Consider the partly linear model Y = xβ + g(t) + e where the explanatory x is erroneously measured, and both t and the response Y are measured exactly, the random error e is a martingale difference sequence. Let ...Consider the partly linear model Y = xβ + g(t) + e where the explanatory x is erroneously measured, and both t and the response Y are measured exactly, the random error e is a martingale difference sequence. Let ~ be a surrogate variable observed instead of the true x in the primary survey data. Assume that in addition to the primary data set containing N observations of {(Yj, xj, tj)n+N j=n+1 }, the independent validation data containing n observations of {(xj, x j, tj)n j=1 } is available. In this paper, a semiparametric method with the primary data is employed to obtain the estimator ofβ and g(-) based on the least squares criterion with the help of validation data. The proposed estimators are proved to be strongly consistent. Finite sample behavior of the estimators is investigated via simulations too.展开更多
This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) prop...This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.展开更多
We consider the partially linear multiplicative model with monotonic constraint for the analysis of positive response data. We propose a constrained least product relative error (LPRE) estimation procedure for the mod...We consider the partially linear multiplicative model with monotonic constraint for the analysis of positive response data. We propose a constrained least product relative error (LPRE) estimation procedure for the model by means of B-spline basis expansion. We have also established asymptotic properties of the proposed estimators under regularity conditions. We finally provide numerical simulations and a real data application to assess the finite sample performance of the developed methodology.展开更多
In this paper,we mainly study the feature screening and error variance estimation in ultrahigh-dimensional linear model with errors-in-variables(EV).Given that sure independence screening(SIS)method by marginal Pearso...In this paper,we mainly study the feature screening and error variance estimation in ultrahigh-dimensional linear model with errors-in-variables(EV).Given that sure independence screening(SIS)method by marginal Pearson’s correlation learning may omit some important observation variables due to measurement errors,a corrected SIS called EVSIS is proposed to rank the importance of features according to their corrected marginal correlation with the response variable.Also,a corrected error variance procedure is proposed to accurately estimate the error variance,which could greatly attenuate the influence of measurement errors and spurious correlations,simultaneously.Under some regularization conditions,the proposed EVSIS possesses sure screening property and consistency in ranking and the corrected error variance estimator is also proved to be asymptotically normal.The two methodologies are illustrated by some simulations and a real data example,which suggests that the proposed methods perform well.展开更多
In this paper,the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors.Firstly, a bandwidth selection procedure is propos...In this paper,the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors.Firstly, a bandwidth selection procedure is proposed,which is a combination of the differencebased technique and GCV method.Secondly,a goodness-of-fit test procedure is proposed, which is an extension of the generalized likelihood technique.Thirdly,a variable selection procedure for the parametric part is provided based on the nonconcave penalization and corrected profile least squares.Same as"Variable selection via nonconcave penalized likelihood and its oracle properties"(J.Amer.Statist.Assoc.,96,2001,1348-1360),it is shown that the resulting estimator has an oracle property with a proper choice of regularization parameters and penalty function.Simulation studies are conducted to illustrate the finite sample performances of the proposed procedures.展开更多
The partially linear single-index model(PLSIM)is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates.This paper considers the PLSIM with measurement error ...The partially linear single-index model(PLSIM)is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates.This paper considers the PLSIM with measurement error possibly in all the variables.The authors propose a new efficient estimation procedure based on the local linear smoothing and the simulation-extrapolation method,and further establish the asymptotic normality of the proposed estimators for both the index parameter and nonparametric link function.The authors also carry out extensive Monte Carlo simulation studies to evaluate the finite sample performance of the new method,and apply it to analyze the osteoporosis prevention data.展开更多
