期刊文献+
共找到13,718篇文章
< 1 2 250 >
每页显示 20 50 100
PID Steering Control Method of Agricultural Robot Based on Fusion of Particle Swarm Optimization and Genetic Algorithm
1
作者 ZHAO Longlian ZHANG Jiachuang +2 位作者 LI Mei DONG Zhicheng LI Junhui 《农业机械学报》 北大核心 2026年第1期358-367,共10页
Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion... Aiming to solve the steering instability and hysteresis of agricultural robots in the process of movement,a fusion PID control method of particle swarm optimization(PSO)and genetic algorithm(GA)was proposed.The fusion algorithm took advantage of the fast optimization ability of PSO to optimize the population screening link of GA.The Simulink simulation results showed that the convergence of the fitness function of the fusion algorithm was accelerated,the system response adjustment time was reduced,and the overshoot was almost zero.Then the algorithm was applied to the steering test of agricultural robot in various scenes.After modeling the steering system of agricultural robot,the steering test results in the unloaded suspended state showed that the PID control based on fusion algorithm reduced the rise time,response adjustment time and overshoot of the system,and improved the response speed and stability of the system,compared with the artificial trial and error PID control and the PID control based on GA.The actual road steering test results showed that the PID control response rise time based on the fusion algorithm was the shortest,about 4.43 s.When the target pulse number was set to 100,the actual mean value in the steady-state regulation stage was about 102.9,which was the closest to the target value among the three control methods,and the overshoot was reduced at the same time.The steering test results under various scene states showed that the PID control based on the proposed fusion algorithm had good anti-interference ability,it can adapt to the changes of environment and load and improve the performance of the control system.It was effective in the steering control of agricultural robot.This method can provide a reference for the precise steering control of other robots. 展开更多
关键词 agricultural robot steering PID control particle swarm optimization algorithm genetic algorithm
在线阅读 下载PDF
Federated Multi-Label Feature Selection via Dual-Layer Hybrid Breeding Cooperative Particle Swarm Optimization with Manifold and Sparsity Regularization
2
作者 Songsong Zhang Huazhong Jin +5 位作者 Zhiwei Ye Jia Yang Jixin Zhang Dongfang Wu Xiao Zheng Dingfeng Song 《Computers, Materials & Continua》 2026年第1期1141-1159,共19页
Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant chal... Multi-label feature selection(MFS)is a crucial dimensionality reduction technique aimed at identifying informative features associated with multiple labels.However,traditional centralized methods face significant challenges in privacy-sensitive and distributed settings,often neglecting label dependencies and suffering from low computational efficiency.To address these issues,we introduce a novel framework,Fed-MFSDHBCPSO—federated MFS via dual-layer hybrid breeding cooperative particle swarm optimization algorithm with manifold and sparsity regularization(DHBCPSO-MSR).Leveraging the federated learning paradigm,Fed-MFSDHBCPSO allows clients to perform local feature selection(FS)using DHBCPSO-MSR.Locally selected feature subsets are encrypted with differential privacy(DP)and transmitted to a central server,where they are securely aggregated and refined through secure multi-party computation(SMPC)until global convergence is achieved.Within each client,DHBCPSO-MSR employs a dual-layer FS strategy.The inner layer constructs sample and label similarity graphs,generates Laplacian matrices to capture the manifold structure between samples and labels,and applies L2,1-norm regularization to sparsify the feature subset,yielding an optimized feature weight matrix.The outer layer uses a hybrid breeding cooperative particle swarm optimization algorithm to further refine the feature weight matrix and identify the optimal feature subset.The updated weight matrix is then fed back to the inner layer for further optimization.Comprehensive experiments on multiple real-world multi-label datasets demonstrate that Fed-MFSDHBCPSO consistently outperforms both centralized and federated baseline methods across several key evaluation metrics. 展开更多
关键词 Multi-label feature selection federated learning manifold regularization sparse constraints hybrid breeding optimization algorithm particle swarm optimizatio algorithm privacy protection
在线阅读 下载PDF
Particle Swarm Optimization Algorithm for Feature Selection Inspired by Peak Ecosystem Dynamics
