期刊文献+
共找到47,521篇文章
< 1 2 250 >
每页显示 20 50 100
Mechanical field assisted additive manufacturing of ultrahigh strength aluminum alloy
1
作者 Wenjie Liu Shengnan Shen +5 位作者 Jinlong Meng Jiafeng Xiao Hui Li Hejun Du Qianxing Yin Chaolin Tan 《International Journal of Extreme Manufacturing》 2025年第4期362-385,共24页
Additive manufacturing of aluminum(Al)alloys has attracted significant attention in the aerospace industry.However,achieving ultrahigh-strength(>500 MPa)Al alloys remains challenging due to their intrinsic poor pri... Additive manufacturing of aluminum(Al)alloys has attracted significant attention in the aerospace industry.However,achieving ultrahigh-strength(>500 MPa)Al alloys remains challenging due to their intrinsic poor printability.Here,we report a novel hybrid additive manufacturing(HAM)approach to process ultrahigh-strength AlMgSc alloy,which combines laser powder bed fusion(LPBF)with interlayer ultrasonic shot peening(USP).The results show that the interlayer ultrasonic shot peening depth reached∼700μm,leading to almost full density and residual stress convection from tension to compression.The HAM method promotes equiaxed grain formation and refines grain due to grain recrystallizations.Interestingly,the HAM followed by aging treatment tailors the hierarchically multi-gradient structures,inhibits Mg element intragranular segregation,and promotes the multi-nanoprecipitates(e.g.Al_(3)(Sc,Zr)and Al_(6)Mn)precipitation.Remarkably,the HAM followed by aging treatment achieves yield strength of 609 MPa and breaks elongation of 7.5%,demonstrating ultrahigh strength and good ductility compared with other Al alloys manufactured by AM and forging as reported in the literature.The strength enhancement mechanisms in this AlMgSc alloy are discussed.The high-density Al_(3)(Sc,Zr)precipitates are the main strengthening contributor,and unique hetero-deformation induced(HDI)strengthening(originates from the heterogeneous microstructures)further enhances the strength of the material.This work highlights a novel approach for processing complex-structured ultrahigh strength Al alloy components by hybrid additive manufacturing. 展开更多
关键词 additive manufacturing AlMgSc alloy hybrid additive manufacturing gradient structures dislocation evolution mechanical properties
在线阅读 下载PDF
Advancements in AI-Enabled Design and Process Optimization for Additive Manufacturing
2
作者 Lingling Wu Shangqin Yuan 《Additive Manufacturing Frontiers》 2025年第2期1-2,共2页
Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue feat... Additive Manufacturing(AM)has significantly impacted the development of high-performance materials and structures,offering new possibilities for industries ranging from aerospace to biomedicine.This special issue features pioneering research that integrates AI-driven methods with AM,enabling the design and fabrication of complex,optimized structures with enhanced properties. 展开更多
关键词 additive manufacturing industry applications additive manufacturing am design optimization AEROSPACE high performance materials AI driven methods complex structures
在线阅读 下载PDF
A Review of Strategies for In Situ Mitigating of Residual Stress in Laser‑Based Metal Additive Manufacturing: Insights, Innovations, and Challenges
3
作者 Ali Kazemi Movahed Reza Ghanavati +1 位作者 Abdollah Saboori Luca Iuliano 《Acta Metallurgica Sinica(English Letters)》 2025年第10期1657-1698,共42页
Additive manufacturing(AM)has emerged as one of the most utilized processes in manufacturing due to its ability to produce complex geometries with minimal material waste and greater design freedom.Laser-based AM(LAM)t... Additive manufacturing(AM)has emerged as one of the most utilized processes in manufacturing due to its ability to produce complex geometries with minimal material waste and greater design freedom.Laser-based AM(LAM)technologies use high-power lasers to melt metallic materials,which then solidify to form parts.However,it inherently induces self-equilibrating residual stress during fabrication due to thermal loads and plastic deformation.These residual stresses can cause defects such as delamination,cracking,and distortion,as well as premature failure under service conditions,necessitating mitigation.While post-treatment methods can reduce residual stresses,they are often costly and time-consuming.Therefore,tuning the fabrication process parameters presents a more feasible approach.Accordingly,in addition to providing a comprehensive view of residual stress by their classification,formation mechanisms,measurement methods,and common post-treatment,this paper reviews and compares the studies conducted on the effect of key parameters of the LAM process on the resulting residual stresses.This review focuses on proactively adjusting LAM process parameters as a strategic approach to mitigate residual stress formation.It provides a result of the various parameters influencing residual stress outcomes,such as laser power,scanning speed,beam diameter,hatch spacing,and scanning strategies.Finally,the paper identifies existing research gaps and proposes future studies needed to deepen understanding of the relationship between process parameters and residual stress mitigation in LAM. 展开更多