As an extension of partially linear models and additive models, partially linear additive model is useful in statistical modelling. This paper proposes an empirical likelihood based approach for testing serial correla...As an extension of partially linear models and additive models, partially linear additive model is useful in statistical modelling. This paper proposes an empirical likelihood based approach for testing serial correlation in this semiparametric model. The proposed test method can test not only zero first-order serial correlation, but also higher-order serial correlation. Under the null hypothesis of no serial correlation, the test statistic is shown to follow asymptotically a chi-square distribution. Furthermore, a simulation study is conducted to illustrate the performance of the proposed method.展开更多
The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic ...The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.展开更多
Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected ...Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.展开更多
This paper proposes to use the blockwise empirical likelihood (EL) method to construct the confidence regions for the regression vector β in a partially linear model under negatively associated errors. It is shown ...This paper proposes to use the blockwise empirical likelihood (EL) method to construct the confidence regions for the regression vector β in a partially linear model under negatively associated errors. It is shown that the blockwise EL ratio statistic for β is asymptotically χ^2 distributed. The result is used to obtain an EL-based confidence region for β. Results of a simulation study on the finite sample performance of the proposed confidence regions are reported.展开更多
A partial linear model with missing response variables and error-prone covariates is considered. The imputation approach is developed to estimate the regression coefficients and the nonparametric function. The propose...A partial linear model with missing response variables and error-prone covariates is considered. The imputation approach is developed to estimate the regression coefficients and the nonparametric function. The proposed parametric estimators are shown to be asymptotically normal, and the estimators for the nonparametric part are proved to converge at an optimal rate. To construct confidence regions for the regression coefficients and the nonparametric function, respectively, the authors also propose the empirical-likelihood-based statistics and investigate the limit distributions of the empirical likelihood ratios. The simulation study is conducted to compare the finite sample behavior for the proposed estimators. An application to an AIDS dataset is illustrated.展开更多
In this paper, we consider the partially nonlinear errors-in-variables models when the non- parametric component is measured with additive error. The profile nonlinear least squares estimator of unknown parameter and ...In this paper, we consider the partially nonlinear errors-in-variables models when the non- parametric component is measured with additive error. The profile nonlinear least squares estimator of unknown parameter and the estimator of nonparametric component are constructed, and their asymptotic properties are derived under general assumptions. Finite sample performances of the proposed statistical inference procedures are illustrated by Monte Carlo simulation studies.展开更多
While the random errors are a function of Gaussian random variables that are stationary and long dependent, we investigate a partially linear errors-in-variables(EV) model by the wavelet method. Under general condit...While the random errors are a function of Gaussian random variables that are stationary and long dependent, we investigate a partially linear errors-in-variables(EV) model by the wavelet method. Under general conditions, we obtain asymptotic representation of the parametric estimator, and asymptotic distributions and weak convergence rates of the parametric and nonparametric estimators. At last, the validity of the wavelet method is illuminated by a simulation example and a real example.展开更多
This paper considers partially linear additive models with the number of parameters diverging when some linear cons train ts on the parame trie par t are available.This paper proposes a constrained profile least-squar...This paper considers partially linear additive models with the number of parameters diverging when some linear cons train ts on the parame trie par t are available.This paper proposes a constrained profile least-squares estimation for the parametrie components with the nonparametric functions being estimated by basis function approximations.The consistency and asymptotic normality of the restricted estimator are given under some certain conditions.The authors construct a profile likelihood ratio test statistic to test the validity of the linear constraints on the parametrie components,and demonstrate that it follows asymptotically chi-squared distribution under the null and alternative hypo theses.The finite sample performance of the proposed method is illus trated by simulation studies and a data analysis.展开更多
The linear mixed-effects model (LMM) is a very useful tool for analyzing cluster data. In practice, however, the exact values of the variables are often difficult to observe. In this paper, we consider the LMM with ...The linear mixed-effects model (LMM) is a very useful tool for analyzing cluster data. In practice, however, the exact values of the variables are often difficult to observe. In this paper, we consider the LMM with measurement errors in the covariates. The empirical BLUP estimator of the linear combination of the fixed and random effects and its approximate conditional MSE are derived. The application to the estimation of small area is provided. Simulation study shows good performance of the proposed estimators.展开更多
Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric...Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions.展开更多
Interpretability has drawn increasing attention in machine learning.Most works focus on post-hoc explanations rather than building a self-explaining model.So,we propose a Neural Partially Linear Additive Model(NPLAM),...Interpretability has drawn increasing attention in machine learning.Most works focus on post-hoc explanations rather than building a self-explaining model.So,we propose a Neural Partially Linear Additive Model(NPLAM),which automatically distinguishes insignificant,linear,and nonlinear features in neural networks.On the one hand,neural network construction fits data better than spline function under the same parameter amount;on the other hand,learnable gate design and sparsity regular-term maintain the ability of feature selection and structure discovery.We theoretically establish the generalization error bounds of the proposed method with Rademacher complexity.Experiments based on both simulations and real-world datasets verify its good performance and interpretability.展开更多
In this paper,we consider the statistical inferences in a partially linear model when the model error follows an autoregressive process.A two-step procedure is proposed for estimating the unknown parameters by taking ...In this paper,we consider the statistical inferences in a partially linear model when the model error follows an autoregressive process.A two-step procedure is proposed for estimating the unknown parameters by taking into account of the special structure in error.Since the asymptotic matrix of the estimator for the parametric part has a complex structure,an empirical likelihood function is also developed.We derive the asymptotic properties of the related statistics under mild conditions.Some simulations,as well as a real data example,are conducted to illustrate the finite sample performance.展开更多
基金Supported by National Natural Science Foundation of China(Grant Nos.1127115511371168+7 种基金110011051107112611071269)Specialized Research Fund for the Doctoral Program of Higher Education(Grant No.20110061110003)the Natural Science Foundation of Jilin Province(Grant Nos.20130101066JC20130522102JH20101596)"Twelfth Five-Year Plan"Science and Technology Research Project of the Education Department of Jilin Province(Grant No.2012186)
文摘Consider the partly linear model Y = xβ + g(t) + e where the explanatory x is erroneously measured, and both t and the response Y are measured exactly, the random error e is a martingale difference sequence. Let ~ be a surrogate variable observed instead of the true x in the primary survey data. Assume that in addition to the primary data set containing N observations of {(Yj, xj, tj)n+N j=n+1 }, the independent validation data containing n observations of {(xj, x j, tj)n j=1 } is available. In this paper, a semiparametric method with the primary data is employed to obtain the estimator ofβ and g(-) based on the least squares criterion with the help of validation data. The proposed estimators are proved to be strongly consistent. Finite sample behavior of the estimators is investigated via simulations too.
基金supported by the National Natural Science Funds for Distinguished Young Scholar (70825004)National Natural Science Foundation of China (NSFC) (10731010 and 10628104)+3 种基金the National Basic Research Program (2007CB814902)Creative Research Groups of China (10721101)Leading Academic Discipline Program, the 10th five year plan of 211 Project for Shanghai University of Finance and Economics211 Project for Shanghai University of Financeand Economics (the 3rd phase)
文摘This article is concerned with the estimating problem of semiparametric varyingcoefficient partially linear regression models. By combining the local polynomial and least squares procedures Fan and Huang (2005) proposed a profile least squares estimator for the parametric component and established its asymptotic normality. We further show that the profile least squares estimator can achieve the law of iterated logarithm. Moreover, we study the estimators of the functions characterizing the non-linear part as well as the error variance. The strong convergence rate and the law of iterated logarithm are derived for them, respectively.
文摘We consider the partially linear multiplicative model with monotonic constraint for the analysis of positive response data. We propose a constrained least product relative error (LPRE) estimation procedure for the model by means of B-spline basis expansion. We have also established asymptotic properties of the proposed estimators under regularity conditions. We finally provide numerical simulations and a real data application to assess the finite sample performance of the developed methodology.
基金supported partly by the National Natural Science Foundation of China(Grant No.11971324)supported by the State Key Program of National Natural Science Foundation of China(Grant No.12031016).
