In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the op...In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.展开更多
Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve thro...Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.展开更多
While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance re...While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.展开更多
Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced tran...Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.展开更多
Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In th...Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.展开更多
目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例...目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例急性脑卒中患者。根据取栓技术的不同,患者被分为研究组(应用ADAPT技术直接抽吸取栓,34例)和对照组[应用Solitaire FR支架机械取栓术(Solitaire FR with intracranial support catheter for mechanical thrombectomy,SWIM),20例]。比较两组的取栓次数、手术操作时间、血管完全再通率、术前与术后2周美国国立卫生研究院卒中量表(National institutes of health stroke scale,NIHSS)评分、并发症发生率及术后3个月良好预后率。结果两组采用不同取栓技术后,研究组的取栓次数和手术操作时间均低于对照组(P<0.05)。术前两组的NIHSS评分差异无统计学意义(P>0.05)。术后2周,研究组的NIHSS评分显著低于对照组(P<0.05)。两组的血管完全再通率分别为70.59%和75.00%,术后3个月良好预后率分别为64.71%和60.00%,两组间差异无统计学意义(P>0.05)。研究组的并发症发生率(8.82%)显著低于对照组(20.00%)(P<0.05)。结论与SWIM取栓技术相比,ADAPT技术在血管再通率上无显著差异,但能显著减少急性脑卒中患者的取栓次数和手术操作时间,提升术后3个月的良好预后率,改善术后2周的NIHSS评分,并降低并发症发生率。ADAPT技术在改善患者功能恢复和降低并发症方面显示了更大的潜力,为急性缺血性脑卒中的临床治疗提供了有力的替代方案。展开更多
A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the s...A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.展开更多
As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the...As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.展开更多
Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models...Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion,their rigid architectures struggle with multi-scale adaptability,as exemplified by YOLOv8n’s 36.4%mAP and 13.9%small-object AP on VisDrone2019.This paper presents YOLO-LE,a lightweight framework addressing these limitations through three novel designs:(1)We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters,thereby improving model efficiency.(2)An adaptive feature fusion module is designed to dynamically integrate multi-scale feature maps,optimizing the neck structure,reducing neck complexity,and enhancing overall model performance.(3)We replace the original loss function with a distributed focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding box regression accuracy.Experimental results demonstrate that YOLO-LE achieves 39.9%mAP@0.5 on VisDrone2019,representing a 9.6%improvement over YOLOv8n,while maintaining 8.5 GFLOPs computational efficiency.This provides an efficient solution for UAV object detection in complex scenarios.展开更多
Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustaina...Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management.In this study,we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm(Helicoverpa armigera)in the adaptation to local environments and resilience to future climate change.Notably,the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades.Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm.Approximately 19,000 years ago,the cotton bollworm expanded from its ancestral African population,followed by gradual occupations of the European,Asian,Oceanian,and American continents.Furthermore,we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential.Additionally,a large number of candidate genes and SNPs linked to climatic adaptation were mapped.These findings could inform sustainable pest management strategies in the face of climate change,aiding future pest forecasting and management planning.展开更多
Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wil...Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.展开更多
Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping...Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping is mainly attributed to the large amount of purchased resources such as water and fertilizer,plastic film,and mechanical power.These lead to a decline in cultivated land quality and exacerbate intercrops'premature root and canopy senescence.So,the application of traditional intercropping faces major challenges in crop production.This paper analyzes the manifestations,occurrence mechanisms,and agronomic regulatory pathways of crop senescence.The physiological and ecological characteristics of intercropping to delay root and canopy senescence of crops are reviewed in this paper.The main agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops are based on above-and blow-ground interactions,including collocation of crop varieties,spatial arrangement,water and fertilizer management,and tillage and mulch practices.Future research fields of intercropping to delay root and canopy senescence should focus on the aspects of selecting and breeding special varieties,application of molecular biology techniques,and developing or applying models to predict and evaluate the root and canopy senescence process of intercrops.Comprehensive analysis and evaluation of different research results could provide a basis for enhancing intercropping delay root and canopy senescence through adopting innovative technologies for regulating the physio-ecological characteristics of intercrops.This would support developing and adopting high-yield,efficient,and sustainable intercropping systems in arid and semi-arid areas with high population density,limited land,and abundant light and heat resources.展开更多
