In order to rapidly respond to the complex and mutational market, a new facility layout plan based on cellular manufacturing is proposed, which gives consideration to high efficiency and flexibility. The plan designs ...In order to rapidly respond to the complex and mutational market, a new facility layout plan based on cellular manufacturing is proposed, which gives consideration to high efficiency and flexibility. The plan designs two phases of integrated cell layout, i.e., cell construction and cell system layout, on the condition of adding/removing machines. First, in view of the costs of logics and machine-relocation, the cell construction based on the alternative processing routes and intra-cell layout are integrated as a whole, which achieves cell formation, process planning and the intra-cell layout in a single step. Secondly, an approach of a continuous optimized multi-line layout for solving the cell system layout problem is proposed, which eliminates the coupling relationship from the machine-relocation and realizes an integrated design of the two phases of the cell layout. An application based on real factory data is optimally solved by the Matlab 7.0 software to validate and verify the models.展开更多
A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of ...A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of main components of crude lead,separation coefficients and vapor-liquid equilibrium composition of Pb-i(i stands for an impurity) system at different temperatures.The behaviors of impurities in the vacuum distillation refining process were investigated.The results show that the vacuum distillation should be taken to obtain lead from crude lead,in which Zn,As and partial Sb are volatilized at lower temperature of 923-1023 K.Lead is distilled from the residue containing Cu,Sn,Ag and Bi at higher temperature of 1323-1423 K,but the impurity Bi is also volatilized along with lead and cannot be separated from lead.展开更多
In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon s...In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly.展开更多
Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludg...Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77. 5 % was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN 〉 6, COD/TP 〉 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS· d), TN loading rate = 0. 028-0. 034 kgTN/( kgSS·d) and TP loading rate = 0.003-0.005 kgTP/(kgSS· d), respectively.展开更多
Several studies have demonstrated that reintroducing crop straw to fields may intensify cadmium(Cd)contamination in agricultural soils.However,the specific effects of long-term straw management practices on Cd concent...Several studies have demonstrated that reintroducing crop straw to fields may intensify cadmium(Cd)contamination in agricultural soils.However,the specific effects of long-term straw management practices on Cd concentration and its bioavailability in soil-rice ecosystems remain unclear.In this context,to explore the influence of straw return(SR)and straw removal(NSR)on Cd accumulation in both soil and rice within a double-cropping system,we conducted a four-year field study.Our research study unveiled that NSR consistently decreased soil Cd concentration and its bioavailability by approximately 16.93%–27.30%and 8.23%–21.05%respectively across both study sites.Conversely,SR resulted in a substantial increase in soil Cd bioavailability,ranging from 38.64%–53.95%.Notably,compared to NSR,SR significantly increased total soil Cd by 5.47%–36.58%and increased Cd content in brown rice by 8.00%–100.24%.Remarkably,after four consecutive years of NSR,brown rice Cd concentration at the Changfeng site compiled with national safety standards(GB 2762–2022).Additionally,returning early rice strawsignificantly raised soil Cd bioavailability for the subsequent crop,more so than late rice straw did for the early rice the following year.The findings suggest that traditional double-cropping cultivation with straw removal can effectively mitigate Cd contamination risks in crops and farmland in Hunan Province.展开更多
The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In...The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In the process, activated carbon impregnated with H2SO4(H2SO4/C) is employed. Ammonia in the waste gas reacts with H2SO4 on the adsorbent instantaneously and completely to form (NIL)2SO4. The H2SO4/C adsorbent is high in NH3 adsorption capacity and regenerable. The NH3 removal capacity of this regenerable adsorbent is more than 30 times that of the adsorbents used normally in the industry. The spent H2SO4/C is regenerated by flowing low-pressure steam through the adsorbent bed to remove the (NH4)2SO4 from the adsorbent. The regeneration by-product is concentrated (NH4)2SO4 solution, which is a perfect liquid fertilizer for local use. Re-soaking the activated carbon with H2SO4 solution rejuvenates the activity of the adsorbent. Thus the H2SOJC can be reused repeatedly. In the mechanism of this reactive adsorption process, trace of H20 in the waste gas is a required, which lends itself to treating ammonia gas saturated with moisture from biodegradation of animal urine.展开更多
Wigner-Ville distribution(WVD)is widely used in the field of signal processing due to its excellent time-frequency(TF)concentration.However,WVD is severely limited by the cross-term when working with multicomponent si...Wigner-Ville distribution(WVD)is widely used in the field of signal processing due to its excellent time-frequency(TF)concentration.However,WVD is severely limited by the cross-term when working with multicomponent signals.In this paper,we analyze the property differences between auto-term and cross-term in the one-dimensional sequence and the two-dimensional plane and approximate entropy and Rényi entropy are employed to describe them,respectively.Based on this information,we propose a new method to achieve adaptive cross-term removal by combining seeded region growing.Compared to other methods,the new method can achieve cross-term removal without decreasing the TF concentration of the auto-term.Simulation and experimental data processing results show that the method is adaptive and is not constrained by the type or distribution of signals.And it performs well in low signal-to-noise ratio environments.展开更多
The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most po...The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.展开更多