关键词 additive manufacturing Residual stress Formation mechanisms Measurement methods Heat treatment Laser-based additive manufacturing(LAM)process parameters
原文传递
Multi-layer multi-pass friction rolling additive manufacturing of Al alloy:Toward complex large-scale high-performance components 被引量:1
4
作者 Haibin Liu Run Hou +2 位作者 Chenghao Wu Ruishan Xie Shujun Chen 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第2期425-438,共14页
At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-laye... At present,the emerging solid-phase friction-based additive manufacturing technology,including friction rolling additive man-ufacturing(FRAM),can only manufacture simple single-pass components.In this study,multi-layer multi-pass FRAM-deposited alumin-um alloy samples were successfully prepared using a non-shoulder tool head.The material flow behavior and microstructure of the over-lapped zone between adjacent layers and passes during multi-layer multi-pass FRAM deposition were studied using the hybrid 6061 and 5052 aluminum alloys.The results showed that a mechanical interlocking structure was formed between the adjacent layers and the adja-cent passes in the overlapped center area.Repeated friction and rolling of the tool head led to different degrees of lateral flow and plastic deformation of the materials in the overlapped zone,which made the recrystallization degree in the left and right edge zones of the over-lapped zone the highest,followed by the overlapped center zone and the non-overlapped zone.The tensile strength of the overlapped zone exceeded 90%of that of the single-pass deposition sample.It is proved that although there are uneven grooves on the surface of the over-lapping area during multi-layer and multi-pass deposition,they can be filled by the flow of materials during the deposition of the next lay-er,thus ensuring the dense microstructure and excellent mechanical properties of the overlapping area.The multi-layer multi-pass FRAM deposition overcomes the limitation of deposition width and lays the foundation for the future deposition of large-scale high-performance components. 展开更多
关键词 aluminum alloy additive manufacturing SOLID-STATE friction stir welding multi-layer multi-pass
在线阅读 下载PDF
Recent progress on in-situ characterization of laser additive manufacturing process by synchrotron radiation 被引量:2
5
作者 Wenquan Lu Liang Zhao +2 位作者 Zhun Su Jianguo Li Qiaodan Hu 《Journal of Materials Science & Technology》 2025年第14期29-46,共18页
Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex ... Laser additive manufacturing(LAM)has been widely used in high-end manufacturing fields such as aerospace,nuclear power,and shipbuilding.However,it is a grand challenge for direct and continuous observation of complex laser-matter interaction,melt flow,and defect formation during LAM due to extremely large temperature gradient,fast cooling rate,and small time(millisecond)and space(micron)scales.The emergence of synchrotron radiation provides a feasible approach for in situ observation of the LAM process.This paper outlines the current development in real-time characterization of LAM by synchrotron radiation,including laser-matter interaction,molten pool evolution,solidification structure evolution,and defects formation and elimination.Furthermore,the future development direction and application-oriented research are also discussed. 展开更多
关键词 Laser additive manufacturing Synchrotron radiation Melt pool DEFECT
原文传递
Microstructural analysis and defect characterization of additively manufactured AA6061 aluminum alloy via laser powder bed fusion 被引量:1
6
作者 Sivaji Karna Lang Yuan +5 位作者 Tianyu Zhang Rimah Al-Aridi Andrew J.Gross Daniel Morrall Timothy Krentz Dale Hitchcock 《Journal of Materials Science & Technology》 2025年第16期288-306,共19页