This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Ham...This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.展开更多
With the widespread adoption of electric vehicles and energy storage systems,predicting the remaining useful life(RUL)of lithium-ion batteries(LIBs)is critical for enhancing system reliability and enabling predictive ...With the widespread adoption of electric vehicles and energy storage systems,predicting the remaining useful life(RUL)of lithium-ion batteries(LIBs)is critical for enhancing system reliability and enabling predictive maintenance.Traditional RUL prediction methods often exhibit reduced accuracy during the nonlinear aging stages of batteries and struggle to accommodate complex degradation processes.This paper introduces a novel adaptive long short-term memory(LSTM)approach that dynamically adjusts observation and prediction horizons to optimize predictive performance across various aging stages.The proposed method employs principal component analysis(PCA)for dimensionality reduction on publicly available NASA and Mendeley battery datasets to extract health indicators(HIs)and applies K-means clustering to segment the battery lifecycle into three aging stages(run-in,linear aging,and nonlinear aging),providing aging-stage-based input features for the model.Experimental results show that,in the NASA dataset,the adaptive LSTM reduces the MAE and RMSE by 0.042 and 0.043,respectively,compared to the CNN,demonstrating its effectiveness in mitigating error accumulation during the nonlinear aging stage.However,in the Mendeley dataset,the average prediction accuracy of the adaptive LSTM is slightly lower than that of the CNN and Transformer.These findings indicate that defining aging-stage-based adaptive observation and prediction horizons for LSTM can effectively enhance its performance in predicting battery RUL across the entire lifecycle.展开更多
Non-contact debris removal methods are fuel-efficient in a single operation compared to contact-based strategies as spacecraft don’t need to match debris velocity.To comprehensively analyze this scheme,maneuvering sc...Non-contact debris removal methods are fuel-efficient in a single operation compared to contact-based strategies as spacecraft don’t need to match debris velocity.To comprehensively analyze this scheme,maneuvering schemes for maximum debris removal with minimum fuel consumption,including task assignment,sequence planning,and trajectory planning,must be formulated.The coupling between variables’dimensions and optimization results in task assignment poses challenges,as debris removal is repetitive and uncertain,leading to a vast search space.This paper proposes a novel Greedy Randomized Adaptive Search Procedure with Large Neighborhood and Crossover Mechanisms(GRASP-LNCM)to address this problem.The hybrid dynamic iteration mechanism improves computational efficiency and enhances the optimality of results.The model innovatively considers unsuccessful single removal by using a quantitative method to assess removal percentage.In addition,to improve the efficiency of sequence and trajectory planning,a Suboptimal Search Algorithm(SSA)based on the Lambert property and accelerated Multi-Revolution Lambert Problem(MRLP)solving strategy is established.Finally,a real Iridium-33 debris removal mission is studied.The simulation demonstrates that the proposed algorithm achieves state-of-the-art performance in several typical scenarios.Compared to the contact-based scheme,the new one is simpler,saving more fuel under certain conditions.展开更多
基金Supported by the National Natural Science Foundation of China(12071133)Natural Science Foundation of Henan Province(252300421993)Key Scientific Research Project of Higher Education Institutions in Henan Province(25B110005)。
文摘In this paper,an adaptive cubic regularisation algorithm based on affine scaling methods(ARCBASM)is proposed for solving nonlinear equality constrained programming with nonnegative constraints on variables.From the optimality conditions of the problem,we introduce appropriate affine matrix and construct an affine scaling ARC subproblem with linearized constraints.Composite step methods and reduced Hessian methods are applied to tackle the linearized constraints.As a result,a standard unconstrained ARC subproblem is deduced and its solution can supply sufficient decrease.The fraction to the boundary rule maintains the strict feasibility(for nonnegative constraints on variables)of every iteration point.Reflection techniques are employed to prevent the iterations from approaching zero too early.Under mild assumptions,global convergence of the algorithm is analysed.Preliminary numerical results are reported.