3
作者 Shaobo Deng Meiru Xie +3 位作者 Bo Wang Shuaikun Zhang Sujie Guan Min Li 《Computers, Materials & Continua》 2025年第2期2723-2751,共29页
In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update ... In recent years, particle swarm optimization (PSO) has received widespread attention in feature selection due to its simplicity and potential for global search. However, in traditional PSO, particles primarily update based on two extreme values: personal best and global best, which limits the diversity of information. Ideally, particles should learn from multiple advantageous particles to enhance interactivity and optimization efficiency. Accordingly, this paper proposes a PSO that simulates the evolutionary dynamics of species survival in mountain peak ecology (PEPSO) for feature selection. Based on the pyramid topology, the algorithm simulates the features of mountain peak ecology in nature and the competitive-cooperative strategies among species. According to the principles of the algorithm, the population is first adaptively divided into many subgroups based on the fitness level of particles. Then, particles within each subgroup are divided into three different types based on their evolutionary levels, employing different adaptive inertia weight rules and dynamic learning mechanisms to define distinct learning modes. Consequently, all particles play their respective roles in promoting the global optimization performance of the algorithm, similar to different species in the ecological pattern of mountain peaks. Experimental validation of the PEPSO performance was conducted on 18 public datasets. The experimental results demonstrate that the PEPSO outperforms other PSO variant-based feature selection methods and mainstream feature selection methods based on intelligent optimization algorithms in terms of overall performance in global search capability, classification accuracy, and reduction of feature space dimensions. Wilcoxon signed-rank test also confirms the excellent performance of the PEPSO. 展开更多
关键词 Machine learning feature selection evolutionary algorithm particle swarm optimization
在线阅读 下载PDF
An Improved Animated Oat Optimization Algorithm with Particle Swarm Optimization for Dry Eye Disease Classification
4
作者 Essam H.Houssein Eman Saber Nagwan Abdel Samee 《Computer Modeling in Engineering & Sciences》 2025年第8期2445-2480,共36页
Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design... Thediagnosis of Dry EyeDisease(DED),however,usually depends on clinical information and complex,high-dimensional datasets.To improve the performance of classification models,this paper proposes a Computer Aided Design(CAD)system that presents a new method for DED classification called(IAOO-PSO),which is a powerful Feature Selection technique(FS)that integrates with Opposition-Based Learning(OBL)and Particle Swarm Optimization(PSO).We improve the speed of convergence with the PSO algorithmand the exploration with the IAOO algorithm.The IAOO is demonstrated to possess superior global optimization capabilities,as validated on the IEEE Congress on Evolutionary Computation 2022(CEC’22)benchmark suite and compared with seven Metaheuristic(MH)algorithms.Additionally,an IAOO-PSO model based on Support Vector Machines(SVMs)classifier is proposed for FS and classification,where the IAOO-PSO is used to identify the most relevant features.This model was applied to the DED dataset comprising 20,000 cases and 26 features,achieving a high classification accuracy of 99.8%,which significantly outperforms other optimization algorithms.The experimental results demonstrate the reliability,success,and efficiency of the IAOO-PSO technique for both FS and classification in the detection of DED. 展开更多
关键词 Feature selection(FS) machine learning(ML) animated oat optimization algorithm(AOO) dry eye disease(DED) oppositional-based learning(OBL) particle swarm optimization(pso)
在线阅读 下载PDF
A New Clustering Algorithm Using Adaptive Discrete Particle Swarm Optimization in Wireless Sensor Network 被引量:3
5
作者 余朝龙 郭文忠 《Journal of Donghua University(English Edition)》 EI CAS 2012年第1期19-22,共4页
Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one... Wireless sensor networks (WSNs) are mainly characterized by their limited and non-replenishable energy supply. Hence, the energy efficiency of the infrastructure greatly affects the network lifetime. Clustering is one of the methods that can expand the lifespan of the whole network by grouping the sensor nodes according to some criteria and choosing the appropriate cluster heads(CHs). The balanced load of the CHs has an important effect on the energy consumption balancing and lifespan of the whole network. Therefore, a new CHs election method is proposed using an adaptive discrete particle swarm optimization (ADPSO) algorithm with a fitness value function considering the load balancing and energy consumption. Simulation results not only demonstrate that the proposed algorithm can have better performance in load balancing than low-energy adaptive clustering hierarchy (LEACH), hybrid energy-efficient distributed clustering (HEED), and dynamic clustering algorithm with balanced load (DCBL), but also imply that the proposed algorithm can extend the network lifetime more. 展开更多
关键词 load balancing energy consumption balancing cluster head(CH) adaptive discrete particle swarm optimization (ADpso)
在线阅读 下载PDF
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
6
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(IApso) algorithm minimum makespan
在线阅读 下载PDF
Water Quality Evaluation Using Back Propagation Artificial Neural Network Based on Self-Adaptive Particle Swarm Optimization Algorithm and Chaos Theory 被引量:4
7
作者 Mengshan Li Wei Wu +2 位作者 Bingsheng Chen Lixin Guan Yan Wu 《Computational Water, Energy, and Environmental Engineering》 2017年第3期229-242,共14页
To overcome the shortcomings of the traditional methods of water quality evaluation, in this paper, a novel model combines particle swarm optimization (PSO), chaos theory, self-adaptive strategy and back propagation a... To overcome the shortcomings of the traditional methods of water quality evaluation, in this paper, a novel model combines particle swarm optimization (PSO), chaos theory, self-adaptive strategy and back propagation artificial neural network (BP ANN) that was proposed to evaluate the water quality of Weihe River in China. An improved PSO algorithm with a self-adaptive inertia weight and a chaotic learning factor tuned by logistic function was developed and used to optimize the network parameters of BP ANN. The values of average absolute deviation (AAD), root mean square error of prediction (RMSEP) and squared correlation coefficient are 0.0061, 0.0163 and 0.9903, respectively. Compared with other methods, such as BP ANN, and PSO BP ANN, the proposed model displays optimal prediction performance with high precision and good correlation. The results show that the proposed method has the good prediction ability for evaluating water quality. It is convenient, reliable and high precision, which provides good analysis and evaluation method for water quality. 展开更多
关键词 Water Quality particle swarm optimization BP ANN Improved pso
在线阅读 下载PDF
HEURISTIC PARTICLE SWARM OPTIMIZATION ALGORITHM FOR AIR COMBAT DECISION-MAKING ON CMTA 被引量:18
8
作者 罗德林 杨忠 +2 位作者 段海滨 吴在桂 沈春林 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2006年第1期20-26,共7页
Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm opt... Combining the heuristic algorithm (HA) developed based on the specific knowledge of the cooperative multiple target attack (CMTA) tactics and the particle swarm optimization (PSO), a heuristic particle swarm optimization (HPSO) algorithm is proposed to solve the decision-making (DM) problem. HA facilitates to search the local optimum in the neighborhood of a solution, while the PSO algorithm tends to explore the search space for possible solutions. Combining the advantages of HA and PSO, HPSO algorithms can find out the global optimum quickly and efficiently. It obtains the DM solution by seeking for the optimal assignment of missiles of friendly fighter aircrafts (FAs) to hostile FAs. Simulation results show that the proposed algorithm is superior to the general PSO algorithm and two GA based algorithms in searching for the best solution to the DM problem. 展开更多
关键词 air combat decision-making cooperative multiple target attack particle swarm optimization heuristic algorithm
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
9
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved particle swarm optimization algorithm Double POPULATIONS MULTI-OBJECTIVE adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
Optimization of Fairhurst-Cook Model for 2-D Wing Cracks Using Ant Colony Optimization (ACO), Particle Swarm Intelligence (PSO), and Genetic Algorithm (GA)
10
作者 Mohammad Najjarpour Hossein Jalalifar 《Journal of Applied Mathematics and Physics》 2018年第8期1581-1595,共15页