文摘In this paper,we mainly study the feature screening and error variance estimation in ultrahigh-dimensional linear model with errors-in-variables(EV).Given that sure independence screening(SIS)method by marginal Pearson’s correlation learning may omit some important observation variables due to measurement errors,a corrected SIS called EVSIS is proposed to rank the importance of features according to their corrected marginal correlation with the response variable.Also,a corrected error variance procedure is proposed to accurately estimate the error variance,which could greatly attenuate the influence of measurement errors and spurious correlations,simultaneously.Under some regularization conditions,the proposed EVSIS possesses sure screening property and consistency in ranking and the corrected error variance estimator is also proved to be asymptotically normal.The two methodologies are illustrated by some simulations and a real data example,which suggests that the proposed methods perform well.
文摘In this paper,the authors investigate three aspects of statistical inference for the partially linear regression models where some covariates are measured with errors.Firstly, a bandwidth selection procedure is proposed,which is a combination of the differencebased technique and GCV method.Secondly,a goodness-of-fit test procedure is proposed, which is an extension of the generalized likelihood technique.Thirdly,a variable selection procedure for the parametric part is provided based on the nonconcave penalization and corrected profile least squares.Same as"Variable selection via nonconcave penalized likelihood and its oracle properties"(J.Amer.Statist.Assoc.,96,2001,1348-1360),it is shown that the resulting estimator has an oracle property with a proper choice of regularization parameters and penalty function.Simulation studies are conducted to illustrate the finite sample performances of the proposed procedures.
基金the National Natural Science Foundation of China under Grant Nos.11971171,11971300,11901286,12071267 and 12171310the Shanghai Natural Science Foundation under Grant No.20ZR1421800+2 种基金the Open Research Fund of Key Laboratory of Advanced Theory and Application in Statistics and Data Science(East China Normal University)the General Research Fund(HKBU12303421,HKBU12303918)the Initiation Grant for Faculty Niche Research Areas(RC-FNRA-IG/20-21/SCI/03)of Hong Kong Baptist University。
文摘The partially linear single-index model(PLSIM)is a flexible and powerful model for analyzing the relationship between the response and the multivariate covariates.This paper considers the PLSIM with measurement error possibly in all the variables.The authors propose a new efficient estimation procedure based on the local linear smoothing and the simulation-extrapolation method,and further establish the asymptotic normality of the proposed estimators for both the index parameter and nonparametric link function.The authors also carry out extensive Monte Carlo simulation studies to evaluate the finite sample performance of the new method,and apply it to analyze the osteoporosis prevention data.
基金Chuanhua Wei’s research was supported by the National Natural Science Foundation of China(11301565)Jin Yang’s research was supported by the Post-doctoral Fellowship of Nankai University
文摘As an extension of partially linear models and additive models, partially linear additive model is useful in statistical modelling. This paper proposes an empirical likelihood based approach for testing serial correlation in this semiparametric model. The proposed test method can test not only zero first-order serial correlation, but also higher-order serial correlation. Under the null hypothesis of no serial correlation, the test statistic is shown to follow asymptotically a chi-square distribution. Furthermore, a simulation study is conducted to illustrate the performance of the proposed method.
基金supported by the National Natural Science Foundation of China under Grant Nos. 10871217 and 40574003the Science and Technology Project of Chongqing Education Committee under Grant No. KJ080609+1 种基金the Doctor's Start-up Research Fund under Grant No. 08-52204the Youth Science Research Fund of Chongging Technology and Business University under Grant No. 0852008
文摘The authors propose a V_(N,p) test statistic for testing finite-order serial correlation in asemiparametric varying coefficient partially linear errors-in-variables model.The test statistic is shownto have asymptotic normal distribution under the null hypothesis of no serial correlation.Some MonteCarlo experiments are conducted to examine the finite sample performance of the proposed V_(N,p) teststatistic.Simulation results confirm that the proposed test performs satisfactorily in estimated sizeand power.