OBJECTIVE:To evaluate the efficacy and safety of activating blood circulation and removing blood stasis in terms of Traditional Chinese Medicine(TCM) for managing renal fibrosis(RF) in patients with chronic kidney dis...OBJECTIVE:To evaluate the efficacy and safety of activating blood circulation and removing blood stasis in terms of Traditional Chinese Medicine(TCM) for managing renal fibrosis(RF) in patients with chronic kidney disease(CKD).METHODS:We searched randomized controlled trials(RCTs) from eight databases.RESULTS:Sixteen eligible studies with 1,356 participants were included in this study.Compared to treatment with Western Medicine(WM) alone,the combined treatment with activating blood circulation and removing blood stasis in terms of TCM(ARTCM) and WM to manage RF in patients with CKD significantly ameliorated type Ⅳ collagen(C-Ⅳ)(SMD:-2.17,95% CI:3.01 to-1.34),type Ⅲ procollagen(PC-Ⅲ)(SMD:-1.08,95% CI:-1.64 to-0.53),laminin(LN)(SMD:-1.28,95% CI:-1.65 to-0.90),transforming growth factor β 1(TGF-β1)(SMD:-0.65,95% CI:-1.18 to-0.12),serum creatinine(Scr)(SMD:-1.36,95% CI:-1.85 to-0.87),blood urea nitrogen(BUN)(MD:-1.51,95% CI:-2.59 to-0.43),and 24 h urine protein(24h Upro)(SMD:-1.23;95% CI:-1.96 to-0.50).The level of hyaluronic acid(HA) was similar in both types of treatment(SMD:-0.74,95% CI:-1.91 to 0.44).The subgroup analysis showed that the duration of 8 weeks might affect the concentration of C-Ⅳ,PC-Ⅲ,and LN(P < 0.05).The effectiveness of the longer duration to C-Ⅳ,PC-Ⅲ,and LN was not certain.However,the result should be interpreted in care.The safety of the treatment using ARTCM and WM could not be evaluated because a few studies had reported adverse effects.The results of the Meta-analysis were not stable enough.There was publication bias for the reports on Scr(P = 0.001),C-Ⅳ(P = 0.001),PC-Ⅲ(P = 0.026),and LN(P = 0.030) and no publication bias for the reports on BUN(P = 0.293).The quality of evidence varied from low to very low.CONCLUSIONS:The combined treatment using ARTCM and WM to manage RF in patients with CKD has some advantages over treatment with WM alone.High-quality RCTs need to be conducted for the strong support.展开更多
Mercury(Hg)pollution has been a global concern in recent decades,posing a significant threat to entire ecosystems and human health due to its cumulative toxicity,persistence,and transport in the atmosphere.The intense...Mercury(Hg)pollution has been a global concern in recent decades,posing a significant threat to entire ecosystems and human health due to its cumulative toxicity,persistence,and transport in the atmosphere.The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants.Besides the advantages of good Hg^(0) capture performance and lowsecondary pollution of the mineral selenium compounds,the most noteworthy is the relatively low regeneration temperature,allowing adsorbent regeneration with low energy consumption,thus reducing the utilization cost and enabling recovery of mercury resources.This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal,introduces in detail the different types ofmineral selenium compounds studied in the field ofmercury removal,reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components,such as reaction temperature,air velocity,and other factors,and summarizes the adsorption mechanism of different fugitive forms of selenium species.Based on the current research progress,future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg^(0) and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg^(0) removal in practical industrial applications.In addition,it remains a challenge to distinguish the oxidation and adsorption of Hg^(0) quantitatively.展开更多
Antibiotic resistance genes(ARGs)are proposed as emerging environmental pollutants and pose potential threat to public health globally.The efficient removal of ARGs and prevention of their spread in the environment ar...Antibiotic resistance genes(ARGs)are proposed as emerging environmental pollutants and pose potential threat to public health globally.The efficient removal of ARGs and prevention of their spread in the environment are of great concern.Wastewater treatment plants are among the hotspot of ARGs transmission,however,while both conventional and advanced water treatment processes cannot effectively remove ARGs.Therefore,employing advanced materials including Mxenes,black phosphorus and single atom catalysts in the elimination of pollutants such as ARGs has garnered attention.In this review,first of all,the characteristics of ARGs and environmental parameters,which include pH and ions that influences ARGs removal were elucidated.Secondly,different types of materials used to remove ARGs were summarized.The removalmechanisms of ARGsweremainly related to adsorption(active sites)and degradation(radical and non-radical way).Finally,the design strategies for materials employed in ARGs removal were proposed.This review improves our understanding of the important roles of the traditional and advanced materials in the management of ARGs pollution.展开更多
Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,...Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,amidoximebased radiation grafted adsorbents have been identified as effective for iron removal.In this study,an amidoximefunctionalized,radiation-grafted adsorbent synthesized from polypropylene waste(PPw-g-AO-10)was employed to remove iron from leached geological samples.The adsorption process was systematically optimized by investigating the effects of pH,contact time,adsorbent dosage,and initial ferric ion concentration.Under optimal conditions-pH1.4,a contact time of 90 min,and an initial ferric ion concentration of 4500 mg/L-the adsorbent exhibited a maximum iron adsorption capacity of 269.02 mg/g.After optimizing the critical adsorption parameters,the adsorbent was applied to the leached geological samples,achieving a 91%removal of the iron content.The adsorbent was regenerated through two consecutive cycles using 0.2 N HNO_(3),achieving a regeneration efficiency of 65%.These findings confirm the efficacy of the synthesized PPw-g-AO-10 as a cost-effective and eco-friendly adsorbent for successfully removing iron from leached geological matrices while maintaining a reasonable degree of reusability.展开更多
Human society is currently facing significant and pressing issues in the form of serious environmental pollution and energy shortages,which have arisen owing to the rapid development of the economy and contemporary in...Human society is currently facing significant and pressing issues in the form of serious environmental pollution and energy shortages,which have arisen owing to the rapid development of the economy and contemporary industry.Photocatalysis has considerable potential as a viable technique for providing sustainable and environmentally friendly energy sources.The use of lanthanide-based photocatalysts on supporting substrates has garnered significant attention over the past decade within the scope of organic pollution remediation.Owing to its unique and promising bandgap,electrical conductivity,and stability,traditional GdVO_(4)exhibits remarkable photocatalytic performance with ongoing advances and advancements.This review provides an overview of the latest advancements in the modification techniques employed for GdVO_(4)-based photocatalysts,with a specific focus on their application in the photocatalytic degradation of organic pollutants.The supplied information provides a concise overview of current obstacles,limitations,advancements,mechanisms,and potential prospects for new opportunities.This review is anticipated to provide a significant reference and scientific justification for the active development of GdVO_(4)-based materials for environmental applications.展开更多