The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the slid... The common failure mechanism for brittle rocks is known to be axial splitting which happens parallel to the direction of maximum compression. One of the mechanisms proposed for modelling of axial splitting is the sliding crack or so called, “wing crack” model. Fairhurst-Cook model explains this specific type of failure which starts by a pre-crack and finally breaks the rock by propagating 2-D cracks under uniaxial compression. In this paper, optimization of this model has been considered and the process has been done by a complete sensitivity analysis on the main parameters of the model and excluding the trends of their changes and also their limits and “peak points”. Later on this paper, three artificial intelligence algorithms including Particle Swarm Intelligence (PSO), Ant Colony Optimization (ACO) and genetic algorithm (GA) has been used and compared in order to achieve optimized sets of parameters resulting in near-maximum or near-minimum amounts of wedging forces creating a wing crack. 展开更多
关键词 WING Crack Fairhorst-Cook Model Sensitivity Analysis optimization particle swarm INTELLIGENCE (pso) Ant Colony optimization (ACO) Genetic algorithm (GA)
在线阅读 下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
11
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm algorithm CHAOTIC SEQUENCES SELF-adaptive STRATEGY MULTI-OBJECTIVE optimization
在线阅读 下载PDF
Designing mixed <i>H</i><sub>2</sub>/<i>H</i><sub>&infin;</sub>structure specified controllers using Particle Swarm Optimization (PSO) algorithm
12
作者 Ayman N. Salman Younis Ali A. Khamees Farooq T. Taha 《Natural Science》 2014年第1期17-22,共6页
This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed t... This paper proposes an efficient method for designing accurate structure-specified mixed H2/H∞ optimal controllers for systems with uncertainties and disturbance using particle swarm (PSO) algorithm. It is designed to find a suitable controller that minimizes the performance index of error signal subject to an unequal constraint on the norm of the closed-loop system. Although the mixed H2/H∞ for the output feedback approach control is considered as a robust and optimal control technique, the design process normally comes up with a complex and non-convex optimization problem, which is difficult to solve by the conventional optimization methods. The PSO can efficiently solve design problems of multi-input-multi-output (MIMO) optimal control systems, which is very suitable for practical engineering designs. It is used to search for parameters of a structure-specified controller, which satisfies mixed performance index. The simulation and experimental results show high feasibility, robustness and practical value compared with the conventional proportional-integral-derivative (PID) and proportional-Integral (PI) controller, and the proposed algorithm is also more efficient compared with the genetic algorithm (GA). 展开更多
关键词 MIXED H2/H∞ Optimal Control particle swarm optimization algorithm Structure-Specified Controller
在线阅读 下载PDF
Particle Swarm Optimization Algorithm vs Genetic Algorithm to Develop Integrated Scheme for Obtaining Optimal Mechanical Structure and Adaptive Controller of a Robot
13
作者 Rega Rajendra Dilip K. Pratihar 《Intelligent Control and Automation》 2011年第4期430-449,共20页
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula... The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected. 展开更多
关键词 MANIPULATOR OPTIMAL Structure adaptive CONTROLLER GENETIC algorithm NEURAL Networks particle swarm optimization
在线阅读 下载PDF
Dynamical Adaptive Particle Swarm Algorithm and Its Application to Optimization of PID Parameters
14
作者 Jimin Li Guolin Yu 《American Journal of Operations Research》 2012年第3期448-451,共4页
Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation... Based on a new adaptive Particle Swarm Optimization algorithm with dynamically changing inertia weight (DAPSO), It is used to optimize parameters in PID controller. Compared to conventional PID methods, the simulation shows that this new method makes the optimization perfectly and convergence quickly. 展开更多
关键词 particle swarm optimization DYNAMICAL adaptive PID Automatic REGULATION System
在线阅读 下载PDF
Adaptive Parallel Particle Swarm Optimization Algorithm Based on Dynamic Exchange of Control Parameters
15
作者 Masaaki Suzuki 《American Journal of Operations Research》 2016年第5期401-413,共14页
Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local s... Updating the velocity in particle swarm optimization (PSO) consists of three terms: the inertia term, the cognitive term and the social term. The balance of these terms determines the balance of the global and local search abilities, and therefore the performance of PSO. In this work, an adaptive parallel PSO algorithm, which is based on the dynamic exchange of control parameters between adjacent swarms, has been developed. The proposed PSO algorithm enables us to adaptively optimize inertia factors, learning factors and swarm activity. By performing simulations of a search for the global minimum of a benchmark multimodal function, we have found that the proposed PSO successfully provides appropriate control parameter values, and thus good global optimization performance. 展开更多
