期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
基于ASP-SERes2Net的说话人识别算法 被引量:1
1
作者 令晓明 陈鸿雁 +1 位作者 张小玉 张真 《北京工业大学学报》 CAS 北大核心 2025年第1期42-50,共9页
为提升说话人识别的特征提取能力,解决在噪声环境下识别率低的问题,提出一种基于残差网络的说话人识别算法——ASP-SERes2Net。首先,采用梅尔语谱图作为神经网络的输入;其次,改进Res2Net网络的残差块,并且在每个残差块后引入压缩激活(sq... 为提升说话人识别的特征提取能力,解决在噪声环境下识别率低的问题,提出一种基于残差网络的说话人识别算法——ASP-SERes2Net。首先,采用梅尔语谱图作为神经网络的输入;其次,改进Res2Net网络的残差块,并且在每个残差块后引入压缩激活(squeeze-and-excitation,SE)注意力模块;然后,用注意力统计池化(attention statistics pooling,ASP)代替原来的平均池化;最后,采用附加角裕度的Softmax(additive angular margin Softmax,AAM-Softmax)对说话人身份进行分类。通过实验,将ASP-SERes2Net算法与时延神经网络(time delay neural network,TDNN)、ResNet34和Res2Net进行对比,ASP-SERes2Net算法的最小检测代价函数(minimum detection cost function,MinDCF)值为0.0401,等误率(equal error rate,EER)为0.52%,明显优于其他3个模型。结果表明,ASP-SERes2Net算法性能更优,适合应用于噪声环境下的说话人识别。 展开更多
关键词 说话人识别 梅尔语谱图 Res2Net 压缩激活(squeeze-and-excitation SE)注意力模块 注意力统计池化(attention statistics pooling ASP) 附加角裕度的softmax(additive angular margin softmax aam-softmax)
在线阅读 下载PDF
Additive Parameter for Deep Face Recognition
2
作者 Jamshaid Ul Rahman Qing Chen Zhouwang Yang 《Communications in Mathematics and Statistics》 SCIE 2020年第2期203-217,共15页
The performance of feature learning for deep convolutional neural networks(DCNNs)is increasing promptly with significant improvement in numerous applications.Recent studies on loss functions clearly describing that be... The performance of feature learning for deep convolutional neural networks(DCNNs)is increasing promptly with significant improvement in numerous applications.Recent studies on loss functions clearly describing that better normalization is helpful for improving the performance of face recognition(FR).Several methods based on different loss functions have been proposed for FR to obtain discriminative features.In this paper,we propose an additive parameter depending on multiplicative angular margin to improve the discriminative power of feature embedding that can be easily implemented.In additive parameter approach,an automatic adjustment of the seedling element as the result of angular marginal seed is offered in a particular way for the angular softmax to learn angularly discriminative features.We train the model on publically available dataset CASIA-WebFace,and our experiments on famous benchmarks YouTube Faces(YTF)and labeled face in the wild(LFW)achieve better performance than the various state-of-the-art approaches. 展开更多
关键词 additive parameter angular margin Deep convolutional neural networks Face recognition softmax loss
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部