基金Supported by Chongqing Health Commission and Chongqing Science and Technology Bureau,No.2023MSXM182。
文摘Rheumatoid arthritis(RA)patients face significant psychological challenges alongside physical symptoms,necessitating a comprehensive understanding of how psychological vulnerability and adaptation patterns evolve throughout the disease course.This review examined 95 studies(2000-2025)from PubMed,Web of Science,and CNKI databases including longitudinal cohorts,randomized controlled trials,and mixed-methods research,to characterize the complex interplay between biological,psychological,and social factors affecting RA patients’mental health.Findings revealed three distinct vulnerability trajectories(45%persistently low,30%fluctuating improvement,25%persistently high)and four adaptation stages,with critical intervention periods occurring 3-6 months postdiagnosis and during disease flares.Multiple factors significantly influence psychological outcomes,including gender(females showing 1.8-fold increased risk),age(younger patients experiencing 42%higher vulnerability),pain intensity,inflammatory markers,and neuroendocrine dysregulation(48%showing cortisol rhythm disruption).Early psychological intervention(within 3 months of diagnosis)demonstrated robust benefits,reducing depression incidence by 42%with effects persisting 24-36 months,while different modalities showed complementary advantages:Cognitive behavioral therapy for depression(Cohen’s d=0.68),mindfulness for pain acceptance(38%improvement),and peer support for meaning reconstruction(25.6%increase).These findings underscore the importance of integrating routine psychological assessment into standard RA care,developing stage-appropriate interventions,and advancing research toward personalized biopsychosocial approaches that address the dynamic psychological dimensions of the disease.
基金funding from the National Key Research and Development Program of China(No.2018YFE0110000)the National Natural Science Foundation of China(No.11274259,No.11574258)the Science and Technology Commission Foundation of Shanghai(21DZ1205500)in support of the present research.
文摘While reinforcement learning-based underwater acoustic adaptive modulation shows promise for enabling environment-adaptive communication as supported by extensive simulation-based research,its practical performance remains underexplored in field investigations.To evaluate the practical applicability of this emerging technique in adverse shallow sea channels,a field experiment was conducted using three communication modes:orthogonal frequency division multiplexing(OFDM),M-ary frequency-shift keying(MFSK),and direct sequence spread spectrum(DSSS)for reinforcement learning-driven adaptive modulation.Specifically,a Q-learning method is used to select the optimal modulation mode according to the channel quality quantified by signal-to-noise ratio,multipath spread length,and Doppler frequency offset.Experimental results demonstrate that the reinforcement learning-based adaptive modulation scheme outperformed fixed threshold detection in terms of total throughput and average bit error rate,surpassing conventional adaptive modulation strategies.
基金research was funded by Science and Technology Project of State Grid Corporation of China under grant number 5200-202319382A-2-3-XG.
文摘Iced transmission line galloping poses a significant threat to the safety and reliability of power systems,leading directly to line tripping,disconnections,and power outages.Existing early warning methods of iced transmission line galloping suffer from issues such as reliance on a single data source,neglect of irregular time series,and lack of attention-based closed-loop feedback,resulting in high rates of missed and false alarms.To address these challenges,we propose an Internet of Things(IoT)empowered early warning method of transmission line galloping that integrates time series data from optical fiber sensing and weather forecast.Initially,the method applies a primary adaptive weighted fusion to the IoT empowered optical fiber real-time sensing data and weather forecast data,followed by a secondary fusion based on a Back Propagation(BP)neural network,and uses the K-medoids algorithm for clustering the fused data.Furthermore,an adaptive irregular time series perception adjustment module is introduced into the traditional Gated Recurrent Unit(GRU)network,and closed-loop feedback based on attentionmechanism is employed to update network parameters through gradient feedback of the loss function,enabling closed-loop training and time series data prediction of the GRU network model.Subsequently,considering various types of prediction data and the duration of icing,an iced transmission line galloping risk coefficient is established,and warnings are categorized based on this coefficient.Finally,using an IoT-driven realistic dataset of iced transmission line galloping,the effectiveness of the proposed method is validated through multi-dimensional simulation scenarios.
