Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity an...Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.展开更多
When vectors of a judgement matrix is arranged according to their weight in AHP, uniform consistency is always required and the check criterion is uniform check. In this paper, a stronger uniform consistency check is ...When vectors of a judgement matrix is arranged according to their weight in AHP, uniform consistency is always required and the check criterion is uniform check. In this paper, a stronger uniform consistency check is introduced which can obtain a exact and practical effect by making an adjust to any non-satisfying uniforming matrix.展开更多
This article explores the foundational research,Chinese medicine theories,and clinical applications of the“heart adjusting acupuncture method”developed by Professor Guanhu Yang to prevent and treat athero-sclerotic ...This article explores the foundational research,Chinese medicine theories,and clinical applications of the“heart adjusting acupuncture method”developed by Professor Guanhu Yang to prevent and treat athero-sclerotic cardiovascular disease(ASCVD).Professor Yang established this method based on experimental studies involving electroacupuncture along the horizontal umbilical line,which demonstrated a reduction in infarct area in the myocardial infarction mice model.This method was formulated using acupoints on the horizontal umbilical line:Daimai(GB 26),Tianshu(ST 25),and Daheng(SP 15).Clinical application has shown that it could effectively improve cardiac function and manage various cardiovascular conditions and proposed a new hypothesis for the treatment of myocardial infarction.Further research is required to determine if electroacupuncture stimulation at the site of myocardial infarction or during transportation can extend the critical treatment window,preserve myocardial tissue,and enhance reperfusion therapy prognosis.Professor Yang advocates that,when combined with active Western medicine treatments,the“heart adjusting acupuncture method”offers an effective measure to prevent and treat ASCVD.展开更多
Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improv...Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.展开更多
For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a sm...For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a small integration step size is always required to suppress the increase of the accumulated computation error,which leads to a relatively slow computation speed.Recently,a collocation iteration method,approximating the solutions of orbit dynamic problems iteratively,has been developed.This method achieves high computation accuracy with extremely large step size.Although efficient,the collocation iteration method suffers from two limitations:(A)the computational error limit of the approximate solution is not clear;(B)extensive trials and errors are always required in tuning parameters.To overcome these problems,the influence mechanism of how the dynamic problems and parameters affect the error limit of the collocation iteration method is explored.On this basis,a parameter adjustment method known as the“polishing method”is proposed to improve the computation speed.The method proposed is demonstrated in three typical orbit dynamic problems in aerospace engineering:a low Earth orbit propagation problem,a Molniya orbit propagation problem,and a geostationary orbit propagation problem.Numerical simulations show that the proposed polishing method is faster and more accurate than the finite-difference-based method and the most advanced collocation iteration method.展开更多
The LAMBDA method that was proposed by Teunissen is introduced.Then,on the basis of both the back-sequential conditional LS technique and the upper-triangular Cholesky decomposition,another form for LAMBDA method is p...The LAMBDA method that was proposed by Teunissen is introduced.Then,on the basis of both the back-sequential conditional LS technique and the upper-triangular Cholesky decomposition,another form for LAMBDA method is proposed.This new form for LAMBDA method has the same principle and calculation speed as the traditional LAMBDA method.展开更多
In order to research possible influences of the adjustment of plant distribution on the development frequency of thunderstorms over the Leizhou Peninsula, mathematic statistic methods, including correlation analyses, ...In order to research possible influences of the adjustment of plant distribution on the development frequency of thunderstorms over the Leizhou Peninsula, mathematic statistic methods, including correlation analyses, 11 kinds of fitting models and all-variable regression methods, were used for analyses and research. The results show that the average trend of the number of annual thunderstorm days is descending obviously, and there are thunderstorms in all seasons, in which warm post-midday thunderstorms have taken up the most part, and high frequency is found from May to September, and the starting and ending dates of thunderstorms have a great annual discrepancy. The vegetation structure has been improved along with the reduction of rice fields and the area increment of sugarcane and fruits planting, which results in the decrease of the number of thunderstorm days; the change in the characteristics of winter spare fields, which is caused by the planting of vegetables, limits the formation of thunderstorms in early winter and late spring. Meanwhile, the area adjustment of peanut planting has little influence on the variation of thunderstorm days. The adjustment of principal crop distribution, such as rice, sugarcane, fruits and vegetables, may have obvious influence on the formation of thunderstorms, and sugarcane has the largest effect, followed in turn by rice, vegetables and fruits, and the adjustment of crop distribution has little influence on the starting and ending dates of thunderstorms.展开更多