关键词 swarm Intelligence particle swarm optimization Global optimization Metaheuristics adaptive Parameter Tuning
在线阅读 下载PDF
Particle Swarm Optimization: Advances, Applications, and Experimental Insights 被引量:1
16
作者 Laith Abualigah 《Computers, Materials & Continua》 2025年第2期1539-1592,共54页
Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a... Particle Swarm Optimization(PSO)has been utilized as a useful tool for solving intricate optimization problems for various applications in different fields.This paper attempts to carry out an update on PSO and gives a review of its recent developments and applications,but also provides arguments for its efficacy in resolving optimization problems in comparison with other algorithms.Covering six strategic areas,which include Data Mining,Machine Learning,Engineering Design,Energy Systems,Healthcare,and Robotics,the study demonstrates the versatility and effectiveness of the PSO.Experimental results are,however,used to show the strong and weak parts of PSO,and performance results are included in tables for ease of comparison.The results stress PSO’s efficiency in providing optimal solutions but also show that there are aspects that need to be improved through combination with algorithms or tuning to the parameters of the method.The review of the advantages and limitations of PSO is intended to provide academics and practitioners with a well-rounded view of the methods of employing such a tool most effectively and to encourage optimized designs of PSO in solving theoretical and practical problems in the future. 展开更多
关键词 particle swarm optimization(pso) optimization algorithms data mining machine learning engineer-ing design energy systems healthcare applications ROBOTICS comparative analysis algorithm performance evaluation
在线阅读 下载PDF
Hybrid optimization algorithm based on chaos,cloud and particle swarm optimization algorithm 被引量:29
17
作者 Mingwei Li Haigui Kang +1 位作者 Pengfei Zhou Weichiang Hong 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2013年第2期324-334,共11页
As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid ... As for the drop of particle diversity and the slow convergent speed of particle in the late evolution period when particle swarm optimization(PSO) is applied to solve high-dimensional multi-modal functions,a hybrid optimization algorithm based on the cat mapping,the cloud model and PSO is proposed.While the PSO algorithm evolves a certain of generations,this algorithm applies the cat mapping to implement global disturbance of the poorer individuals,and employs the cloud model to execute local search of the better individuals;accordingly,the obtained best individuals form a new swarm.For this new swarm,the evolution operation is maintained with the PSO algorithm,using the parameter of pop distr to balance the global and local search capacity of the algorithm,as well as,adopting the parameter of mix gen to control mixing times of the algorithm.The comparative analysis is carried out on the basis of 4 functions and other algorithms.It indicates that this algorithm shows faster convergent speed and better solving precision for solving functions particularly those high-dimensional multi-modal functions.Finally,the suggested values are proposed for parameters pop distr and mix gen applied to different dimension functions via the comparative analysis of parameters. 展开更多
关键词 particle swarm optimizationpso chaos theory cloud model hybrid optimization
在线阅读 下载PDF
Review on Particle Swarm Optimization:Application Toward Autonomous Dynamical Systems
18
作者 Kavan Bojappa Junsoo Lee 《IEEE/CAA Journal of Automatica Sinica》 2025年第9期1762-1775,共14页
Complex autonomous dynamical systems require sophisticated optimization methods that encompass environment awareness,path planning,and decision-making.swarm intelligence algorithms,inspired by natural phenomena such a... Complex autonomous dynamical systems require sophisticated optimization methods that encompass environment awareness,path planning,and decision-making.swarm intelligence algorithms,inspired by natural phenomena such as bird flocks and fish schools,have undergone significant advancements over recent decades.This paper provides a comprehensive review of particle swarm optimization(PSO)in the context of autonomous systems.We specifically examine the application of PSO to multi-agent dynamical systems,reviewing how PSO variants are employed to tackle diverse optimization challenges across various platforms,including ground vehicles,autonomous underwater vehicles,and unmanned aerial vehicles.Additionally,we delve into the use of PSO within swarm robotics and multi-agent systems.The paper concludes with an outline of potential future research directions,particularly focusing on the application of PSO to the multi-agent rendezvous problem in autonomous systems. 展开更多