基金supported by National Natural Science Foundation of China(Grant Nos.11301569,11471029 and 11101014)the Beijing Natural Science Foundation(Grant No.1142002)+2 种基金the Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)Hong Kong Research Grant(Grant No.HKBU202711)Hong Kong Baptist University FRG Grants(Grant Nos.FRG2/11-12/110 and FRG1/13-14/018)
文摘Generalized linear measurement error models, such as Gaussian regression, Poisson regression and logistic regression, are considered. To eliminate the effects of measurement error on parameter estimation, a corrected empirical likelihood method is proposed to make statistical inference for a class of generalized linear measurement error models based on the moment identities of the corrected score function. The asymptotic distribution of the empirical log-likelihood ratio for the regression parameter is proved to be a Chi-squared distribution under some regularity conditions. The corresponding maximum empirical likelihood estimator of the regression parameter π is derived, and the asymptotic normality is shown. Furthermore, we consider the construction of the confidence intervals for one component of the regression parameter by using the partial profile empirical likelihood. Simulation studies are conducted to assess the finite sample performance. A real data set from the ACTG 175 study is used for illustrating the proposed method.
基金supported by the National Natural Science Foundation of China under Grant Nos.11271088and 11361011the Natural Science Foundation of Guangxi under Grant Nos.2013GXNSFAA019004 and2013GXNSFAA019007
文摘This paper proposes to use the blockwise empirical likelihood (EL) method to construct the confidence regions for the regression vector β in a partially linear model under negatively associated errors. It is shown that the blockwise EL ratio statistic for β is asymptotically χ^2 distributed. The result is used to obtain an EL-based confidence region for β. Results of a simulation study on the finite sample performance of the proposed confidence regions are reported.
基金This research is supported by the National Social Science Foundation of China under Grant No. 11CTJ004, the National Natural Science Foundation of China under Grant Nos. 10871013 and 10871217, the National Natural Science Foundation of Beijing under Grant No. 1102008, the Research Foundation of Chongqing Municipal Education Commission under Grant Nos. KJ110720 and KJ100726, and the Natural Science Foundation of Guangxi under Grant No. 2010GXNSFB013051.
文摘A partial linear model with missing response variables and error-prone covariates is considered. The imputation approach is developed to estimate the regression coefficients and the nonparametric function. The proposed parametric estimators are shown to be asymptotically normal, and the estimators for the nonparametric part are proved to converge at an optimal rate. To construct confidence regions for the regression coefficients and the nonparametric function, respectively, the authors also propose the empirical-likelihood-based statistics and investigate the limit distributions of the empirical likelihood ratios. The simulation study is conducted to compare the finite sample behavior for the proposed estimators. An application to an AIDS dataset is illustrated.
基金Supported by National Natural Science Foundation of China(Grant Nos.11101014 and 11002005)the Beijing Natural Science Foundation(Grant No.1142002)+2 种基金the Doctoral Fund of Innovation of Beijing Universityof Technologythe Science and Technology Project of Beijing Municipal Education Commission(Grant No.KM201410005010)the Training Programme Foundation for the Beijing Municipal Excellent Talents(GrantNo.2013D005007000005)
文摘In this paper, we consider the partially nonlinear errors-in-variables models when the non- parametric component is measured with additive error. The profile nonlinear least squares estimator of unknown parameter and the estimator of nonparametric component are constructed, and their asymptotic properties are derived under general assumptions. Finite sample performances of the proposed statistical inference procedures are illustrated by Monte Carlo simulation studies.
基金Supported by the National Natural Science Foundation of China(No.11471105,11471223)Scientific Research Item of Education Office,Hubei(No.D20172501)
文摘While the random errors are a function of Gaussian random variables that are stationary and long dependent, we investigate a partially linear errors-in-variables(EV) model by the wavelet method. Under general conditions, we obtain asymptotic representation of the parametric estimator, and asymptotic distributions and weak convergence rates of the parametric and nonparametric estimators. At last, the validity of the wavelet method is illuminated by a simulation example and a real example.