Combined treatment of ischemic stroke with Chinese medicine and exogenous bone marrow mesenchymal stem cell(BMSC) transplantation may improve the removal of blood stasis and stimulation of neogenesis.Chinese medicines...Combined treatment of ischemic stroke with Chinese medicine and exogenous bone marrow mesenchymal stem cell(BMSC) transplantation may improve the removal of blood stasis and stimulation of neogenesis.Chinese medicines that remove blood stasis not only promote blood circulation but also calm the endopathic wind,remove heat,resolve phlegm,remove toxic substances and strengthen body resistance.The medicinal targeting effect of Chinese medicine can promote the homing of BMSCs,and the synergistic therapeutic effects of drugs can contribute to BMSC differentiation.As such,exogenous BMSC transplantation has potential advantages for neogenesis.Chinese medicines and exogenous BMSCs provide complementary functions for the removal of blood stasis and stimulation of neogenesis.Therefore,a combination of Chinese medicine and transplantation of exogenous BMSCs may be particularly suited to ischemic stroke treatment.展开更多
This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain financ...This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain finance in accordance with the technological and institutional logic of combining blockchain with supply chains.This study then proposes the creation of an agricultural“blockchain+supply chain”information service platform and a financing trust mechanism that can effectively ensure the authenticity of the initial information input on the blockchain,consistency between on-chain transaction data and off-chain physical transactions,the controllability of risks in the set up and execution of smart contracts,and the removal of information constraints,resource allocation constraints,and institutional constraints in the agricultural supply chain financing.This aims to improve the efficiency of financing in agricultural supply chains and contribute to the industrial development of rural areas and rural revitalization.展开更多
BACKGROUND This case report examines the challenges associated with removing a totally implantable venous access port(TIVAP)used for long-term chemotherapy in a patient with breast cancer.Prolonged use of TIVAPs can r...BACKGROUND This case report examines the challenges associated with removing a totally implantable venous access port(TIVAP)used for long-term chemotherapy in a patient with breast cancer.Prolonged use of TIVAPs can result in complications such as catheter kinking,thrombosis,and adhesions between the catheter and surrounding tissues,potentially complicating their removal.CASE SUMMARY A breast cancer patient with bone metastasis presented with difficulty aspirating blood from a TIVAP that had been placed in the right internal jugular vein for 3 years.Initial removal attempts at the Department of Venous Access Center were unsuccessful,likely due to adhesions,necessitating a subsequent successful catheter extraction in a hybrid operating room.Imaging revealed no abnor-malities,and the catheter was removed using a mosquito clamp to detach it from surrounding tissues.CONCLUSION This case highlights the challenges of removing TIVAPs inserted via the internal jugular vein,particularly when the catheter traverses the sternocleidomastoid muscle.Repeated neck movements might lead to significant adhesions around the catheter,complicating its removal.Careful consideration should be given during catheter placement to avoid muscle-related adhesions and facilitate smoother extraction in long-term use.展开更多
Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal perform...Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal.展开更多
Adsorptive removal of arsenic using adsorption gels prepared from orange and apple juice residues was reviewed by summarizing the authors’ previous papers. Orange and apple juice residues contain a large amount of pe...Adsorptive removal of arsenic using adsorption gels prepared from orange and apple juice residues was reviewed by summarizing the authors’ previous papers. Orange and apple juice residues contain a large amount of pectin, partly methyl-esterified pectic acid, which exhibits high affinity for high-valent metal ions such as iron(III), rare earths(III) and zirconium(IV). Anionic species of arsenic(III, V) are effectively and selectively adsorbed on pectic acid gel via loading these high-valent metal ions. Raw orange juice residue was saponified using calcium hydroxide to improve the loading capacity for these metal ions. It was found that zirconium(IV) exhibits the most suitable adsorption behaviors for arsenic(III, V). Similar result was obtained also for apple juice residue. An actual sample of acid mine drainage from the Horobetsu mine which contained a high concentration of iron and low concentration of arsenic, was tested using the adsorption gel prepared from orange juice residue and the results were compared with those from the current treatment process based on coprecipitation with iron hydroxide. The new process using the above- mentioned adsorption gel was proposed for treatment of such acid mine drainage.展开更多
This study aims to optimize the use of lacquer residue biomass(LBM).We investigated the ability of LBM to remove Pb^(2+)heavy metal ions and the typical cationic dye methylene blue(MB)and anionic dye Congo red(CR)by s...This study aims to optimize the use of lacquer residue biomass(LBM).We investigated the ability of LBM to remove Pb^(2+)heavy metal ions and the typical cationic dye methylene blue(MB)and anionic dye Congo red(CR)by simultaneous adsorption from composite systems,as well as the relevant factors.Scanning electron microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR)were used to characterize adsorption behavior.The adsorption kinetics of Pb^(2+)-MB/CR composite systems can be effectively characterized by the pseudo-second-order kinetic model(R^(2)>0.97).In the Pb^(2+)-MB composite system,adsorption was antagonistic with similar adsorption sites.However,in the Pb^(2+)-CR composite system,we found that adsorption was synergistic with different adsorption sites,which led to a higher simultaneous adsorption capacity for a higher initial Pb^(2+)-CR concentration,unlike the Pb^(2+)-MB system.In both composite systems,an appropriate increase in LBM dosage and system temperature within a certain range was conducive to simultaneous adsorption and removal of Pb^(2+)-MB/CR composite systems.The optimal solid-liquid ratio and temperature were 1:75 and 30℃,respectively.The adsorption and removal rates of Pb^(2+)and MB were 99.98%and 90.49%,respectively,and those of Pb^(2+)and CR were 93.99%and 77.39%,respectively,in(50,50)mg/L of Pb^(2+)-MB/CR composite systems under these conditions.Adsorption removal of Pb^(2+)and MB improved with higher pH levels,and worsened with the increase of ionic strength in the solution,while the removal rate of CR showed an opposite trend.The coexisting anion and cation types had limited influence on the simultaneous adsorption removal of Pb^(2+),MB,and CR.The results of desorption showed that LBM can be utilized as a disposable material for simultaneously treating Pb^(2+)-MB/CR composite systems.The simultaneous adsorption mechanisms of Pb^(2+)-MB/CR mainly involved hydrogen bonding,π-πbonding interaction,and electrostatic interaction.展开更多