基金supported by the Lebanese International University(LIU)with a funding amount of$500.
文摘Ecological conservation is at a crossroad as environmental stresses around the world intensify and traditional models of conservation exhibit intrinsic weaknesses in their response to present and future problems.In the project,we evaluated novel approaches integrating adaptive management,technological innovations,and community-based action towards more efficient sustainable conservation results and ecosystem resilience.The multi-site experimental design was based on comparison between conventional reserve management and novel integrative models implemented in diverse ecological zones.Data were collected over a period of three years employing remote sensing technologies,in situ biodiversity assessments,and large socioeconomic surveys.These instruments enabled a robust and multi-dimensional measurement of variables such as species diversity,ecological resilience,community engagement,and stakeholder engagement.The results indicate that adaptive strategies significantly enhance real-time decision-making abilities and enhance long-term ecosystem resilience.Further,technology-driven monitoring greatly enhances data accuracy,responsiveness,and early warning capabilities.Besides that,community-based conservation initiatives were found to be pivotal in facilitating local stewardship,enhancing participatory governance,and enabling more adaptive and adaptive policy systems.This research rejects mainstream conservation paradigms by placing importance on flexibility,interdisciplinarity,and inclusivity of governance systems in effectively mitigating the impacts of climate change and loss of biodiversity.Our findings offer strong evidence that emerging paradigms of conservation can provide greater ecological and social sustainability than traditional methods.These results support the need for a paradigm shift towards conservation strategies that are dynamic,collaborative,and technologically integrated,with significant implications for policy formulation as well as operational environmental management.
文摘目的探讨在急性缺血性脑卒中患者中应用直接抽吸一次性取栓(A direct aspiration First-Pass thrombectomy,ADAPT)进行血管再通的安全性、可行性及技术优势。方法回顾性分析本院神经内科2021年3月至2023年10月接受血管再通术治疗的54例急性脑卒中患者。根据取栓技术的不同,患者被分为研究组(应用ADAPT技术直接抽吸取栓,34例)和对照组[应用Solitaire FR支架机械取栓术(Solitaire FR with intracranial support catheter for mechanical thrombectomy,SWIM),20例]。比较两组的取栓次数、手术操作时间、血管完全再通率、术前与术后2周美国国立卫生研究院卒中量表(National institutes of health stroke scale,NIHSS)评分、并发症发生率及术后3个月良好预后率。结果两组采用不同取栓技术后,研究组的取栓次数和手术操作时间均低于对照组(P<0.05)。术前两组的NIHSS评分差异无统计学意义(P>0.05)。术后2周,研究组的NIHSS评分显著低于对照组(P<0.05)。两组的血管完全再通率分别为70.59%和75.00%,术后3个月良好预后率分别为64.71%和60.00%,两组间差异无统计学意义(P>0.05)。研究组的并发症发生率(8.82%)显著低于对照组(20.00%)(P<0.05)。结论与SWIM取栓技术相比,ADAPT技术在血管再通率上无显著差异,但能显著减少急性脑卒中患者的取栓次数和手术操作时间,提升术后3个月的良好预后率,改善术后2周的NIHSS评分,并降低并发症发生率。ADAPT技术在改善患者功能恢复和降低并发症方面显示了更大的潜力,为急性缺血性脑卒中的临床治疗提供了有力的替代方案。
基金The National Natural Science Foundation of China(No.U19B2031).