A time splitting technique is common to many free surface ocean models. The different truncation errors in the equations of the internal and external modes require a numerical adjustment to make sure that algorithms c...A time splitting technique is common to many free surface ocean models. The different truncation errors in the equations of the internal and external modes require a numerical adjustment to make sure that algorithms correctly satisfy continuity equations and conserve tracers quantities. The princeton ocean model (POM) has applied a simple method of adjusting the vertical mean of internal velocities to external velocities at each internal time step. However, due to the Asselin time filter method adopted to prevent the numerical instability, the method of velocity adjustment used in POM can no longer guarantee the satisfaction of the continuity equation in the internal mode, though a special treatment is used to relate the surface elevation of the internal mode with that of the external mode. The error is proved to be a second-order term of the coefficient in the Asselin filter. One influence of this error in the numerical model is the failure of the kinetic boundary condition at the sea floor. By a regional experiment and a quasi-global experiment, the magni- tudes of this error are evaluated, and several sensitivity tests of this error are performed. The characteristic of this error is analyzed and two alternative algorithms are suggested to reduce the error.展开更多
Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolut...Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolutions focus on device state evaluation and fault detection,which is ex-post method.However,this paper proposes a LS-SVM algorithm based on deficiencies tree analysis to predict deficiencies in future under certain maintenance scheme,then choose the best maintenance scheme.展开更多
Small-section hydraulic tunnels are characterized by small spaces and various section forms,under complex environments,which makes it difficult to carry out an inspection by the mobile acquisition equipment.To resolve...Small-section hydraulic tunnels are characterized by small spaces and various section forms,under complex environments,which makes it difficult to carry out an inspection by the mobile acquisition equipment.To resolve these problems,an arbitrarily adjustable camera module deployment method and the corresponding automatic image acquisition equipment with multi-area array cameras are proposed and developed.Such method enables the acquisition of full-length surface images of the hydraulic tunnels with different cross-section forms and diameters by a one-way travel,and the overlap rate and accuracy of the acquired image sets meet the requirements of three-dimensional reconstruction and panoramic image generation.In addition,to improve the speed and accuracy of traditional algorithms for tunnel surface defects detection,this paper proposes an improved YOLOv5s-DECA model.The algorithm introduces DenseNet to optimize the backbone feature extraction network and incorporates an efficient channel attention ECA module to make a better extraction of features of defects.The experimental results show that mAP,and F1-score of YOLOv5-DECA are 73.4%and 74.6%,respectively,which are better than the common model in terms of accuracy and robustness.The proposed YOLOv5-DECA has great detection performance for targets with variable shapes and can solve the problem of classification imbalance in surface defects.Then,by combining YOLOv5-DECA with the direction search algorithm,a“point-ring-section”method is established to allow rapid identification of common surface defects by detecting them layer by layer with the bottom image of the stitched panorama as the seed.The presented method in this paper effectively solves the problem that a single image fails to show the overall distribution of the defects and their accurate positioning in a whole large tunnel section and the effective features of defects in an excessively large panoramic image size are difficult to be captured by the neural network.Field applications demonstrated that the presented method is adequate for high-precision and intelligent surface defect detection and positioning for different small-section hydraulic tunnels such as circular,arch-wall,and box-shaped hydraulic tunnels.展开更多