AA6061 is a widely used aluminum alloy with significant applications in the aerospace and automotive industries.Despite its popularity,the utilization of additively manufactured AA6061 through the laser powder bed fus... AA6061 is a widely used aluminum alloy with significant applications in the aerospace and automotive industries.Despite its popularity,the utilization of additively manufactured AA6061 through the laser powder bed fusion(LPBF)process has been hindered by the pronounced formation of pores and cracks during rapid solidification.This study quantitatively investigated defects,including pores and cracks,and microstructures,including texture,grain size,subgrain structure,and precipitates,of LPBF-manufactured AA6061 across a broad spectrum of laser power and speed combinations.A high relative density of more than 99%was achieved with a low-power and low-speed condition,specifically 200 W and 100 mm s−1,with minimal cracks.Large pores,akin to or exceeding melt pool dimensions,emerged under either low or high energy densities,driven by the lack of fusion and vaporization/denudation mechanisms,re-spectively.Solidification cracks,confirmed by the fractography,were propagated along grain boundaries and are highly dependent on laser scanning speed.Elevated power and speed exhibited finer grain size with refined subgrain cellular structures and increased precipitates at interdendritic regions.The cooling rate and thermal gradient estimated from thermal analytical solutions explain the microstructures’char-acteristics.Nano-sized Si-Fe-Mg enriched precipitates are confirmed in both as-built and heat-treated conditions,whereas T6 heat treatment promotes a uniform distribution with coarsening of those precipi-tates.The low-power and low-speed conditions demonstrated the highest yield strength,consistent with defect levels.A minimum of 102.3%increase in yield strength with reduced ductility was observed after heat treatment for all examined conditions.This work sheds light on printing parameters to mitigate the formation of pores and cracks in additively manufactured AA6061,proposing a process window for op-timized fabrication and highlighting the potential for enhanced material properties and reduced defects through process control. 展开更多
关键词 additive manufacturing MICROSTRUCTURE Solidification cracking POROSITY PRECIPITATES Tensile properties
原文传递
Influence of minor cerium addition on microstructure and fluidity of as-cast Al-Cu-Mn-Mg alloy 被引量:1
7
作者 Yishan Wang Yu Bai +3 位作者 Kaixi Jiang Wenxue Fan Puxuan Wang Hai Hao 《Journal of Rare Earths》 2025年第2期377-383,I0006,共8页
Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.Howeve... Al-Cu-Mn alloys are widely used to produce automobile components like cylinder heads and engine blocks because of their capability to retain excellent thermal and mechanical characteristics at high temperatures.However,the Al-Cu-Mn-based alloys demonstrate restricted fluidity,leading to casting defects such as shrinkage and incomplete filling.This research investigated the microstructure and fluidity of Al-4.7Cu-1.0Mn-0.5Mg(wt%)alloy with minor cerium(Ce)addition.The as-cast alloys predominantly compriseα-Al matrix,accompanied by the presence of Al_(2)Cu,Al_(6)Mn,and Al_(8)Cu_(4)Ce phases.The influence of adding Ce on the fluidity of the Al-4.7Cu-1.0Mn-0.5Mg alloy was investigated using a trispiral fluidity test mold in this research.The findings suggest that the addition of Ce within the range of 0.1 wt%to 0.5 wt%in the Al-4.7Cu-1.0Mn-0.5Mg alloy results in an enhancement in fluidity.Specifically,the alloy containing 0.4 wt%Ce exhibits a significant increase in fluidity distance,from 349.7 to 485.7 mm.This improvement can be attributed to the reduction in viscosity,the refinement of secondary dendrite arm spacing,and the modification of secondary phase particles.However,a higher concentration of Ce leads to a decrease in fluidity length,potentially due to the formation of Al_(8)Cu_(4)Ce. 展开更多
关键词 Al-Cu-Mn-Mg alloy Rare earths Ce addition MICROSTRUCTURE FLUIDITY
原文传递
Additive Manufacturing of Silicon Carbide Microwave-Absorbing Metamaterials 被引量:1
8
作者 Hanqing Zhao Qingwei Liao +3 位作者 Yinghao Li Xiangcheng Chu Songmei Yuan Lei Qin 《Additive Manufacturing Frontiers》 2025年第1期3-17,共15页
SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,S... SiC is a wave-absorbing material with good dielectric properties,high-temperature resistance,and corrosion resistance,which has great potential for development in the field of high-temperature wave-absorbing.However,SiC is limited by its low impedance-matching performance and single wave-absorbing mechanism.Therefore,compatible metamaterial technologies are required to enhance its wave-absorbing performance further.The electromagnetic wave(EMW)absorbing metamaterials can realize perfect absorption of EMWs in specific frequency bands and precise regulation of EMW phase,propagation mode,and absorption frequency bands through structural changes.However,the traditional molding methods for manufacturing complex geometric shapes require expensive molds,involve process complexity,and have poor molding accuracy and other limitations.Therefore,additive manufacturing(AM)technology,through material layered stacking to achieve the processing of materials,is a comprehensive multidisciplinary advanced manufacturing technology and has become the core technology for manufacturing metamaterials.This review introduces the principles and applications of different AM technologies for SiC and related materials,discusses the current status and development trends of various AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,summarizes the limitations and technological shortcomings of existing AM technologies for fabricating silicon-carbon-based wave-absorbing metamaterials,and provides an outlook for the future development of related AM technologies. 展开更多