文摘A new method based on the iterative adaptive algorithm(IAA)and blocking matrix preprocessing(BMP)is proposed to study the suppression of multi-mainlobe interference.The algorithm is applied to precisely estimate the spatial spectrum and the directions of arrival(DOA)of interferences to overcome the drawbacks associated with conventional adaptive beamforming(ABF)methods.The mainlobe interferences are identified by calculating the correlation coefficients between direction steering vectors(SVs)and rejected by the BMP pretreatment.Then,IAA is subsequently employed to reconstruct a sidelobe interference-plus-noise covariance matrix for the preferable ABF and residual interference suppression.Simulation results demonstrate the excellence of the proposed method over normal methods based on BMP and eigen-projection matrix perprocessing(EMP)under both uncorrelated and coherent circumstances.
基金funded by the Fundamental Research Funds for the Central Universities(J2023-024,J2023-027).
文摘As an important complement to cloud computing, edge computing can effectively reduce the workload of the backbone network. To reduce latency and energy consumption of edge computing, deep learning is used to learn the task offloading strategies by interacting with the entities. In actual application scenarios, users of edge computing are always changing dynamically. However, the existing task offloading strategies cannot be applied to such dynamic scenarios. To solve this problem, we propose a novel dynamic task offloading framework for distributed edge computing, leveraging the potential of meta-reinforcement learning (MRL). Our approach formulates a multi-objective optimization problem aimed at minimizing both delay and energy consumption. We model the task offloading strategy using a directed acyclic graph (DAG). Furthermore, we propose a distributed edge computing adaptive task offloading algorithm rooted in MRL. This algorithm integrates multiple Markov decision processes (MDP) with a sequence-to-sequence (seq2seq) network, enabling it to learn and adapt task offloading strategies responsively across diverse network environments. To achieve joint optimization of delay and energy consumption, we incorporate the non-dominated sorting genetic algorithm II (NSGA-II) into our framework. Simulation results demonstrate the superiority of our proposed solution, achieving a 21% reduction in time delay and a 19% decrease in energy consumption compared to alternative task offloading schemes. Moreover, our scheme exhibits remarkable adaptability, responding swiftly to changes in various network environments.
文摘Unmanned aerial vehicle(UAV)imagery poses significant challenges for object detection due to extreme scale variations,high-density small targets(68%in VisDrone dataset),and complex backgrounds.While YOLO-series models achieve speed-accuracy trade-offs via fixed convolution kernels and manual feature fusion,their rigid architectures struggle with multi-scale adaptability,as exemplified by YOLOv8n’s 36.4%mAP and 13.9%small-object AP on VisDrone2019.This paper presents YOLO-LE,a lightweight framework addressing these limitations through three novel designs:(1)We introduce the C2f-Dy and LDown modules to enhance the backbone’s sensitivity to small-object features while reducing backbone parameters,thereby improving model efficiency.(2)An adaptive feature fusion module is designed to dynamically integrate multi-scale feature maps,optimizing the neck structure,reducing neck complexity,and enhancing overall model performance.(3)We replace the original loss function with a distributed focal loss and incorporate a lightweight self-attention mechanism to improve small-object recognition and bounding box regression accuracy.Experimental results demonstrate that YOLO-LE achieves 39.9%mAP@0.5 on VisDrone2019,representing a 9.6%improvement over YOLOv8n,while maintaining 8.5 GFLOPs computational efficiency.This provides an efficient solution for UAV object detection in complex scenarios.