Snow cover plays a critical role in global climate regulation and hydrological processes.Accurate monitoring is essential for understanding snow distribution patterns,managing water resources,and assessing the impacts...Snow cover plays a critical role in global climate regulation and hydrological processes.Accurate monitoring is essential for understanding snow distribution patterns,managing water resources,and assessing the impacts of climate change.Remote sensing has become a vital tool for snow monitoring,with the widely used Moderate-resolution Imaging Spectroradiometer(MODIS)snow products from the Terra and Aqua satellites.However,cloud cover often interferes with snow detection,making cloud removal techniques crucial for reliable snow product generation.This study evaluated the accuracy of four MODIS snow cover datasets generated through different cloud removal algorithms.Using real-time field camera observations from four stations in the Tianshan Mountains,China,this study assessed the performance of these datasets during three distinct snow periods:the snow accumulation period(September-November),snowmelt period(March-June),and stable snow period(December-February in the following year).The findings showed that cloud-free snow products generated using the Hidden Markov Random Field(HMRF)algorithm consistently outperformed the others,particularly under cloud cover,while cloud-free snow products using near-day synthesis and the spatiotemporal adaptive fusion method with error correction(STAR)demonstrated varying performance depending on terrain complexity and cloud conditions.This study highlighted the importance of considering terrain features,land cover types,and snow dynamics when selecting cloud removal methods,particularly in areas with rapid snow accumulation and melting.The results suggested that future research should focus on improving cloud removal algorithms through the integration of machine learning,multi-source data fusion,and advanced remote sensing technologies.By expanding validation efforts and refining cloud removal strategies,more accurate and reliable snow products can be developed,contributing to enhanced snow monitoring and better management of water resources in alpine and arid areas.展开更多
文摘In order to rapidly respond to the complex and mutational market, a new facility layout plan based on cellular manufacturing is proposed, which gives consideration to high efficiency and flexibility. The plan designs two phases of integrated cell layout, i.e., cell construction and cell system layout, on the condition of adding/removing machines. First, in view of the costs of logics and machine-relocation, the cell construction based on the alternative processing routes and intra-cell layout are integrated as a whole, which achieves cell formation, process planning and the intra-cell layout in a single step. Secondly, an approach of a continuous optimized multi-line layout for solving the cell system layout problem is proposed, which eliminates the coupling relationship from the machine-relocation and realizes an integrated design of the two phases of the cell layout. An application based on real factory data is optimally solved by the Matlab 7.0 software to validate and verify the models.
基金Project (2012CB722803) supported by the National Basic Research Program of ChinaProject (U1202271) supported by the National Natural Science Foundation of China
文摘A novel technique was developed to remove impurities from crude lead by vacuum distillation.The thermodynamics on vacuum distillation refining process of crude lead was studied by means of saturated vapor pressure of main components of crude lead,separation coefficients and vapor-liquid equilibrium composition of Pb-i(i stands for an impurity) system at different temperatures.The behaviors of impurities in the vacuum distillation refining process were investigated.The results show that the vacuum distillation should be taken to obtain lead from crude lead,in which Zn,As and partial Sb are volatilized at lower temperature of 923-1023 K.Lead is distilled from the residue containing Cu,Sn,Ag and Bi at higher temperature of 1323-1423 K,but the impurity Bi is also volatilized along with lead and cannot be separated from lead.
基金supported by the Key Technologies R&D Program of China during the 11th Five-Year Plan period (2008BADC4B17 and 2006 BAD16B09)the Beijing Key Discipline Construction Project of Biomass Engineering Interdisciplinary
文摘In order to enhance the nitrogen removal, a subsurface wastewater infiltration system (SWIS) was improved by adding peat in deep soil as carbon source for denitrification process. The effects of addition of carbon source in the underpart of the SWIS on nitrogen removal at different influents (with the total nitrogen (TN) concentration 40 and 80 mg L^-1, respectively) were investigated by soil column simulating experiments. When the relatively light pollution influent with 40 mg L^-1 TN was used, the average concentrations of NO3-N and TN in effluents were (4.69±0.235), (6.18±0.079) mg L^-1, respectively, decreased by 32 and 30.8% than the control; the NO3--N concentration of all effluents was below the maximum contaminant level of 10 mg L^-1; as high as 92.67% of the TN removal efficiency was achieved. When relatively heavy pollution influent with 80 mg LITN was used, the average concentrations of NO3--N and TN in effluents were (10.2±0.265), (12.5±0.148) mg L^-1 respectively, decreased by 20 and 21.2% than the control; the NO3--N concentration of all effluents met the grade Ⅲ of the national quality standard for ground water of China (GB/T 14848-1993) with the values less than 20 mg L^-1; the TN removal efficiency of 94.1% was achieved. In summary, adding peat in the underpart of the SWIS significantly decreased TN and NO3- -N concentration in effluents and the nitrogen removal efficiency improved significantly.