关键词 SIC Electromagnetic absorption METAMATERIALS additive manufacturing
在线阅读 下载PDF
Synergistic improvement of erosion-corrosion resistance and mechanical properties of nickel aluminium bronze alloy by the addition of Cr 被引量:1
9
作者 Wan-Yu Wang Wen-Jing Zhang +1 位作者 Guo-Jie Huang Xu-Jun Mi 《Rare Metals》 2025年第1期623-638,共16页
The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of... The effect of Cr addition on nickel aluminium bronze(NAB)alloy microstructure,mechanical properties,and erosion-corrosion behaviour has been studied.The results show that Cr addition does not change the composition of the precipitated phases,more Cr entered theκphase and a small amount of Cr solubilized in the matrix,which increase the hardness of theκand matrix and decrease the potential difference between theκand matrix.NAB alloy with Cr shows high erosion-corrosion resistance at high flow rate conditions,due to its lower phase potential difference and higher surface hardness.At the flow rate of 3 m·s^(-1),the corrosion rate is 0.076 mm·year^(-1),which is~20%lower than that of the unadded Cr sample.Moreover,the corrosion product film contains Cr_(2)O_(3)and Cr^(3+),which improves the densification of the film and raises alloy’s corrosion resistance with Cr addition.The combination of mechanical and corrosion resistant properties may qualify this alloy as a potential candidate material for sustainable and safe equipment. 展开更多
关键词 Nickel aluminium bronze Cr addition Microstructure Erosion-corrosion behaviour Mechanical properties
原文传递
Fabrication and development of mechanical metamaterials via additive manufacturing for biomedical applications:a review 被引量:1
10
作者 Junsheng Chen Jibing Chen +4 位作者 Hongze Wang Liang He Boyang Huang Sasan Dadbakhsh Paulo Bartolo 《International Journal of Extreme Manufacturing》 2025年第1期1-44,共44页
In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are i... In this review,we propose a comprehensive overview of additive manufacturing(AM)technologies and design possibilities in manufacturing metamaterials for various applications in the biomedical field,of which many are inspired by nature itself.It describes how new AM technologies(e.g.continuous liquid interface production and multiphoton polymerization,etc)and recent developments in more mature AM technologies(e.g.powder bed fusion,stereolithography,and extrusion-based bioprinting(EBB),etc)lead to more precise,efficient,and personalized biomedical components.EBB is a revolutionary topic creating intricate models with remarkable mechanical compatibility of metamaterials,for instance,stress elimination for tissue engineering and regenerative medicine,negative or zero Poisson’s ratio.By exploiting the designs of porous structures(e.g.truss,triply periodic minimal surface,plant/animal-inspired,and functionally graded lattices,etc),AM-made bioactive bone implants,artificial tissues,and organs are made for tissue replacement.The material palette of the AM metamaterials has high diversity nowadays,ranging from alloys and metals(e.g.cobalt-chromium alloys and titanium,etc)to polymers(e.g.biodegradable polycaprolactone and polymethyl methacrylate,etc),which could be even integrated within bioactive ceramics.These advancements are driving the progress of the biomedical field,improving human health and quality of life. 展开更多
关键词 biomedical application additive manufacturing mechanical metamaterials biomimetic materials
暂未订购
High ductility induced by twin-assisted grain rotation and merging in solid-state cold spray additive manufactured Cu 被引量:1
11
作者 Wenya Li Jingwen Yang +2 位作者 Zhengmao Zhang Yingchun Xie Chunjie Huang 《Journal of Materials Science & Technology》 2025年第11期11-15,共5页
1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-... 1.Introduction.Cold Spray(CS)is a highly advanced solid-state metal depo-sition process that was first developed in the 1980s.This innovative technique involves the high-speed(300-1200 m/s)impact deposition of micron-sized particles(5-50μm)to fabricate coatings[1-3].CS has been extensively used in a variety of coating applications,such as aerospace,automotive,energy,medical,marine,and others,to provide protection against high temperatures,corrosion,erosion,oxidation,and chemicals[4,5].Nowadays,the technical interest in CS is twofold:(i)as a repair process for damaged components,and(ii)as a solid-state additive manufacturing process.Compared to other fusion-based additive manufacturing(AM)technologies,Cold Spray Additive Manufacturing(CSAM)is a new member of the AM family that can enable the fabrication of deposits without undergoing melting.The chemical composition has been largely preserved from the powder to the deposit due to the minimal oxidation.The significant advantages of CSAM over other additive manufacturing processes include a high production rate,unlimited deposition size,high flexibility,and suitability for repairing damaged parts. 展开更多
