric cancer surgery.METHODS Total 84 patients that underwent gastric cancer surgeries between June 2022 and June 2024 were selected and divided into a control group and an observation group based on perioperative nursing methods.The control group(n=42)received routine nursing care,whereas the observation group(n=42)received a timing-theory-guided TSIN.The psychological adjustment capabilities,psychological stress,cancer-related fatigue levels,postoperative recovery,and quality of life of the two groups were compared.RESULTS Compared to the control group,the observation group took lesser time to get out of bed,achieve gastrointestinal motility,have the first mealtime,along with a shorter hospital stay(P<0.05).Before nursing,there were no significant differences between groups’parameters or scores(P>0.05).After nursing,the scores for psychological stress and cancer-related fatigue decreased.In contrast,the scores for psychological adjustment capabilities and quality of life increased,with more significant improvements observed in the observation group,showing significant differences within and between the groups(P<0.05).CONCLUSION Timing theory-guided TSIN can improve the psychological adjustment capabilities of patients undergoing gastric cancer surgery,reduce psychological stress and cancer-related fatigue,accelerate postoperative recovery,and improve the quality of life.
基金supported by the National Natural Science Foundation of China(Nos.62002100,61902237)Key Research and Promotion Projects of Henan Province(Nos.232102240023,232102210063,222102210040).
文摘Fingerprint features,as unique and stable biometric identifiers,are crucial for identity verification.However,traditional centralized methods of processing these sensitive data linked to personal identity pose significant privacy risks,potentially leading to user data leakage.Federated Learning allows multiple clients to collaboratively train and optimize models without sharing raw data,effectively addressing privacy and security concerns.However,variations in fingerprint data due to factors such as region,ethnicity,sensor quality,and environmental conditions result in significant heterogeneity across clients.This heterogeneity adversely impacts the generalization ability of the global model,limiting its performance across diverse distributions.To address these challenges,we propose an Adaptive Federated Fingerprint Recognition algorithm(AFFR)based on Federated Learning.The algorithm incorporates a generalization adjustment mechanism that evaluates the generalization gap between the local models and the global model,adaptively adjusting aggregation weights to mitigate the impact of heterogeneity caused by differences in data quality and feature characteristics.Additionally,a noise mechanism is embedded in client-side training to reduce the risk of fingerprint data leakage arising from weight disclosures during model updates.Experiments conducted on three public datasets demonstrate that AFFR significantly enhances model accuracy while ensuring robust privacy protection,showcasing its strong application potential and competitiveness in heterogeneous data environments.
基金National Key R&D Program of China,No.2022YFC3203903National Natural Science Foundation of China,No.42371010,No.41971004。
文摘How the strong segmentation of cascade reservoir dams and the spatiotemporal changes of sediment retention volume affect the river morphology adjustment in the reservoir area is a scientific issue worthy of exploration.This study aims to reveal the adjustment mechanism of the thalweg longitudinal profile of cascade reservoirs.This study focuses on the Xiangjiaba and Xiluodu reservoirs located in the lower reaches of the Jinsha River.Utilizing multi-period observational data of thalweg elevation in reservoir reaches both before and after dam construction,the research employs statistical,geomorphological,and sedimentological methodologies to analyze variation characteristics in the measured curves,trend curves,and theoretical fitting curves of the thalweg longitudinal profile.The investigation ultimately reveals two distinct adjustment patterns in the longitudinal profiles of these cascade reservoirs:the concave curve type and the convex curve type.The former is characterized by weak riverbed scouring and silting changed to rapid aggradation in the upstream section of the reservoir area after dam closure,then changed to slow aggradation in the whole reservoir area,which is the common feature of reservoirs that were built earlier and are relatively located in the downstream(such as the Xiangjiaba Reservoir).The latter is characterized by a straight line or concave curve type with weak riverbed scouring and silting before the dam closure changed to a convex curve type with strong siltation after dam closure,which is the characteristic of reservoirs that were built later and are relatively located in the upstream(such as the Xiluodu Reservoir).The adjustment of the cascade reservoir longitudinal profile is controlled by the spatiotemporal changes of the sediment deposition volume and sedimentation rate in the reservoir area,and the alternating changes of the hydrodynamic gradient and regulation mode affect the spatial heterogeneity of the sedimentation rate.The research results are helpful for understanding the adjustment mechanism of the cascade reservoir longitudinal profile in similar areas and have a guiding role in predicting the adjustment trend of the cascade reservoir longitudinal profile without observation data.
基金supported by the National Natural Science Foundation of China(CN)(Grant No.32071074).