基金funded by the National Natural Science Foundation of China(32372546)Shenzhen Science and Technology Program(KQTD20180411143628272)+1 种基金the Agricultural Science and Technology Innovation Program of Chinese Academy of Agricultural Sciences and STI 2030-Major Projects(2022ZD04021)the National Key Research and Development Program of China(2023YFD2200700)。
文摘Agricultural pests cause enormous losses in annual agricultural production.Understanding the evolutionary responses and adaptive capacity of agricultural pests under climate change is crucial for establishing sustainable and environmentally friendly agricultural pest management.In this study,we integrate climate modeling and landscape genomics to investigate the distributional dynamics of the cotton bollworm(Helicoverpa armigera)in the adaptation to local environments and resilience to future climate change.Notably,the predicted inhabitable areas with higher suitability for the cotton bollworm could be eight times larger in the coming decades.Climate change is one of the factors driving the dynamics of distribution and population differentiation of the cotton bollworm.Approximately 19,000 years ago,the cotton bollworm expanded from its ancestral African population,followed by gradual occupations of the European,Asian,Oceanian,and American continents.Furthermore,we identify seven subpopulations with high dispersal and adaptability which may have an increased risk of invasion potential.Additionally,a large number of candidate genes and SNPs linked to climatic adaptation were mapped.These findings could inform sustainable pest management strategies in the face of climate change,aiding future pest forecasting and management planning.
基金funded by the National Natural Science Foundation of China(grant no.32270238 and 31870311).
文摘Subtropical evergreen broad-leaved trees are usually vulnerable to freezing stress,while hexaploid wild Camellia oleifera shows strong freezing tolerance.As a valuable genetic resource of woody oil crop C.oleifera,wild C.oleifera can serve as a case for studying the molecular bases of adaptive evolution to freezing stress.Here,47 wild C.oleifera from 11 natural distribution sites in China and 4 relative species of C.oleifera were selected for genome sequencing.“Min Temperature of Coldest Month”(BIO6)had the highest comprehensive contribution to wild C.oleifera distribution.The population genetic structure of wild C.oleifera could be divided into two groups:in cold winter(BIO6≤0℃)and warm winter(BIO6>0℃)areas.Wild C.oleifera in cold winter areas might have experienced stronger selection pressures and population bottlenecks with lower N_(e) than those in warm winter areas.155 singlenucleotide polymorphisms(SNPs)were significantly correlated with the key bioclimatic variables(106 SNPs significantly correlated with BIO6).Twenty key SNPs and 15 key copy number variation regions(CNVRs)were found with genotype differentiation>50%between the two groups of wild C.oleifera.Key SNPs in cis-regulatory elements might affect the expression of key genes associated with freezing tolerance,and they were also found within a CNVR suggesting interactions between them.Some key CNVRs in the exon regions were closely related to the differentially expressed genes under freezing stress.The findings suggest that rich SNPs and CNVRs in polyploid trees may contribute to the adaptive evolution to freezing stress.
基金supported by the National Natural Science Foundation of China(32101857 and U21A20218)the China Agricultural University Corresponding Support Research Joint Fund(GSAU-DKZY-2024-001)+1 种基金the Science and Technology Program in Gansu Province,China(24ZDNA008and23JRRA1407)the Fuxi Young Talents Fund of Gansu Agricultural University,China(Gaufx-03Y10).
文摘Intercropping has been widely used in arid and semi-arid regions because of its high yield,stable productivity,and efficient utilization of resources.However,in recent years,the high yield of traditional intercropping is mainly attributed to the large amount of purchased resources such as water and fertilizer,plastic film,and mechanical power.These lead to a decline in cultivated land quality and exacerbate intercrops'premature root and canopy senescence.So,the application of traditional intercropping faces major challenges in crop production.This paper analyzes the manifestations,occurrence mechanisms,and agronomic regulatory pathways of crop senescence.The physiological and ecological characteristics of intercropping to delay root and canopy senescence of crops are reviewed in this paper.The main agronomic regulatory pathways of intercropping to delay root and canopy senescence of crops are based on above-and blow-ground interactions,including collocation of crop varieties,spatial arrangement,water and fertilizer management,and tillage and mulch practices.Future research fields of intercropping to delay root and canopy senescence should focus on the aspects of selecting and breeding special varieties,application of molecular biology techniques,and developing or applying models to predict and evaluate the root and canopy senescence process of intercrops.Comprehensive analysis and evaluation of different research results could provide a basis for enhancing intercropping delay root and canopy senescence through adopting innovative technologies for regulating the physio-ecological characteristics of intercrops.This would support developing and adopting high-yield,efficient,and sustainable intercropping systems in arid and semi-arid areas with high population density,limited land,and abundant light and heat resources.