关键词 additive manufacturing DUCTILITY cold spray MERGING solid state deposition twin assisted grain rotation
原文传递
Unveiling micromechanism of Fe minor addition-induced property degradation of an Al-5.1Cu-0.65 Mg-0.8Mn(wt%)alloy 被引量:1
12
作者 Xin-Jian Chen Bin Wang +10 位作者 Zhen Wang De-Yu Zhang Hong Wang Jia-Hai Li Jin Wu Jun-Fen Zhao Xi-Zhou Kai Man-Ping Liu Yu-Tao Zhao Shi-Hao Wang Shuang-Bao Wang 《Rare Metals》 2025年第5期3496-3513,共18页
In this paper,the property degradation micromechanism of Al-5.10Cu-0.65 Mg-0.8Mn(wt%)alloy induced by 0.5 wt%Fe minor addition was revealed by atomic-scale scanning transmission electron microscopy and energy-dispersi... In this paper,the property degradation micromechanism of Al-5.10Cu-0.65 Mg-0.8Mn(wt%)alloy induced by 0.5 wt%Fe minor addition was revealed by atomic-scale scanning transmission electron microscopy and energy-dispersive X-ray spectroscopy coupled with first-principles calculations.The results show that the Fe minor addition to the Al-Cu-Mg-Mn alloy leads to a slight reduction of grain size and the formation of coarse Al7Cu2Fe constituent particles.Fe tends to segregate into the T-phase dispersoids,θ'-,and S-phase precipitates by preferentially occupying Cu or Mn sites in these phase structures.The apparent Fe segregation contributes to an increase in stiffness of the T-phase and S-phase but decreased stiffness of theθ'phase.Formation of the coarse Al7Cu2Fe constituent particles and decreased stiffness of main precipitatesθ'containing Fe result in the degraded strength of the Al-Cu-Mg-Mn-Fe alloy.Further study reveals that corrosion resistance degradation of the Al-Cu-Mg-Mn-Fe alloy is associated with the increased width of precipitation free zones and consecutive grain boundary precipitates.The obtained results have significant implications for the usage of recycled Al alloys and the potential design strategies of high-performance alloys containing Fe. 展开更多
关键词 Al-Cu-Mg-Mn alloys Fe minor addition Property degradation Micromechanism Transmission electron microscopy
原文传递
Heat-balance control of friction rolling additive manufacturing based on combination of plasma preheating and instant water cooling 被引量:1
13
作者 Yangyang Sun Haibin Liu +2 位作者 Ruishan Xie Ying Chen Shujun Chen 《Journal of Materials Science & Technology》 2025年第2期168-181,共14页
Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency... Friction rolling additive manufacturing(FRAM)is a solid-state additive manufacturing technology that plasticizes the feed and deposits a material using frictional heat generated by the tool head.The thermal efficiency of FRAM,which depends only on friction to generate heat,is low,and the thermal-accumulation effect of the deposition process must be addressed.An FRAM heat-balance-control method that combines plasma-arc preheating and instant water cooling(PC-FRAM)is devised in this study,and a temperature field featuring rapidly increasing and decreasing temperature is constructed around the tool head.Additionally,2195-T87 Al-Li alloy is used as the feed material,and the effects of heating and cooling rates on the microstructure and mechanical properties are investigated.The results show that water cooling significantly improves heat accumulation during the deposition process.The cooling rate increases by 11.7 times,and the high-temperature residence time decreases by more than 50%.The grain size of the PC-FRAM sample is the smallest,i.e.,3.77±1.03μm,its dislocation density is the highest,and the number density of precipitates is the highest,the size of precipitates is the smallest,which shows the best precipitation-strengthening effect.The hardness test results are consistent with the precipitation distribution.The ultimate tensile strength,yield strength and elongation of the PC-FRAM samples are the highest(351±15.6 MPa,251.3±15.8 MPa and 16.25%±1.25%,respectively)among the samples investigated.The preheating and water-cooling-assisted deposition simultaneously increases the tensile strength and elongation of the deposited samples.The combination of preheating and instant cooling improves the deposition efficiency of FRAM and weakens the thermal-softening effect. 展开更多
关键词 Friction rolling additive manufacturing Al-Li alloy Plasma preheating Instant cooling Heat accumulation Microstructure
原文传递