文摘This longitudinal study examined the association between parental autonomy support and school-aged children’s adjustment across four major domains of school functioning,as well as the mediating role of children’s executive function.Participants were 476 school-aged children(girl:49.2%,M_(age)=10.49 years,SD=1.32 years),who completed the Psychological Autonomy Support Scale,the Behavior Rating Inventory of Executive Function–2,and the Primary School Students’Psychological Suzhi Scale at baseline and at two subsequent follow-up assessments.Results from unconditional latent growth curve models and structural equation modeling indicated that paternal autonomy support was a significant predictor of children’s adjustment across all four school domains.In contrast,maternal autonomy support was significantly associated only with interpersonal adjustment.Both the intercept(initial level)and slope(rate of change)of children’s executive function significantly predicted their adjustment in all four domains.Notably,the initial level of executive function fully mediated the association between paternal autonomy support and school adjustment,whereas the rate of change in executive function did not serve as a significant mediator.Thesefindings underscore the importance of promoting parental autonomy-supportive behaviors-particularly among fathers-as a means to enhance children’s executive functioning and,consequently,their school adjustment.
基金supported by the National Key Research and Devel-opment Program of China(Grant No.2023YFD1500200)the funding project of Northeast Geological S&T Innovation Center of China Geologi-cal Survey(Grant No.QCJJ2022-9)+3 种基金the Strategic Priority Research Pro-gram of the Chinese Academy of Sciences(Grant No.XDA28060100)the Youth Interdisciplinary Team Project of the Chinese Academy of Sciences(JCTD-2021-04)the Informatization Plan of the Chinese Academy of Sciences(Grant No.CAS-WX2021PY-0109)the National Natural Science Foundation of China(Grants No.41971078,42271375,72221002,42001378).
文摘China’s endeavors to mitigate recurrent crop residue burning(CRB)and improve air quality have yielded positive results owing to recent pollution prevention policies.Nonetheless,persistent challenges remain,particularly in the Northeast China(NEC),where low temperature complicates crop residue management.Here,we examined the effects of cropping pattern adjustment on variations of CRB patterns in NEC during 2001-2021,utilizing the Moderate-resolution Imaging Spectroradiometer(MODIS)burned area dataset,the Visible Infrared Imaging Radiometer Suite(VIIRS)active fire dataset,and the high-accuracy crop planting area maps.Our results revealed an overall upward trend of 805.96 km^(2)/yr in NEC CRB from 2001 to 2021.The corn CRB area accounted for more than 50%of the total CRB area in each CRB-intensive year(2013-2021),and the increasing corn CRB generally aligns with the growing corn cultivation fields.A seasonal shift in CRB was found around 2017,with intensive CRB activities transitioning from both autumn and spring to primarily spring,particularly in the Songnen Plain and Sanjiang Plain.The changing trend of PM2.5 concentration aligned spatially with the shift.Moreover,the CRBs in spring of 2020 and 2021 were more severe than the major burning seasons in previous years,likely due to the disruptions during COVID-19 lockdowns.In certain years,the explanatory power of spring CRB on PM2.5 concentration was comparable to that of other natural factors,such as precipitation.This study underscores the critical need for sustained and region-specific strategies to tackle the challenges posed by CRBs.
文摘Acupuncture,an ancient Chinese medical practice,has been a living heritage for thousands of years.It has helped countless patients,playing a significant role in the field of medicine long before modern medicine emerged.The origin of acupuncture can be traced back to ancient times when people used stone tools to relieve pain.Over time,this simple method gradually developed into a profound and comprehensive medical system.Its therapeutic principles are in line with traditional Chinese medicine,focusing on holistic treatment,meridian(经脉)adjustment and the balance of bodily functions.
基金supported by the National Natural Science Foundation of China(Nos.42177173,U23A20651 and 42130719)and the Outstanding Youth Science Fund Project of Sichuan Provincial Natural Science Foundation(No.2025NSFJQ0003)。
文摘Dynamic stress adjustment in deep-buried high geostress hard rock tunnels frequently triggers catastrophic failures such as rockbursts and collapses.While a comprehensive understanding of this process is critical for evaluating surrounding rock stability,its dynamic evolution are often overlooked in engineering practice.This study systematically summarizes a novel classification framework for stress adjustment types—stabilizing(two-zoned),shallow failure(three-zoned),and deep failure(four-zoned)—characterized by distinct stress adjustment stages.A dynamic interpretation technology system is developed based on microseismic monitoring,integrating key microseismic parameters(energy index EI,apparent stressσa,microseismic activity S),seismic source parameter space clustering,and microseismic paths.This approach enables precise identification of evolutionary stages,stress adjustment types,and failure precursors,thereby elucidating the intrinsic linkage between geomechanical processes(stress redistribution)and failure risks.The study establishes criteria and procedures for identifying stress adjustment types and their associated failure risks,which were successfully applied in the Grand Canyon Tunnel of the E-han Highway to detect 50 instances of disaster risks.The findings offer invaluable insights into understanding the evolution process of stress adjustment and pinpointing the disaster risks linked to hard rock in comparable high geostress tunnels.
基金supported by the National Natural Science Foundation of China(Nos.61773142,62303136)China Postdoctoral Science Foundation(No.2023M740912)Postdoctoral Fellowship Program of CPSF,China(No.GZC20233447).