Introduction:This study aims to report the epidemiological trends and provide updated estimates and lifetime risks for breast and cervical cancers among women in Guangdong province.Methods:A Bayesian age-period-cohort...Introduction:This study aims to report the epidemiological trends and provide updated estimates and lifetime risks for breast and cervical cancers among women in Guangdong province.Methods:A Bayesian age-period-cohort model was applied to project incidence and mortality rates for 2023.The adjusted for multiple primaries(AMP)method was used to calculate the lifetime risks of developing and dying from breast and cervical cancer.Joinpoint analysis was employed to describe the temporal trends.Results:The age-standardized incidence rate(ASIR)of female breast cancer increased from 2012 to 2019 in Guangdong province,with a particularly pronounced increase noted in the rural areas.The ASIR for cervical cancer among women aged over 55 increased in both urban and rural areas,whereas a declining trend was observed among women under the age of 55.The age-standardized mortality rates(ASMRs)for both breast cancer and cervical cancer demonstrated upward trends among women aged over 55,while no significant trend in ASMR was found for women under 55 years.In 2023,the estimated incidence rates of breast cancer and cervical cancer would be 50.81/10^(5)(ASIR would be 35.57/10^(5))and 15.31/10^(5)(ASIR would be 10.41/10^(5))respectively,with corresponding mortality rates of 10.78/10^(5)(ASMR would be 7.15/10^(5))and 6.11/10^(5)(ASMR would be 3.93/10^(5))for these cancers.Conclusions:Breast cancer continues to pose a significant threat to women’s health in both rural and urban areas of Guangdong,whereas cancer prevention and control programs for cervical cancer have shown positive impacts among the younger population.Greater emphasis should be placed on women aged over 55 to halt the rising mortality rates of both cancers within this population.展开更多
The Schottky contact which is a crucial interface between semiconductors and metals is becoming increasingly significant in nano-semiconductor devices. A Schottky barrier, also known as the energy barrier, controls th...The Schottky contact which is a crucial interface between semiconductors and metals is becoming increasingly significant in nano-semiconductor devices. A Schottky barrier, also known as the energy barrier, controls the depletion width and carrier transport across the metal–semiconductor interface.Controlling or adjusting Schottky barrier height(SBH) has always been a vital issue in the successful operation of any semiconductor device. This review provides a comprehensive overview of the static and dynamic adjustment methods of SBH, with a particular focus on the recent advancements in nanosemiconductor devices. These methods encompass the work function of the metals, interface gap states,surface modification, image-lowering effect, external electric field, light illumination, and piezotronic effect. We also discuss strategies to overcome the Fermi-level pinning effect caused by interface gap states, including van der Waals contact and 1D edge metal contact. Finally, this review concludes with future perspectives in this field.展开更多
A novel compensation method for temperature-dependent gain tilt of L-band erbium-doped fiber amplifier (L-EDFA) is proposed, in which the attenuation between stages is the only parameter to be adjusted. A simple linea...A novel compensation method for temperature-dependent gain tilt of L-band erbium-doped fiber amplifier (L-EDFA) is proposed, in which the attenuation between stages is the only parameter to be adjusted. A simple linear relationship between the attenuation and the erbium fiber coil temperature was derived theoretically. When the erbium fiber coil temperature cycles from 26 to 70C, the gain tilt variation less than 0.3 dB is achieved experimentally by adjusting only the pre-inserted variable optical attenuator (VOA).展开更多
基金Supported by the National Natural Science Foundation of China (No. 61102066)China Postdoctoral Science Foundation (No. 2012M511365)the Scientific Research Project of Zhejiang Provincial Education Department (No.Y201119890)
文摘Spectrum sensing is the fundamental task for Cognitive Radio (CR). To overcome the challenge of high sampling rate in traditional spectral estimation methods, Compressed Sensing (CS) theory is developed. A sparsity and compression ratio joint adjustment algorithm for compressed spectrum sensing in CR network is investigated, with the hypothesis that the sparsity level is unknown as priori knowledge at CR terminals. As perfect spectrum reconstruction is not necessarily required during spectrum detection process, the proposed algorithm only performs a rough estimate of sparsity level. Meanwhile, in order to further reduce the sensing measurement, different compression ratios for CR terminals with varying Signal-to-Noise Ratio (SNR) are considered. The proposed algorithm, which optimizes the compression ratio as well as the estimated sparsity level, can greatly reduce the sensing measurement without degrading the detection performance. It also requires less steps of iteration for convergence. Corroborating simulation results are presented to testify the effectiveness of the proposed algorithm for collaborative spectrum sensing.
文摘When vectors of a judgement matrix is arranged according to their weight in AHP, uniform consistency is always required and the check criterion is uniform check. In this paper, a stronger uniform consistency check is introduced which can obtain a exact and practical effect by making an adjust to any non-satisfying uniforming matrix.