文摘Compared to conventional oxidation ditches, an integrated oxidation ditch with vertical circle (IODVC) has the characters of concise configuration, simple operation and maintenance, land saving and automatical sludge returning. By the utilization of vertical circulation, an aerobic zone and an anoxic zone can be unaffectedly formed in the IODVC. Therefore, COD and nitrogen can be efficiently removed. However, the removal efficiency of phosphorus was low in the IODVC. In the experiment described, a laboratory scale system to add an anaerobic column to the IODVC has been tested to investigate the removal of phosphorus from wastewater. The experimental results showed that the removal efficiency of TP with the anaerobic column was increased to 54.0% from 22.3% without the anaerobic column. After the acetic sodium was added into the influent as carbon sources, the mean TP removal efficency of 77. 5 % was obtained. At the same time, the mean removal efficiencies of COD, TN and NH3-N were 92.2%, 81.6% and 98.1%, respectively, at 12 h of HRT and 21-25 d of SRT. The optimal operational conditions in this study were as follows: recycle rate = 1.5-2.0, COD/TN 〉 6, COD/TP 〉 40, COD loading rate = 0.26-0.32 kgCOD/(kgSS· d), TN loading rate = 0. 028-0. 034 kgTN/( kgSS·d) and TP loading rate = 0.003-0.005 kgTP/(kgSS· d), respectively.
基金supported by the National Natural Science Foundation of China(No.U20A20108)the National Key Research and Development Program of China(No.2022YFD1700102)the Key Research and Development Program of Hunan Province(No.2022NK2014).
文摘Several studies have demonstrated that reintroducing crop straw to fields may intensify cadmium(Cd)contamination in agricultural soils.However,the specific effects of long-term straw management practices on Cd concentration and its bioavailability in soil-rice ecosystems remain unclear.In this context,to explore the influence of straw return(SR)and straw removal(NSR)on Cd accumulation in both soil and rice within a double-cropping system,we conducted a four-year field study.Our research study unveiled that NSR consistently decreased soil Cd concentration and its bioavailability by approximately 16.93%–27.30%and 8.23%–21.05%respectively across both study sites.Conversely,SR resulted in a substantial increase in soil Cd bioavailability,ranging from 38.64%–53.95%.Notably,compared to NSR,SR significantly increased total soil Cd by 5.47%–36.58%and increased Cd content in brown rice by 8.00%–100.24%.Remarkably,after four consecutive years of NSR,brown rice Cd concentration at the Changfeng site compiled with national safety standards(GB 2762–2022).Additionally,returning early rice strawsignificantly raised soil Cd bioavailability for the subsequent crop,more so than late rice straw did for the early rice the following year.The findings suggest that traditional double-cropping cultivation with straw removal can effectively mitigate Cd contamination risks in crops and farmland in Hunan Province.
文摘The waste gas evolved from biodegradation of animal urine contains ammonia causing environmental concerns. A new and effective method for removing ammonia from such waste gas using reactive adsorption is presented. In the process, activated carbon impregnated with H2SO4(H2SO4/C) is employed. Ammonia in the waste gas reacts with H2SO4 on the adsorbent instantaneously and completely to form (NIL)2SO4. The H2SO4/C adsorbent is high in NH3 adsorption capacity and regenerable. The NH3 removal capacity of this regenerable adsorbent is more than 30 times that of the adsorbents used normally in the industry. The spent H2SO4/C is regenerated by flowing low-pressure steam through the adsorbent bed to remove the (NH4)2SO4 from the adsorbent. The regeneration by-product is concentrated (NH4)2SO4 solution, which is a perfect liquid fertilizer for local use. Re-soaking the activated carbon with H2SO4 solution rejuvenates the activity of the adsorbent. Thus the H2SOJC can be reused repeatedly. In the mechanism of this reactive adsorption process, trace of H20 in the waste gas is a required, which lends itself to treating ammonia gas saturated with moisture from biodegradation of animal urine.
基金Supported by the National Natural Science Foundation of China(62201171).
文摘Wigner-Ville distribution(WVD)is widely used in the field of signal processing due to its excellent time-frequency(TF)concentration.However,WVD is severely limited by the cross-term when working with multicomponent signals.In this paper,we analyze the property differences between auto-term and cross-term in the one-dimensional sequence and the two-dimensional plane and approximate entropy and Rényi entropy are employed to describe them,respectively.Based on this information,we propose a new method to achieve adaptive cross-term removal by combining seeded region growing.Compared to other methods,the new method can achieve cross-term removal without decreasing the TF concentration of the auto-term.Simulation and experimental data processing results show that the method is adaptive and is not constrained by the type or distribution of signals.And it performs well in low signal-to-noise ratio environments.
基金financially supported by the Natural Science Foundation of ShanDong(Nos.ZR2023QD152 and ZR2021MD002).
文摘The application of photocatalytic technology in algae killing is limited by the non-floatability and difficulty in recycling of the photocatalysts.Loading photocatalyst on magnetic or floatable carriers is the most popular method for overcoming the above inadequacies.In this work,a CdZnS/TiO_(2) membrane photocatalyst with adjustable suspended depth(include floating)and flexible assembly is designed,which is less prone to dislodgement due to in situ synthesis and has a wider range of applicability than previously reported photocatalysts.The photocatalytic removal of Microcystis aeruginosa revealed that the suspended depth and distribution format of the CdZnS/TiO_(2) membrane photocatalysts have striking effects on the photocatalytic removal performance of Microcystis aeruginosa,the photocatalytic removal efficiency of CdZnS/TiO_(2)-2 membrane photocatalysts for Microcystis aeruginosa could reach to 98.6%in 60 min when the photocatalysts assembled in the form of 3×3 arrays suspended at a depth of 2 cm from the liquid surface.A tiny amount of TiO_(2) loading allows the formation of Z-Scheme heterojunction,resulting in accelerating the separation efficiency of photogenerated carriers,preserving the photogenerated electrons and holes with stronger reduction and oxidation ability and inhabiting the photo-corrosion of CdZnS.