文摘In this article,a three-dimensional cooperative guidance problem for highly maneuvering targets is investigated under the assumption of perfect information.Inspired by the coverage strategy,the cooperative guidance problem is decomposed into one-on-one guidance problems against predictive interception points.To expand the coverage area of each missile,these one-on-one guidance problems are formulated as flight path angle tracking problems,and the optimal error dynamics is extended to derive the guidance law analytically.In addition,through the introduction of the coverage probability model,the dynamic coverage strategy is proposed.The predictive interception points are updated online by maximizing the coverage probability,which aims to achieve successful interception despite variations in target acceleration.Furthermore,a switching strategy of the guidance command is designed for collision avoidance.Simulation results demonstrate that the missile group can cooperatively intercept a highly maneuvering target under the proposed guidance law.
基金Supported by National Natural Science Foundation of China(Grant No.52475023)Shanghai Municipal Natural Science Foundation(Grant Nos.24ZR1424300,23DZ2229032).
文摘The demand for high-precision large-aperture antennas has continued to increase owing to the expanding application of spaceborne deployable active phased array antennas in remote sensing observation,satellite communication,navigation positioning,and deep space exploration.However,deployment errors in deployable mechanisms,particularly hinge-induced deflection errors during array surface deployment,degrade on-orbit surface accuracy.This study proposes an active adjustment strategy that installs compliant parallel mechanisms on the backplane of antenna subarrays to regulate surface splicing precision.For one-dimensional(1D)deployable antennas,a two-translation one-rotation(2T1R)parallel mechanism configuration is employed for precision adjustment,whereas two-dimensional(2D)deployable antennas adopt a one-translation two-rotation(1T2R)configuration.A reconfigurable parallel mechanism architecture satisfying space deployment constraints-the 3PSS-2RPU-UPR/RPU parallel mechanism-is designed via configuration synthesis.The degrees of freedom(DOF)are verified via the screw theory,with complete inverse kinematics solutions derived.Search algorithms further quantify the adjustment workspace while clarifying the coupling relationships between DOFs.Equivalent compliant parallel mechanism models are obtained using the rigid-body replacement method,followed by a compliance analysis and motion simulation of compliant joints(notched flexure hinges and leaf-spring flexure prismatic joints).A systematic investigation of the deformation characteristics under different actuation modes confirmed the validity of the equivalent models.Ground experiments demonstrated close agreement between the measured and simulated adjustments,with open-loop adjustment errors constituting less than 10%of the adjustment range,thereby validating the feasibility of the method.The precision adjustment mechanism achieved configuration switching(2T1R/1T2R)through an inverted central limb design,integrating dual-mode compensation into a reconfigurable system.
文摘Since the beginning of this year,the international environment has been complex and volatile,the international economic and trade order has suffered severe setbacks,and instability and uncertainty have increased significantly.Faced with this complex situation,China's textile industry has adhered to the general principle of seeking progress while maintaining stability,steadily advancing the optimization and adjustment of its industrial structure,and deepening the transformation and upgrading of foreign trade.Supported by the country's more proactive and effective macroeconomic policies,the economy remained generally stable in the first half of the year,with exports maintaining growth despite significant pressure,and its resilience being consolidated and unleashed.Looking ahead to the second half of 2025,the textile industry will continue to face numerous challenges while consolidating its stable and positive development foundation.
基金the financial supports from the National Natural Science Foundation of China(52004096)Natural Science Foundation of Hebei Province(E2024209101)+2 种基金Hebei Province Science and Technology R&D Platform Construction Project(23560301D)Tangshan Science and Technology Bureau Project(23130202E)Graduate Student Innovation Fund of North China University of Science and Technology(CXZZBS2025150).
文摘In the traditional blast furnace(BF)ironmaking process in China,a notable deviation exists between the theoretical and actual yield of hot metal,leading to unexpected iron loss and restricting the improvement of production capacity,which cannot adapt to the increasingly intensified smelting rhythm.Focusing on a BF in a Chinese steel enterprise,a deep neural network algorithm was designed to model the impact of multiple parameters on actual yield of hot metal in a single BF smelting cycle,successfully accomplishing the theoretical computation and real-time prediction of yield of hot metal for subsequent,unknown BF smelting cycle.Test results show that the proposed algorithm demonstrates an impressive prediction accuracy of 86.7% within an error range of±10 t and can swiftly complete the training and convergence process in 32.5 s.By integrating prediction results with Nomogram,a regulatory mechanism was engineered to minimize the deviation between theoretical and actual yield of hot metal.This mechanism ensures the yield enhancement of hot metal through dynamic adjustments of BF operational parameters.Industrial-scale application experiments confirmed that the intelligent operation and optimization system,developed in the laboratory,can maintain the yield deviation of hot metal within a stable range of 30 t,achieving a maximum reduction in iron loss rate of 17.65%compared to that before system operation.The findings provide robust support for the yield increase and efficiency improvement of the experimental BF.