基金supported by the Program of Introducing Talents of Discipline to Universities(111 Project)-TCM Prevention and Treatment of Major Chronic Diseases(Tumor-B21028).
文摘This article explores the foundational research,Chinese medicine theories,and clinical applications of the“heart adjusting acupuncture method”developed by Professor Guanhu Yang to prevent and treat athero-sclerotic cardiovascular disease(ASCVD).Professor Yang established this method based on experimental studies involving electroacupuncture along the horizontal umbilical line,which demonstrated a reduction in infarct area in the myocardial infarction mice model.This method was formulated using acupoints on the horizontal umbilical line:Daimai(GB 26),Tianshu(ST 25),and Daheng(SP 15).Clinical application has shown that it could effectively improve cardiac function and manage various cardiovascular conditions and proposed a new hypothesis for the treatment of myocardial infarction.Further research is required to determine if electroacupuncture stimulation at the site of myocardial infarction or during transportation can extend the critical treatment window,preserve myocardial tissue,and enhance reperfusion therapy prognosis.Professor Yang advocates that,when combined with active Western medicine treatments,the“heart adjusting acupuncture method”offers an effective measure to prevent and treat ASCVD.
文摘Iterative methods based on finite element simulation are effective approaches to design mold shape to compensate springback in sheet metal forming. However, convergence rate of iterative methods is difficult to improve greatly. To increase the springback compensate speed of designing age forming mold, process of calculating springback for a certain mold with finite element method is analyzed. Springback compensation is abstracted as finding a solution for a set of nonlinear functions and a springback compensation algorithm is presented on the basis of quasi Newton method. The accuracy of algorithm is verified by developing an ABAQUS secondary development program with MATLAB. Three rectangular integrated panels of dimensions 710 mmx750 mm integrated panels with intersected ribs of 10 mm are selected to perform case studies. The algorithm is used to compute mold contours for the panels with cylinder, sphere and saddle contours respectively and it takes 57%, 22% and 33% iterations as compared to that of displacement adjustment (DA) method. At the end of iterations, maximum deviations on the three panels are 0.618 4 mm, 0.624 1 mm and 0.342 0 mm that are smaller than the deviations determined by DA method (0.740 8 mm, 0.740 8 mm and 0.713 7 mm respectively). In following experimental verification, mold contour for another integrated panel with 400 ram^380 mm size is designed by the algorithm. Then the panel is age formed in an autoclave and measured by a three dimensional digital measurement devise. Deviation between measuring results and the panel's design contour is less than 1 mm. Finally, the iterations with different mesh sizes (40 mm, 35 mm, 30 mm, 25 mm, 20 mm) in finite element models are compared and found no considerable difference. Another possible compensation method, Broyden-Fletcher-Shanmo method, is also presented based on the solving nonlinear fimctions idea. The Broyden-Fletcher-Shanmo method is employed to compute mold contour for the second panel. It only takes 50% iterations compared to that of DA. The proposed method can serve a faster mold contour compensation method for sheet metal forming.
基金This study was co-supported by the National Key Research and Development Program of China(No.2021YFA0717100)the National Natural Science Foundation of China(Nos.12072270,U2013206).
文摘For over half a century,numerical integration methods based on finite difference,such as the Runge-Kutta method and the Euler method,have been popular and widely used for solving orbit dynamic problems.In general,a small integration step size is always required to suppress the increase of the accumulated computation error,which leads to a relatively slow computation speed.Recently,a collocation iteration method,approximating the solutions of orbit dynamic problems iteratively,has been developed.This method achieves high computation accuracy with extremely large step size.Although efficient,the collocation iteration method suffers from two limitations:(A)the computational error limit of the approximate solution is not clear;(B)extensive trials and errors are always required in tuning parameters.To overcome these problems,the influence mechanism of how the dynamic problems and parameters affect the error limit of the collocation iteration method is explored.On this basis,a parameter adjustment method known as the“polishing method”is proposed to improve the computation speed.The method proposed is demonstrated in three typical orbit dynamic problems in aerospace engineering:a low Earth orbit propagation problem,a Molniya orbit propagation problem,and a geostationary orbit propagation problem.Numerical simulations show that the proposed polishing method is faster and more accurate than the finite-difference-based method and the most advanced collocation iteration method.