基金Supported by the Fund of Science and Technology Sichuan Province:Optimization and Evaluation of Clinical Scheme of Traditional Chinese Medicine for Delaying the Progression of Chronic Kidney Disease by Fuzhenghuayu Jiangzhuo tongluo Principle(No.2021YFS0034)the National Natural Science Foundation of China:Studies on Mechanism of Bupiyishen Tongfu Xiezhuo Principle in Delaying the Progression of Chronic Kidney Disease in Rats by Adjusting Host Metabonomics and Gut Microbiota with Multi-omics Technology(No.81973673)。
文摘OBJECTIVE:To evaluate the efficacy and safety of activating blood circulation and removing blood stasis in terms of Traditional Chinese Medicine(TCM) for managing renal fibrosis(RF) in patients with chronic kidney disease(CKD).METHODS:We searched randomized controlled trials(RCTs) from eight databases.RESULTS:Sixteen eligible studies with 1,356 participants were included in this study.Compared to treatment with Western Medicine(WM) alone,the combined treatment with activating blood circulation and removing blood stasis in terms of TCM(ARTCM) and WM to manage RF in patients with CKD significantly ameliorated type Ⅳ collagen(C-Ⅳ)(SMD:-2.17,95% CI:3.01 to-1.34),type Ⅲ procollagen(PC-Ⅲ)(SMD:-1.08,95% CI:-1.64 to-0.53),laminin(LN)(SMD:-1.28,95% CI:-1.65 to-0.90),transforming growth factor β 1(TGF-β1)(SMD:-0.65,95% CI:-1.18 to-0.12),serum creatinine(Scr)(SMD:-1.36,95% CI:-1.85 to-0.87),blood urea nitrogen(BUN)(MD:-1.51,95% CI:-2.59 to-0.43),and 24 h urine protein(24h Upro)(SMD:-1.23;95% CI:-1.96 to-0.50).The level of hyaluronic acid(HA) was similar in both types of treatment(SMD:-0.74,95% CI:-1.91 to 0.44).The subgroup analysis showed that the duration of 8 weeks might affect the concentration of C-Ⅳ,PC-Ⅲ,and LN(P < 0.05).The effectiveness of the longer duration to C-Ⅳ,PC-Ⅲ,and LN was not certain.However,the result should be interpreted in care.The safety of the treatment using ARTCM and WM could not be evaluated because a few studies had reported adverse effects.The results of the Meta-analysis were not stable enough.There was publication bias for the reports on Scr(P = 0.001),C-Ⅳ(P = 0.001),PC-Ⅲ(P = 0.026),and LN(P = 0.030) and no publication bias for the reports on BUN(P = 0.293).The quality of evidence varied from low to very low.CONCLUSIONS:The combined treatment using ARTCM and WM to manage RF in patients with CKD has some advantages over treatment with WM alone.High-quality RCTs need to be conducted for the strong support.
基金supported by the Basic Research Business Fund Grant Program for University of Science and Technology Beijing (No.06500227)the Fundamental Research Funds for the Central Universities (No.FRF-TP-22-091A1).
文摘Mercury(Hg)pollution has been a global concern in recent decades,posing a significant threat to entire ecosystems and human health due to its cumulative toxicity,persistence,and transport in the atmosphere.The intense interaction between mercury and selenium has opened up a new field for studying mercury removal from industrial flue gas pollutants.Besides the advantages of good Hg^(0) capture performance and lowsecondary pollution of the mineral selenium compounds,the most noteworthy is the relatively low regeneration temperature,allowing adsorbent regeneration with low energy consumption,thus reducing the utilization cost and enabling recovery of mercury resources.This paper reviews the recent progress of mineral selenium compounds in flue gas mercury removal,introduces in detail the different types ofmineral selenium compounds studied in the field ofmercury removal,reviews the adsorption performance of various mineral selenium compounds adsorbents on mercury and the influence of flue gas components,such as reaction temperature,air velocity,and other factors,and summarizes the adsorption mechanism of different fugitive forms of selenium species.Based on the current research progress,future studies should focus on the economic performance and the performance of different carriers and sizes of adsorbents for the removal of Hg^(0) and the correlation between the gas-particle flow characteristics and gas phase mass transfer with the performance of Hg^(0) removal in practical industrial applications.In addition,it remains a challenge to distinguish the oxidation and adsorption of Hg^(0) quantitatively.
基金supported by the National Natural Science Foundation of China(Nos.22276141 and 22236006)the Fundamental Research Funds for the Central Universities(No.22120220581).
文摘Antibiotic resistance genes(ARGs)are proposed as emerging environmental pollutants and pose potential threat to public health globally.The efficient removal of ARGs and prevention of their spread in the environment are of great concern.Wastewater treatment plants are among the hotspot of ARGs transmission,however,while both conventional and advanced water treatment processes cannot effectively remove ARGs.Therefore,employing advanced materials including Mxenes,black phosphorus and single atom catalysts in the elimination of pollutants such as ARGs has garnered attention.In this review,first of all,the characteristics of ARGs and environmental parameters,which include pH and ions that influences ARGs removal were elucidated.Secondly,different types of materials used to remove ARGs were summarized.The removalmechanisms of ARGsweremainly related to adsorption(active sites)and degradation(radical and non-radical way).Finally,the design strategies for materials employed in ARGs removal were proposed.This review improves our understanding of the important roles of the traditional and advanced materials in the management of ARGs pollution.
文摘Geological samples often contain significant amounts of iron,which,although not typically the target element,can substantially interfere with the analysis of other elements of interest.To mitigate these interferences,amidoximebased radiation grafted adsorbents have been identified as effective for iron removal.In this study,an amidoximefunctionalized,radiation-grafted adsorbent synthesized from polypropylene waste(PPw-g-AO-10)was employed to remove iron from leached geological samples.The adsorption process was systematically optimized by investigating the effects of pH,contact time,adsorbent dosage,and initial ferric ion concentration.Under optimal conditions-pH1.4,a contact time of 90 min,and an initial ferric ion concentration of 4500 mg/L-the adsorbent exhibited a maximum iron adsorption capacity of 269.02 mg/g.After optimizing the critical adsorption parameters,the adsorbent was applied to the leached geological samples,achieving a 91%removal of the iron content.The adsorbent was regenerated through two consecutive cycles using 0.2 N HNO_(3),achieving a regeneration efficiency of 65%.These findings confirm the efficacy of the synthesized PPw-g-AO-10 as a cost-effective and eco-friendly adsorbent for successfully removing iron from leached geological matrices while maintaining a reasonable degree of reusability.