Research on multi-scale simulation and dynamic verification of high dynamic MEMS components in additive manufacturing 被引量:1
14
作者 Sining Lv Hengzhen Feng +2 位作者 Wenzhong Lou Chuan Xiao Shiyi Li 《Defence Technology(防务技术)》 2025年第5期275-291,共17页
Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects s... Metal Additive Manufacturing(MAM) technology has become an important means of rapid prototyping precision manufacturing of special high dynamic heterogeneous complex parts. In response to the micromechanical defects such as porosity issues, significant deformation, surface cracks, and challenging control of surface morphology encountered during the selective laser melting(SLM) additive manufacturing(AM) process of specialized Micro Electromechanical System(MEMS) components, multiparameter optimization and micro powder melt pool/macro-scale mechanical properties control simulation of specialized components are conducted. The optimal parameters obtained through highprecision preparation and machining of components and static/high dynamic verification are: laser power of 110 W, laser speed of 600 mm/s, laser diameter of 75 μm, and scanning spacing of 50 μm. The density of the subordinate components under this reference can reach 99.15%, the surface hardness can reach 51.9 HRA, the yield strength can reach 550 MPa, the maximum machining error of the components is 4.73%, and the average surface roughness is 0.45 μm. Through dynamic hammering and high dynamic firing verification, SLM components meet the requirements for overload resistance. The results have proven that MEM technology can provide a new means for the processing of MEMS components applied in high dynamic environments. The parameters obtained in the conclusion can provide a design basis for the additive preparation of MEMS components. 展开更多
关键词 additive manufacturing High dynamic MEMS components Multiscale control Process optimization High dynamic verification
在线阅读 下载PDF
Enhanced rolling contact fatigue property of a rare earth addition bearing steel with a gradient nanostructured surface layer 被引量:1
15
作者 G.S.Dong B.Gao +1 位作者 C.Y.Yang Z.B.Wang 《Journal of Materials Science & Technology》 2025年第8期267-277,共11页
Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was appli... Rolling contact fatigue performance is among the most important issues for applications of bearing steels.In this work,a recently developed surface modification technique,surface mechanical rolling treatment,was applied on a rare-earth addition bearing steel.And rolling contact fatigue behavior of treated samples was compared with that of as-received counterparts at different contacting stresses.The results demonstrated that a 700μm-thick gradient nanostructured surface layer is produced on samples by surface mechanical rolling treatment.The grain size decreases while the microhardness increases gradually with decreasing depth,reaching~23 nm and~10.2 GPa,respectively,at the top surface.Consequently,the rolling contact fatigue property is significantly enhanced.The characteristic life of treated samples is~3.2 times that of untreated counterparts according to Weibull curves at 5.6 GPa.Analyses of fatigue mechanisms demonstrated that the gradient nanostructured surface layer might not only retard material degradation and microcrack formation,but also prolong the steady-state elastic response stage under rolling contact fatigue. 展开更多
关键词 Rare earth addition bearing steel Surface mechanical rolling treatment Rolling contact fatigue Gradient nanostructured MICROCRACK
原文传递
Efficient and Stable Perovskite Solar Cells and Modules Enabled by Tailoring Additive Distribution According to the Film Growth Dynamics
16
作者 Mengen Ma Cuiling Zhang +5 位作者 Yujiao Ma Weile Li Yao Wang Shaohang Wu Chong Liu Yaohua Mai 《Nano-Micro Letters》 SCIE EI CAS 2025年第2期387-400,共14页
Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization proces... Gas quenching and vacuum quenching process are widely applied to accelerate solvent volatilization to induce nucleation of perovskites in blade-coating method.In this work,we found these two pre-crystallization processes lead to different order of crystallization dynamics within the perovskite thin film,resulting in the differences of additive distribution.We then tailor-designed an additive molecule named 1,3-bis(4-methoxyphenyl)thiourea to obtain films with fewer defects and holes at the buried interface,and prepared perovskite solar cells with a certified efficiency of 23.75%.Furthermore,this work also demonstrates an efficiency of 20.18%for the large-area perovskite solar module(PSM)with an aperture area of 60.84 cm^(2).The PSM possesses remarkable continuous operation stability for maximum power point tracking of T_(90)>1000 h in ambient air. 展开更多
关键词 Gas quenching additive distribution Buried passivation Blade coating Crystallization dynamics
