An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ...An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.展开更多
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o...In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.展开更多
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula...The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.展开更多
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se...To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.展开更多
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti...To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.展开更多
For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These proble...For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These problems have always been a concern for researchers.Among many stochastic optimization methods,particle swarm optimization(PSO)has been applied to solve geophysical inversion problems due to its simple principle and the fact that only a few parameters require adjustment.To overcome the nonuniqueness of inversion,model constraints can be added to PSO optimization.However,using fixed regularization parameters in PSO iteration is equivalent to keeping the default model constraint at a certain level,yielding an inversion result that is considerably affected by the model constraint.This study proposes a hybrid method that combines the regularized least squares method(RLSM)with the PSO method.The RLSM is used to improve the global optimal particle and accelerate convergence,while the adaptive regularization strategy is used to update the regularization parameters to avoid the influence of model constraints on the inversion results.Further,the inversion results of the RLSM and hybrid algorithm are compared and analyzed by considering the audio magnetotelluric synthesis and field data as examples.Experiments show that the proposed hybrid method is superior to the RLSM.Furthermore,compared with the standard PSO algorithm,the hybrid algorithm needs a broader model space but a smaller particle swarm and fewer iteration steps,thus reducing the prior conditions and the computational cost used in the inversion.展开更多
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d...The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm.展开更多
软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自...软基水闸底板脱空是水闸在长期服役期间受水流侵蚀等环境因素影响所产生的一种危害极大且难以察觉的病害。由于其病害部位于水下,传统方法难以检测,该研究提出一种基于高斯过程回归(Gaussian process regression,GPR)代理模型和遗传-自适应惯性权重粒子群(genetic algorithm-adaptive particle swarm optimization,GA-APSO)混合优化算法的水闸底板脱空动力学反演方法,用于检测软基水闸底板脱空。首先,构建表征软基水闸底板脱空参数和水闸结构模态参数之间非线性关系的GPR代理模型;其次,基于GPR代理模型与水闸实测模态参数建立脱空反演的最优化数学模型,将反演问题转化为目标函数最优化求解问题;最后,为提高算法寻优计算的精度,提出一种GA-APSO混合优化算法对目标函数进行脱空反演计算,并提出一种更合理判断反演脱空区域面积和实际脱空区域面积相对误差的指标—面积不重合度。为验证所提方法性能,以一室内软基水闸物理模型为例,对两种不同脱空工况开展研究分析,结果表明,反演脱空区域面积和模型实际设置脱空区域面积的相对误差分别为8.47%和10.77%,相对误差值较小,证明所提方法能有效反演出水闸底板脱空情况,可成为软基水闸底板脱空反演检测的一种新方法。展开更多
为解决传统预测方法和标准最小二乘支持向量回归机(least squares support vector regression,LSSVR)在水质预测中存在预测精度低、鲁棒性差等问题,提出了自适应粒子群优化加权最小二乘支持向量回归机(adaptiveparticle swarm optimizat...为解决传统预测方法和标准最小二乘支持向量回归机(least squares support vector regression,LSSVR)在水质预测中存在预测精度低、鲁棒性差等问题,提出了自适应粒子群优化加权最小二乘支持向量回归机(adaptiveparticle swarm optimization weighted least squares support vector regression,APSO-WLSSVR)的水质预测模型。根据样本对模型重要性不同为各样本赋予不同权重,建立了加权最小二乘支持向量回归机(weighted least squaressupport vector regression,WLSSVR),实现对样本数据"重近轻远"的优化选择,避免标准LSSVR算法因没有考虑样本重要性差异致使预测精度低的问题;采用自适应粒子群优化算法对模型参数组合进行优化选择,克服了标准LSSVR算法因试凑法获取参数的盲目性和人为因素的影响。为验证该模型的性能,对江苏省宜兴市集约化河蟹养殖水质进行预测,并与其他预测方法对比分析,结果表明该模型预测精度明显提高,还具有较好的鲁棒性和泛化能力,能够满足集约化水产养殖水质管理的实际需要。展开更多
基金Supported by the National Natural Science Foundation of China(51175262)the Research Fund for Doctoral Program of Higher Education of China(20093218110020)+2 种基金the Jiangsu Province Science Foundation for Excellent Youths(BK201210111)the Jiangsu Province Industry-Academy-Research Grant(BY201220116)the Innovative and Excellent Foundation for Doctoral Dissertation of Nanjing University of Aeronautics and Astronautics(BCXJ10-09)
文摘An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms.
文摘In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems.
文摘The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected.
文摘To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum.
基金National Key Basic Research Project of China(973 program)(No.2013CB733600)National Natural Science Foundation of China(No.21176073)+1 种基金Program for New Century Excellent Talents in University,China(No.NCET-09-0346)the Fundamental Research Funds for the Central Universities,China
文摘To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best.
基金supported by the National Natural Science Foundation of China(NSFC)[grant number 41374133]
文摘For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These problems have always been a concern for researchers.Among many stochastic optimization methods,particle swarm optimization(PSO)has been applied to solve geophysical inversion problems due to its simple principle and the fact that only a few parameters require adjustment.To overcome the nonuniqueness of inversion,model constraints can be added to PSO optimization.However,using fixed regularization parameters in PSO iteration is equivalent to keeping the default model constraint at a certain level,yielding an inversion result that is considerably affected by the model constraint.This study proposes a hybrid method that combines the regularized least squares method(RLSM)with the PSO method.The RLSM is used to improve the global optimal particle and accelerate convergence,while the adaptive regularization strategy is used to update the regularization parameters to avoid the influence of model constraints on the inversion results.Further,the inversion results of the RLSM and hybrid algorithm are compared and analyzed by considering the audio magnetotelluric synthesis and field data as examples.Experiments show that the proposed hybrid method is superior to the RLSM.Furthermore,compared with the standard PSO algorithm,the hybrid algorithm needs a broader model space but a smaller particle swarm and fewer iteration steps,thus reducing the prior conditions and the computational cost used in the inversion.
文摘The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm.
文摘提出了基于自适应粒子群优化(APSO)与误差反向传播(BP)神经网络耦合反馈分析模型(APSO-BP).模型实现对网络结构、权重、阈值的同时优化,借助自适应粒子群算法全局优化能力强、收敛速度快的特点,提高了模型运算效率.采用Schaffer基准函数对该模型和传统遗传算法、BP神经网络、粒子群与BP神经网络组合算法进行测试对比.结果表明该模型更为优越.应用该模型对索风营水电站地下岩体力学参数进行反馈分析,计算位移值与实测值吻合较好,平均误差0.22 mm.
文摘为解决传统预测方法和标准最小二乘支持向量回归机(least squares support vector regression,LSSVR)在水质预测中存在预测精度低、鲁棒性差等问题,提出了自适应粒子群优化加权最小二乘支持向量回归机(adaptiveparticle swarm optimization weighted least squares support vector regression,APSO-WLSSVR)的水质预测模型。根据样本对模型重要性不同为各样本赋予不同权重,建立了加权最小二乘支持向量回归机(weighted least squaressupport vector regression,WLSSVR),实现对样本数据"重近轻远"的优化选择,避免标准LSSVR算法因没有考虑样本重要性差异致使预测精度低的问题;采用自适应粒子群优化算法对模型参数组合进行优化选择,克服了标准LSSVR算法因试凑法获取参数的盲目性和人为因素的影响。为验证该模型的性能,对江苏省宜兴市集约化河蟹养殖水质进行预测,并与其他预测方法对比分析,结果表明该模型预测精度明显提高,还具有较好的鲁棒性和泛化能力,能够满足集约化水产养殖水质管理的实际需要。