基金supported by the National Natural Science Foundation of China under Grant No.11771250the Natural Science Foundation of Shandong Province under Grant No.ZR2019MA002the Program for Scientific Research Innovation of Graduate Dissertation under Grant No.LWCXB201803
文摘This paper considers partially linear additive models with the number of parameters diverging when some linear cons train ts on the parame trie par t are available.This paper proposes a constrained profile least-squares estimation for the parametrie components with the nonparametric functions being estimated by basis function approximations.The consistency and asymptotic normality of the restricted estimator are given under some certain conditions.The authors construct a profile likelihood ratio test statistic to test the validity of the linear constraints on the parametrie components,and demonstrate that it follows asymptotically chi-squared distribution under the null and alternative hypo theses.The finite sample performance of the proposed method is illus trated by simulation studies and a data analysis.
基金supported by National Natural Science Foundation of China(Grant No.11301514)partially supported by National Natural Science Foundation of China(Grant Nos.11271355 and 70625004)National Bureau of Statistics of China(Grant No.2012LZ012)
文摘The linear mixed-effects model (LMM) is a very useful tool for analyzing cluster data. In practice, however, the exact values of the variables are often difficult to observe. In this paper, we consider the LMM with measurement errors in the covariates. The empirical BLUP estimator of the linear combination of the fixed and random effects and its approximate conditional MSE are derived. The application to the estimation of small area is provided. Simulation study shows good performance of the proposed estimators.
基金supported by a grant from the Natural Sciences and Engineering Research Council of Canada.
文摘Consider a repeated measurement partially linear regression model with anunknown vector parameter β_1, an unknown function g(·), and unknown heteroscedastic errorvariances. In order to improve the semiparametric generalized least squares estimator (SGLSE) of ,we propose an iterative weighted semiparametric least squares estimator (IWSLSE) and show that itimproves upon the SGLSE in terms of asymptotic covariance matrix. An adaptive procedure is given todetermine the number of iterations. We also show that when the number of replicates is less than orequal to two, the IWSLSE can not improve upon the SGLSE. These results are generalizations of thosein [2] to the case of semiparametric regressions.
基金the National Natural Science Foundation of China(Grant No.12071166)the Fundamental Research Funds for the Central Universities of China(Nos.2662023LXPY005,2662022XXYJ005)HZAU-AGIS Cooperation Fund(No.SZYJY2023010)。
文摘Interpretability has drawn increasing attention in machine learning.Most works focus on post-hoc explanations rather than building a self-explaining model.So,we propose a Neural Partially Linear Additive Model(NPLAM),which automatically distinguishes insignificant,linear,and nonlinear features in neural networks.On the one hand,neural network construction fits data better than spline function under the same parameter amount;on the other hand,learnable gate design and sparsity regular-term maintain the ability of feature selection and structure discovery.We theoretically establish the generalization error bounds of the proposed method with Rademacher complexity.Experiments based on both simulations and real-world datasets verify its good performance and interpretability.
基金supported by the NSF of China(Nos.11971208,11601197)the NSSF of China(Grant No.21&ZD152)+2 种基金the China Postdoctoral Science Foundation(Nos.2016M600511,2017T100475)the NSF of Jiangxi Province(Nos.2018ACB21002,20171ACB21030)the Post graduate Innovation Project of Jiangxi Province(No.YC2021CB124)。
文摘In this paper,we consider the statistical inferences in a partially linear model when the model error follows an autoregressive process.A two-step procedure is proposed for estimating the unknown parameters by taking into account of the special structure in error.Since the asymptotic matrix of the estimator for the parametric part has a complex structure,an empirical likelihood function is also developed.We derive the asymptotic properties of the related statistics under mild conditions.Some simulations,as well as a real data example,are conducted to illustrate the finite sample performance.