基金financially supported by Sichuan Science and Technology Program(Grant No.2023NSFSC1980).
文摘This study examines the adaptive boundary control problem of flexible marine riser with internal flow coupling.The dynamic model of the flexible marine riser system with internal flow coupling is derived using the Hamiltonian principle.An analysis of internal flow’s influence on the vibration characteristics of flexible marine risers is conducted.Then,for the uncertain environmental disturbance,the adaptive fuzzy logic system is introduced to dynamically approximate the boundary disturbance,and a robust adaptive fuzzy boundary control is proposed.The uniform boundedness of the closed-loop system is proved based on Lyapunov theory.The well-posedness of the closed-loop system is proved by operator semigroup theory.The proposed control’s effectiveness is validated through comparison with existing control methods.
基金supported by National Natural Science Foundation of China(Grant No.62403475).
文摘With the widespread adoption of electric vehicles and energy storage systems,predicting the remaining useful life(RUL)of lithium-ion batteries(LIBs)is critical for enhancing system reliability and enabling predictive maintenance.Traditional RUL prediction methods often exhibit reduced accuracy during the nonlinear aging stages of batteries and struggle to accommodate complex degradation processes.This paper introduces a novel adaptive long short-term memory(LSTM)approach that dynamically adjusts observation and prediction horizons to optimize predictive performance across various aging stages.The proposed method employs principal component analysis(PCA)for dimensionality reduction on publicly available NASA and Mendeley battery datasets to extract health indicators(HIs)and applies K-means clustering to segment the battery lifecycle into three aging stages(run-in,linear aging,and nonlinear aging),providing aging-stage-based input features for the model.Experimental results show that,in the NASA dataset,the adaptive LSTM reduces the MAE and RMSE by 0.042 and 0.043,respectively,compared to the CNN,demonstrating its effectiveness in mitigating error accumulation during the nonlinear aging stage.However,in the Mendeley dataset,the average prediction accuracy of the adaptive LSTM is slightly lower than that of the CNN and Transformer.These findings indicate that defining aging-stage-based adaptive observation and prediction horizons for LSTM can effectively enhance its performance in predicting battery RUL across the entire lifecycle.
基金co-supported by the National Natural Science Foundation of China(Nos.U23B6001,62273118,12150008)the Fundamental Research Funds for the Central Universities,China(No.2023FRFK02043)+1 种基金the Natural Science Foundation of Heilongjiang Province,China(No.LH2022F023)China Aerospace Science and Technology Corporation Youth Talent Support Program.
文摘Non-contact debris removal methods are fuel-efficient in a single operation compared to contact-based strategies as spacecraft don’t need to match debris velocity.To comprehensively analyze this scheme,maneuvering schemes for maximum debris removal with minimum fuel consumption,including task assignment,sequence planning,and trajectory planning,must be formulated.The coupling between variables’dimensions and optimization results in task assignment poses challenges,as debris removal is repetitive and uncertain,leading to a vast search space.This paper proposes a novel Greedy Randomized Adaptive Search Procedure with Large Neighborhood and Crossover Mechanisms(GRASP-LNCM)to address this problem.The hybrid dynamic iteration mechanism improves computational efficiency and enhances the optimality of results.The model innovatively considers unsuccessful single removal by using a quantitative method to assess removal percentage.In addition,to improve the efficiency of sequence and trajectory planning,a Suboptimal Search Algorithm(SSA)based on the Lambert property and accelerated Multi-Revolution Lambert Problem(MRLP)solving strategy is established.Finally,a real Iridium-33 debris removal mission is studied.The simulation demonstrates that the proposed algorithm achieves state-of-the-art performance in several typical scenarios.Compared to the contact-based scheme,the new one is simpler,saving more fuel under certain conditions.