文摘The LAMBDA method that was proposed by Teunissen is introduced.Then,on the basis of both the back-sequential conditional LS technique and the upper-triangular Cholesky decomposition,another form for LAMBDA method is proposed.This new form for LAMBDA method has the same principle and calculation speed as the traditional LAMBDA method.
文摘In order to research possible influences of the adjustment of plant distribution on the development frequency of thunderstorms over the Leizhou Peninsula, mathematic statistic methods, including correlation analyses, 11 kinds of fitting models and all-variable regression methods, were used for analyses and research. The results show that the average trend of the number of annual thunderstorm days is descending obviously, and there are thunderstorms in all seasons, in which warm post-midday thunderstorms have taken up the most part, and high frequency is found from May to September, and the starting and ending dates of thunderstorms have a great annual discrepancy. The vegetation structure has been improved along with the reduction of rice fields and the area increment of sugarcane and fruits planting, which results in the decrease of the number of thunderstorm days; the change in the characteristics of winter spare fields, which is caused by the planting of vegetables, limits the formation of thunderstorms in early winter and late spring. Meanwhile, the area adjustment of peanut planting has little influence on the variation of thunderstorm days. The adjustment of principal crop distribution, such as rice, sugarcane, fruits and vegetables, may have obvious influence on the formation of thunderstorms, and sugarcane has the largest effect, followed in turn by rice, vegetables and fruits, and the adjustment of crop distribution has little influence on the starting and ending dates of thunderstorms.
基金The National Science Foundation of China under contract Nos 40906017 and 41376038the National "863" Project of China under contract No.2013AA09A506+1 种基金the National Key Scientific Research Projects of China under contract No.2012CB955601the Special Projects on Public Sector under contract Nos 200905024 and 201409089
文摘A time splitting technique is common to many free surface ocean models. The different truncation errors in the equations of the internal and external modes require a numerical adjustment to make sure that algorithms correctly satisfy continuity equations and conserve tracers quantities. The princeton ocean model (POM) has applied a simple method of adjusting the vertical mean of internal velocities to external velocities at each internal time step. However, due to the Asselin time filter method adopted to prevent the numerical instability, the method of velocity adjustment used in POM can no longer guarantee the satisfaction of the continuity equation in the internal mode, though a special treatment is used to relate the surface elevation of the internal mode with that of the external mode. The error is proved to be a second-order term of the coefficient in the Asselin filter. One influence of this error in the numerical model is the failure of the kinetic boundary condition at the sea floor. By a regional experiment and a quasi-global experiment, the magni- tudes of this error are evaluated, and several sensitivity tests of this error are performed. The characteristic of this error is analyzed and two alternative algorithms are suggested to reduce the error.
文摘Transformers are key components in substations,and their maintenance scheme is very important.Optimizing the transformer maintenance scheme can enhance substation reliability and lower maintenance cost.Current resolutions focus on device state evaluation and fault detection,which is ex-post method.However,this paper proposes a LS-SVM algorithm based on deficiencies tree analysis to predict deficiencies in future under certain maintenance scheme,then choose the best maintenance scheme.
基金funded by the Hunan Provincial Natural Science Foundation Project(Grant No.2023JJ30672)the Science and Technology Research and Development Program Project of China Railway Group Limited(Grant No.2021-Special-08(A))+1 种基金the Science and Technology Research and Development Plan Project of China National Railway Group Co.Ltd.(Grant No.L2022G003)the Open Foundation of National Engineering Laboratory for High-speed Railway Construction(No.HSR202005).