文摘Human society is currently facing significant and pressing issues in the form of serious environmental pollution and energy shortages,which have arisen owing to the rapid development of the economy and contemporary industry.Photocatalysis has considerable potential as a viable technique for providing sustainable and environmentally friendly energy sources.The use of lanthanide-based photocatalysts on supporting substrates has garnered significant attention over the past decade within the scope of organic pollution remediation.Owing to its unique and promising bandgap,electrical conductivity,and stability,traditional GdVO_(4)exhibits remarkable photocatalytic performance with ongoing advances and advancements.This review provides an overview of the latest advancements in the modification techniques employed for GdVO_(4)-based photocatalysts,with a specific focus on their application in the photocatalytic degradation of organic pollutants.The supplied information provides a concise overview of current obstacles,limitations,advancements,mechanisms,and potential prospects for new opportunities.This review is anticipated to provide a significant reference and scientific justification for the active development of GdVO_(4)-based materials for environmental applications.
基金Supported by The Science and Technology Development Fund of Macao Special Administrative Region(No.048/2008/ A3)
文摘Combined treatment of ischemic stroke with Chinese medicine and exogenous bone marrow mesenchymal stem cell(BMSC) transplantation may improve the removal of blood stasis and stimulation of neogenesis.Chinese medicines that remove blood stasis not only promote blood circulation but also calm the endopathic wind,remove heat,resolve phlegm,remove toxic substances and strengthen body resistance.The medicinal targeting effect of Chinese medicine can promote the homing of BMSCs,and the synergistic therapeutic effects of drugs can contribute to BMSC differentiation.As such,exogenous BMSC transplantation has potential advantages for neogenesis.Chinese medicines and exogenous BMSCs provide complementary functions for the removal of blood stasis and stimulation of neogenesis.Therefore,a combination of Chinese medicine and transplantation of exogenous BMSCs may be particularly suited to ischemic stroke treatment.
基金an initial outcome of the Research on the Trust Mechanism of Agricultural Supply Chain Financing in the Context of “Blockchain+Supply Chain” Integrated Governance (Project No:20AGL021)a key project under the National Social Science Fund of China (NSSFC)+3 种基金the Research on the Trust Mechanism of Online Bank Lending System Based on Online Social Capital of Long-tail Rural Households (Project No:19BGL155)a project under the NSSFCthe Research on the Cost Formation Mechanism of Data Factor Transactions and the Design of Transaction Mechanism (Project No:23CJY068)a youth project under the NSSFC
文摘This paper begins with a discussion of the trust issues that agricultural supply chain finance faces.It then examines the constraints of using blockchain technology to enhance trust in agricultural supply chain finance in accordance with the technological and institutional logic of combining blockchain with supply chains.This study then proposes the creation of an agricultural“blockchain+supply chain”information service platform and a financing trust mechanism that can effectively ensure the authenticity of the initial information input on the blockchain,consistency between on-chain transaction data and off-chain physical transactions,the controllability of risks in the set up and execution of smart contracts,and the removal of information constraints,resource allocation constraints,and institutional constraints in the agricultural supply chain financing.This aims to improve the efficiency of financing in agricultural supply chains and contribute to the industrial development of rural areas and rural revitalization.
基金Supported by the Science and Technology Research Project of Jiangxi Provincial Education Department,No.GJJ2208202Science and Technology Program Project of Health Commission of Jiangxi Province,No.202510069+1 种基金Jiangxi Cancer Hospital Doctoral Start-up Fund,No.BSQDJ202309Jiangxi Province Gan Po Talent Support Program,No.20232BCJ23035.
文摘BACKGROUND This case report examines the challenges associated with removing a totally implantable venous access port(TIVAP)used for long-term chemotherapy in a patient with breast cancer.Prolonged use of TIVAPs can result in complications such as catheter kinking,thrombosis,and adhesions between the catheter and surrounding tissues,potentially complicating their removal.CASE SUMMARY A breast cancer patient with bone metastasis presented with difficulty aspirating blood from a TIVAP that had been placed in the right internal jugular vein for 3 years.Initial removal attempts at the Department of Venous Access Center were unsuccessful,likely due to adhesions,necessitating a subsequent successful catheter extraction in a hybrid operating room.Imaging revealed no abnor-malities,and the catheter was removed using a mosquito clamp to detach it from surrounding tissues.CONCLUSION This case highlights the challenges of removing TIVAPs inserted via the internal jugular vein,particularly when the catheter traverses the sternocleidomastoid muscle.Repeated neck movements might lead to significant adhesions around the catheter,complicating its removal.Careful consideration should be given during catheter placement to avoid muscle-related adhesions and facilitate smoother extraction in long-term use.
基金supported by the National Key Research and Development Program of China(Nos.2022YFA1205602,and 2023YFC3707801)the National Natural Science Foundation of China(Nos.U22A20402,22376073,21936003 and 22306119)China Postdoctoral Science Foundation(No.2023T160419).