在线阅读 下载PDF
Robust interface and excellent as-built mechanical properties of Ti–6Al–4V fabricated through laser-aided additive manufacturing with powder and wire
17
作者 Fei Weng Guijun Bi +5 位作者 Youxiang Chew Shang Sui Chaolin Tan Zhenglin Du Jinlong Su Fern Lan Ng 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS 2025年第1期154-168,共15页
The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully ci... The feasibility of manufacturing Ti-6Al-4V samples through a combination of laser-aided additive manufacturing with powder(LAAM_(p))and wire(LAAM_(w))was explored.A process study was first conducted to successfully circumvent defects in Ti-6Al-4V deposits for LAAM_(p) and LAAM_(w),respectively.With the optimized process parameters,robust interfaces were achieved between powder/wire deposits and the forged substrate,as well as between powder and wire deposits.Microstructure characterization results revealed the epitaxial prior β grains in the deposited Ti-6Al-4V,wherein the powder deposit was dominated by a finerα′microstructure and the wire deposit was characterized by lamellar α phases.The mechanisms of microstructure formation and correlation with mechanical behavior were analyzed and discussed.The mechanical properties of the interfacial samples can meet the requirements of the relevant Aerospace Material Specifications(AMS 6932)even without post heat treatment.No fracture occurred within the interfacial area,further suggesting the robust interface.The findings of this study highlighted the feasibility of combining LAAM_(p) and LAAM_(w) in the direct manufacturing of Ti-6Al-4V parts in accordance with the required dimensional resolution and deposition rate,together with sound strength and ductility balance in the as-built condition. 展开更多
关键词 laser-aided additive manufacturing powder deposition wire deposition interfacial characteristic mechanical behavior
在线阅读 下载PDF
Independent and interactive effects of N and P additions on foliar P fractions in evergreen forests of southern China 被引量:1
18
作者 Qingquan Meng Zhijuan Shi +3 位作者 Zhengbing Yan Hans Lambers Yan Luo Wenxuan Han 《Forest Ecosystems》 2025年第1期66-73,共8页
Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P... Fertilization or atmospheric deposition of nitrogen(N)and phosphorus(P)to terrestrial ecosystems can alter soil N(P)availability and the nature of nutrient limitation for plant growth.Changing the allocation of leaf P fractions is potentially an adaptive strategy for plants to cope with soil N(P)availability and nutrient-limiting conditions.However,the impact of the interactions between imbalanced anthropogenic N and P inputs on the concentrations and allocation proportions of leaf P fractions in forest woody plants remains elusive.We conducted a metaanalysis of data about the concentrations and allocation proportions of leaf P fractions,specifically associated with individual and combined additions of N and P in evergreen forests,the dominant vegetation type in southern China where the primary productivity is usually considered limited by P.This assessment allowed us to quantitatively evaluate the effects of N and P additions alone and interactively on leaf P allocation and use strategies.Nitrogen addition(exacerbating P limitation)reduced the concentrations of leaf total P and different leaf P fractions.Nitrogen addition reduced the allocation to leaf metabolic P but increased the allocation to other fractions,while P addition showed opposite trends.The simultaneous additions of N and P showed an antagonistic(mutual suppression)effect on the concentrations of leaf P fractions,but an additive(summary)effect on the allocation proportions of leaf P fractions.These results highlight the importance of strategies of leaf P fraction allocation in forest plants under changes in environmental nutrient availability.Importantly,our study identified critical interactions associated with combined N and P inputs that affect leaf P fractions,thus aiding in predicting plant acclimation strategies in the context of intensifying and imbalanced anthropogenic nutrient inputs. 展开更多
关键词 Anthropogenic nutrient inputs Individual and combined effects Interactive effects Leaf phosphorus fractions Nitrogen and phosphorus additions Nutrient-utilization strategies Woody plants
在线阅读 下载PDF
Variable stiffness design optimization of fiber-reinforced composite laminates with regular and irregular holes considering fiber continuity for additive manufacturing 被引量:1
19
作者 Yi LIU Zunyi DUAN +6 位作者 Chunping ZHOU Yuan SI Chenxi GUAN Yi XIONG Bin XU Jun YAN Jihong ZHU 《Chinese Journal of Aeronautics》 2025年第3期334-354,共21页
Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design o... Fiber-reinforced composites are an ideal material for the lightweight design of aerospace structures. Especially in recent years, with the rapid development of composite additive manufacturing technology, the design optimization of variable stiffness of fiber-reinforced composite laminates has attracted widespread attention from scholars and industry. In these aerospace composite structures, numerous cutout panels and shells serve as access points for maintaining electrical, fuel, and hydraulic systems. The traditional fiber-reinforced composite laminate subtractive drilling manufacturing inevitably faces the problems of interlayer delamination, fiber fracture, and burr of the laminate. Continuous fiber additive manufacturing technology offers the potential for integrated design optimization and manufacturing with high structural performance. Considering the integration of design and manufacturability in continuous fiber additive manufacturing, the paper proposes linear and nonlinear filtering strategies based on the Normal Distribution Fiber Optimization (NDFO) material interpolation scheme to overcome the challenge of discrete fiber optimization results, which are difficult to apply directly to continuous fiber additive manufacturing. With minimizing structural compliance as the objective function, the proposed approach provides a strategy to achieve continuity of discrete fiber paths in the variable stiffness design optimization of composite laminates with regular and irregular holes. In the variable stiffness design optimization model, the number of candidate fiber laying angles in the NDFO material interpolation scheme is considered as design variable. The sensitivity information of structural compliance with respect to the number of candidate fiber laying angles is obtained using the analytical sensitivity analysis method. Based on the proposed variable stiffness design optimization method for complex perforated composite laminates, the numerical examples consider the variable stiffness design optimization of typical non-perforated and perforated composite laminates with circular, square, and irregular holes, and systematically discuss the number of candidate discrete fiber laying angles, discrete fiber continuous filtering strategies, and filter radius on structural compliance, continuity, and manufacturability. The optimized discrete fiber angles of variable stiffness laminates are converted into continuous fiber laying paths using a streamlined process for continuous fiber additive manufacturing. Meanwhile, the optimized non-perforated and perforated MBB beams after discrete fiber continuous treatment, are manufactured using continuous fiber co-extrusion additive manufacturing technology to verify the effectiveness of the variable stiffness fiber optimization framework proposed in this paper. 展开更多
关键词 Variable stiffness composite laminates Discrete material interpolation scheme Normal distribution fiber optimization Discrete fiber continuous filtering strategy additive manufacturing of composite laminates
原文传递
Influence of Process Parameters on Forming Quality of Single-Channel Multilayer by Joule Heat Fuse Additive Manufacturing
20
作者 Li Suli Fan Longfei +3 位作者 Chen Jichao Gao Zhuang Xiong Jie Yang Laixia 《稀有金属材料与工程》 北大核心 2025年第5期1165-1176,共12页
To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and l... To overcome the shortage of complex equipment,large volume,and high energy consumption in space capsule manufacturing,a novel sliding pressure Joule heat fuse additive manufacturing technique with reduced volume and low energy consumption was proposed.But the unreasonable process parameters may lead to the inferior consistency of the forming quality of single-channel multilayer in Joule heat additive manufacturing process,and it is difficult to reach the condition for forming thinwalled parts.Orthogonal experiments were designed to fabricate single-channel multilayer samples with varying numbers of layers,and their forming quality was evaluated.The influence of printing current,forming speed,and contact pressure on the forming quality of the single-channel multilayer was analyzed.The optimal process parameters were obtained and the quality characterization of the experiment results was conducted.Results show that the printing current has the most significant influence on the forming quality of the single-channel multilayer.Under the optimal process parameters,the forming section is well fused and the surface is continuously smooth.The surface roughness of a single-channel 3-layer sample is 0.16μm,and the average Vickers hardness of cross section fusion zone is 317 HV,which lays a foundation for the subsequent use of Joule heat additive manufacturing technique to form thinwall parts. 展开更多
关键词 Joule heat additive manufacturing single-channel multilayer process parameter forming quality
原文传递
上一页 1 2 250 下一页 到第
使用帮助 返回顶部