文摘Small-section hydraulic tunnels are characterized by small spaces and various section forms,under complex environments,which makes it difficult to carry out an inspection by the mobile acquisition equipment.To resolve these problems,an arbitrarily adjustable camera module deployment method and the corresponding automatic image acquisition equipment with multi-area array cameras are proposed and developed.Such method enables the acquisition of full-length surface images of the hydraulic tunnels with different cross-section forms and diameters by a one-way travel,and the overlap rate and accuracy of the acquired image sets meet the requirements of three-dimensional reconstruction and panoramic image generation.In addition,to improve the speed and accuracy of traditional algorithms for tunnel surface defects detection,this paper proposes an improved YOLOv5s-DECA model.The algorithm introduces DenseNet to optimize the backbone feature extraction network and incorporates an efficient channel attention ECA module to make a better extraction of features of defects.The experimental results show that mAP,and F1-score of YOLOv5-DECA are 73.4%and 74.6%,respectively,which are better than the common model in terms of accuracy and robustness.The proposed YOLOv5-DECA has great detection performance for targets with variable shapes and can solve the problem of classification imbalance in surface defects.Then,by combining YOLOv5-DECA with the direction search algorithm,a“point-ring-section”method is established to allow rapid identification of common surface defects by detecting them layer by layer with the bottom image of the stitched panorama as the seed.The presented method in this paper effectively solves the problem that a single image fails to show the overall distribution of the defects and their accurate positioning in a whole large tunnel section and the effective features of defects in an excessively large panoramic image size are difficult to be captured by the neural network.Field applications demonstrated that the presented method is adequate for high-precision and intelligent surface defect detection and positioning for different small-section hydraulic tunnels such as circular,arch-wall,and box-shaped hydraulic tunnels.
基金Supported by the talent support project established by Guangdong Provincial Center for Disease Control and Prevention[2023D010].
文摘Introduction:This study aims to report the epidemiological trends and provide updated estimates and lifetime risks for breast and cervical cancers among women in Guangdong province.Methods:A Bayesian age-period-cohort model was applied to project incidence and mortality rates for 2023.The adjusted for multiple primaries(AMP)method was used to calculate the lifetime risks of developing and dying from breast and cervical cancer.Joinpoint analysis was employed to describe the temporal trends.Results:The age-standardized incidence rate(ASIR)of female breast cancer increased from 2012 to 2019 in Guangdong province,with a particularly pronounced increase noted in the rural areas.The ASIR for cervical cancer among women aged over 55 increased in both urban and rural areas,whereas a declining trend was observed among women under the age of 55.The age-standardized mortality rates(ASMRs)for both breast cancer and cervical cancer demonstrated upward trends among women aged over 55,while no significant trend in ASMR was found for women under 55 years.In 2023,the estimated incidence rates of breast cancer and cervical cancer would be 50.81/10^(5)(ASIR would be 35.57/10^(5))and 15.31/10^(5)(ASIR would be 10.41/10^(5))respectively,with corresponding mortality rates of 10.78/10^(5)(ASMR would be 7.15/10^(5))and 6.11/10^(5)(ASMR would be 3.93/10^(5))for these cancers.Conclusions:Breast cancer continues to pose a significant threat to women’s health in both rural and urban areas of Guangdong,whereas cancer prevention and control programs for cervical cancer have shown positive impacts among the younger population.Greater emphasis should be placed on women aged over 55 to halt the rising mortality rates of both cancers within this population.
基金supported by Youth Innovation Promotion Association CAS (2023175)the National Natural Science Foundation of China (T2125003)the Fundamental Research Funds for the Central Universities。
文摘The Schottky contact which is a crucial interface between semiconductors and metals is becoming increasingly significant in nano-semiconductor devices. A Schottky barrier, also known as the energy barrier, controls the depletion width and carrier transport across the metal–semiconductor interface.Controlling or adjusting Schottky barrier height(SBH) has always been a vital issue in the successful operation of any semiconductor device. This review provides a comprehensive overview of the static and dynamic adjustment methods of SBH, with a particular focus on the recent advancements in nanosemiconductor devices. These methods encompass the work function of the metals, interface gap states,surface modification, image-lowering effect, external electric field, light illumination, and piezotronic effect. We also discuss strategies to overcome the Fermi-level pinning effect caused by interface gap states, including van der Waals contact and 1D edge metal contact. Finally, this review concludes with future perspectives in this field.
文摘A novel compensation method for temperature-dependent gain tilt of L-band erbium-doped fiber amplifier (L-EDFA) is proposed, in which the attenuation between stages is the only parameter to be adjusted. A simple linear relationship between the attenuation and the erbium fiber coil temperature was derived theoretically. When the erbium fiber coil temperature cycles from 26 to 70C, the gain tilt variation less than 0.3 dB is achieved experimentally by adjusting only the pre-inserted variable optical attenuator (VOA).