文摘Nano zero-valent iron(nZVI)is a promising phosphate adsorbent for advanced phosphate removal.However,the rapid passivation of nZVI and the low activity of adsorption sites seriously limit its phosphate removal performance,accounting for its inapplicability to meet the emission criteria of 0.1 mg P/L phosphate.In this study,we report that the oxalate modification can inhibit the passivation of nZVI and alter the multi-stage phosphate adsorption mechanism by changing the adsorption sites.As expected,the stronger antipassivation ability of oxalate modified nZVI(OX-nZVI)strongly favored its phosphate adsorption.Interestingly,the oxalate modification endowed the surface Fe(III)sites with the lowest chemisorption energy and the fastest phosphate adsorption ability than the other adsorption sites,by in situ forming a Fe(III)-phosphate-oxalate ternary complex,therefore enabling an advanced phosphate removal process.At an initial phosphate concentration of 1.00 mg P/L,pH of 6.0 and a dosage of 0.3 g/L of adsorbents,OX-nZVI exhibited faster phosphate removal rate(0.11 g/mg/min)and lower residual phosphate level(0.02 mg P/L)than nZVI(0.055 g/mg/min and 0.19 mg P/L).This study sheds light on the importance of site manipulation in the development of high-performance adsorbents,and offers a facile surface modification strategy to prepare superior iron-basedmaterials for advanced phosphate removal.
文摘Adsorptive removal of arsenic using adsorption gels prepared from orange and apple juice residues was reviewed by summarizing the authors’ previous papers. Orange and apple juice residues contain a large amount of pectin, partly methyl-esterified pectic acid, which exhibits high affinity for high-valent metal ions such as iron(III), rare earths(III) and zirconium(IV). Anionic species of arsenic(III, V) are effectively and selectively adsorbed on pectic acid gel via loading these high-valent metal ions. Raw orange juice residue was saponified using calcium hydroxide to improve the loading capacity for these metal ions. It was found that zirconium(IV) exhibits the most suitable adsorption behaviors for arsenic(III, V). Similar result was obtained also for apple juice residue. An actual sample of acid mine drainage from the Horobetsu mine which contained a high concentration of iron and low concentration of arsenic, was tested using the adsorption gel prepared from orange juice residue and the results were compared with those from the current treatment process based on coprecipitation with iron hydroxide. The new process using the above- mentioned adsorption gel was proposed for treatment of such acid mine drainage.
基金National Key Research and Development Program of China(Nos.2023YFD1702003 and 2023YFC3709001).
文摘This study aims to optimize the use of lacquer residue biomass(LBM).We investigated the ability of LBM to remove Pb^(2+)heavy metal ions and the typical cationic dye methylene blue(MB)and anionic dye Congo red(CR)by simultaneous adsorption from composite systems,as well as the relevant factors.Scanning electron microscopy(SEM),X-ray diffraction(XRD),and Fourier transform infrared spectroscopy(FTIR)were used to characterize adsorption behavior.The adsorption kinetics of Pb^(2+)-MB/CR composite systems can be effectively characterized by the pseudo-second-order kinetic model(R^(2)>0.97).In the Pb^(2+)-MB composite system,adsorption was antagonistic with similar adsorption sites.However,in the Pb^(2+)-CR composite system,we found that adsorption was synergistic with different adsorption sites,which led to a higher simultaneous adsorption capacity for a higher initial Pb^(2+)-CR concentration,unlike the Pb^(2+)-MB system.In both composite systems,an appropriate increase in LBM dosage and system temperature within a certain range was conducive to simultaneous adsorption and removal of Pb^(2+)-MB/CR composite systems.The optimal solid-liquid ratio and temperature were 1:75 and 30℃,respectively.The adsorption and removal rates of Pb^(2+)and MB were 99.98%and 90.49%,respectively,and those of Pb^(2+)and CR were 93.99%and 77.39%,respectively,in(50,50)mg/L of Pb^(2+)-MB/CR composite systems under these conditions.Adsorption removal of Pb^(2+)and MB improved with higher pH levels,and worsened with the increase of ionic strength in the solution,while the removal rate of CR showed an opposite trend.The coexisting anion and cation types had limited influence on the simultaneous adsorption removal of Pb^(2+),MB,and CR.The results of desorption showed that LBM can be utilized as a disposable material for simultaneously treating Pb^(2+)-MB/CR composite systems.The simultaneous adsorption mechanisms of Pb^(2+)-MB/CR mainly involved hydrogen bonding,π-πbonding interaction,and electrostatic interaction.
基金funded by the Third Xinjiang Scientific Expedition Program(2021xjkk1400)the National Natural Science Foundation of China(42071049)+2 种基金the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2019D01C022)the Xinjiang Uygur Autonomous Region Innovation Environment Construction Special Project&Science and Technology Innovation Base Construction Project(PT2107)the Tianshan Talent-Science and Technology Innovation Team(2022TSYCTD0006).
文摘Snow cover plays a critical role in global climate regulation and hydrological processes.Accurate monitoring is essential for understanding snow distribution patterns,managing water resources,and assessing the impacts of climate change.Remote sensing has become a vital tool for snow monitoring,with the widely used Moderate-resolution Imaging Spectroradiometer(MODIS)snow products from the Terra and Aqua satellites.However,cloud cover often interferes with snow detection,making cloud removal techniques crucial for reliable snow product generation.This study evaluated the accuracy of four MODIS snow cover datasets generated through different cloud removal algorithms.Using real-time field camera observations from four stations in the Tianshan Mountains,China,this study assessed the performance of these datasets during three distinct snow periods:the snow accumulation period(September-November),snowmelt period(March-June),and stable snow period(December-February in the following year).The findings showed that cloud-free snow products generated using the Hidden Markov Random Field(HMRF)algorithm consistently outperformed the others,particularly under cloud cover,while cloud-free snow products using near-day synthesis and the spatiotemporal adaptive fusion method with error correction(STAR)demonstrated varying performance depending on terrain complexity and cloud conditions.This study highlighted the importance of considering terrain features,land cover types,and snow dynamics when selecting cloud removal methods,particularly in areas with rapid snow accumulation and melting.The results suggested that future research should focus on improving cloud removal algorithms through the integration of machine learning,multi-source data fusion,and advanced remote sensing technologies.By expanding validation efforts and refining cloud removal strategies,more accurate and reliable snow products can be developed,contributing to enhanced snow monitoring and better management of water resources in alpine and arid areas.