In order to accommodate the variety of algorithms with different performance in specific application and improve power efficiency,reconfigurable architecture has become an effective methodology in academia and industr...In order to accommodate the variety of algorithms with different performance in specific application and improve power efficiency,reconfigurable architecture has become an effective methodology in academia and industry.However,existing architectures suffer from performance bottleneck due to slow updating of contexts and inadequate flexibility.This paper presents an H-tree based reconfiguration mechanism(HRM)with Huffman-coding-like and mask addressing method in a homogeneous processing element(PE)array,which supports both programmable and data-driven modes.The proposed HRM can transfer reconfiguration instructions/contexts to a particular PE or associated PEs simultaneously in one clock cycle in unicast,multicast and broadcast mode,and shut down the unnecessary PE/PEs according to the current configuration.To verify the correctness and efficiency,we implement it in RTL synthesis and FPGA prototype.Compared to prior works,the experiment results show that the HRM has improved the work frequency by an average of 23.4%,increased the updating speed by 2×,and reduced the area by 36.9%;HRM can also power off the unnecessary PEs which reduced 51%of dynamic power dissipation in certain application configuration.Furthermore,in the data-driven mode,the system frequency can reach 214 MHz,which is 1.68×higher compared with the programmable mode.展开更多
Given the emerging problems of today’s Internet,many new Internet architectures have been proposed by the net-working community.In general,the new approaches can be categorized into two types:evolutionary approaches ...Given the emerging problems of today’s Internet,many new Internet architectures have been proposed by the net-working community.In general,the new approaches can be categorized into two types:evolutionary approaches and clean-slate approaches.The representative evolutionary solution is IPv6,while representative clean-slate approaches are NDN(Named Data Networking),MobilityFirst,NEBULA,XIA(Expressive Internet Architecture),and SDN(Software-Defined Networking).A comprehensive survey of these approaches are presented.Additionally,a novel network architecture that we recently proposed:ADN(Address-Driven Networking)is described,which intends to address the challenges faced by today’s Internet via the flexible and innovative utilization of IP addresses.展开更多
基金supported by the National Natural Science Foundation of China (Nos. 61834005, 61602377, 61772417, 61802304, 61874087)the Shaanxi International Science and Technology Cooperation Program No. 2018KW-006+1 种基金Shaanxi Provincial Key R&D Plan under Grant No. 2017GY-060Shaanxi Province Co-ordination Innovation Project of Science and Technology under Grant No. 2016KTZDGY02-04-02
文摘In order to accommodate the variety of algorithms with different performance in specific application and improve power efficiency,reconfigurable architecture has become an effective methodology in academia and industry.However,existing architectures suffer from performance bottleneck due to slow updating of contexts and inadequate flexibility.This paper presents an H-tree based reconfiguration mechanism(HRM)with Huffman-coding-like and mask addressing method in a homogeneous processing element(PE)array,which supports both programmable and data-driven modes.The proposed HRM can transfer reconfiguration instructions/contexts to a particular PE or associated PEs simultaneously in one clock cycle in unicast,multicast and broadcast mode,and shut down the unnecessary PE/PEs according to the current configuration.To verify the correctness and efficiency,we implement it in RTL synthesis and FPGA prototype.Compared to prior works,the experiment results show that the HRM has improved the work frequency by an average of 23.4%,increased the updating speed by 2×,and reduced the area by 36.9%;HRM can also power off the unnecessary PEs which reduced 51%of dynamic power dissipation in certain application configuration.Furthermore,in the data-driven mode,the system frequency can reach 214 MHz,which is 1.68×higher compared with the programmable mode.
基金supported by The National Basic Research Program of China(973 program)(2014CB347800)The National Natural Science Foundation of China(No.61522205,No.61432002,No.61133006)+1 种基金The National High Techndogy Research Development Program of China(863 program)(No.2013AA013303,No.2015AA01A705,No.2015AA016102)ZTE communications and Tsinghua University Initiative Scientific Research Program.
文摘Given the emerging problems of today’s Internet,many new Internet architectures have been proposed by the net-working community.In general,the new approaches can be categorized into two types:evolutionary approaches and clean-slate approaches.The representative evolutionary solution is IPv6,while representative clean-slate approaches are NDN(Named Data Networking),MobilityFirst,NEBULA,XIA(Expressive Internet Architecture),and SDN(Software-Defined Networking).A comprehensive survey of these approaches are presented.Additionally,a novel network architecture that we recently proposed:ADN(Address-Driven Networking)is described,which intends to address the challenges faced by today’s Internet via the flexible and innovative utilization of IP addresses.