关键词 Autonomous system multi-agent systems particle swarm optimization(pso) swarm intelligence
在线阅读 下载PDF
Correlation-Guided Particle Swarm Optimization Approach for Feature Selection in Fault Diagnosis
19
作者 Ke Chen Wenjie Wang +2 位作者 Fangfang Zhang Jing Liang Kunjie Yu 《IEEE/CAA Journal of Automatica Sinica》 2025年第11期2329-2341,共13页
A large number of features are involved in fault diagnosis,and it is challenging to identify important and relative features for fault classification.Feature selection selects suitable features from the fault dataset ... A large number of features are involved in fault diagnosis,and it is challenging to identify important and relative features for fault classification.Feature selection selects suitable features from the fault dataset to determine the root cause of the fault.Particle swarm optimization(PSO)has shown promising results in performing feature selection due to its promising search effectiveness and ease of implementation.However,most PSObased feature selection approaches for fault diagnosis do not adequately take domain-specific a priori knowledge into account.In this study,we propose a correlation-guided PSO feature selection approach for fault diagnosis that focuses on improving the initialisation effectiveness,individual exploration ability,and population diversity.To be more specific,an initialisation strategy based on feature correlation is designed to enhance the quality of the initial population,while a probability individual updating mechanism is proposed to improve the exploitation ability.In addition,a sample shrinkage strategy is developed to enhance the ability to jump out of local optimal.Results on four public fault diagnosis datasets show that the proposed approach can select smaller feature subsets to achieve higher classification accuracy than other state-of-the-art feature selection methods in most cases.Furthermore,the effectiveness of the proposed approach is also verified by examining real-world fault diagnosis problems. 展开更多
关键词 Classification CORRELATION fault diagnosis feature selection particle swarm optimization(pso)
在线阅读 下载PDF
Physics-informed neural network optimized by particle swarm algorithm for accurate prediction of blast-induced peak particle velocity
20
作者 Lang Qiu Yujie Zhu +3 位作者 Chen Xu Gaofeng Ren Yingguo Hu Xiaoli Liu 《Intelligent Geoengineering》 2025年第3期126-140,共15页
Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV pred... Accurately forecasting peak particle velocity(PPV)during blasting operations plays a crucial role in mitigating vibration-related hazards and preventing economic losses.This research introduces an approach to PPV prediction by combining conventional empirical equations with physics-informed neural networks(PINN)and optimizing the model parameters via the Particle Swarm Optimization(PSO)algorithm.The proposed PSO-PINN framework was rigorously benchmarked against seven established machine learning approaches:Multilayer Perceptron(MLP),Extreme Gradient Boosting(XGBoost),Random Forest(RF),Support Vector Regression(SVR),Gradient Boosting Decision Tree(GBDT),Adaptive Boosting(Adaboost),and Gene Expression Programming(GEP).Comparative analysis showed that PSO-PINN outperformed these models,achieving RMSE reductions of 17.82-37.63%,MSE reductions of 32.47-61.10%,AR improvements of 2.97-21.19%,and R^(2)enhancements of 7.43-29.21%,demonstrating superior accuracy and generalization.Furthermore,the study determines the impact of incorporating empirical formulas as physical constraints in neural networks and examines the effects of different empirical equations,particle swarm size,iteration count in PSO,regularization coefficient,and learning rate in PINN on model performance.Lastly,a predictive system for blast vibration PPV is designed and implemented.The research outcomes offer theoretical references and practical recommendations for blast vibration forecasting in similar engineering applications. 展开更多
关键词 Peak particle velocity Blast-induced vibration particle swarm optimization algorithm Physics-informed neural network Prediction system
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部