期刊文献+
共找到706篇文章
< 1 2 36 >
每页显示 20 50 100
Solving Job-Shop Scheduling Problem Based on Improved Adaptive Particle Swarm Optimization Algorithm 被引量:3
1
作者 顾文斌 唐敦兵 郑堃 《Transactions of Nanjing University of Aeronautics and Astronautics》 EI 2014年第5期559-567,共9页
An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal ... An improved adaptive particle swarm optimization(IAPSO)algorithm is presented for solving the minimum makespan problem of job shop scheduling problem(JSP).Inspired by hormone modulation mechanism,an adaptive hormonal factor(HF),composed of an adaptive local hormonal factor(H l)and an adaptive global hormonal factor(H g),is devised to strengthen the information connection between particles.Using HF,each particle of the swarm can adjust its position self-adaptively to avoid premature phenomena and reach better solution.The computational results validate the effectiveness and stability of the proposed IAPSO,which can not only find optimal or close-to-optimal solutions but also obtain both better and more stability results than the existing particle swarm optimization(PSO)algorithms. 展开更多
关键词 job-shop scheduling problem(JSP) hormone modulation mechanism improved adaptive particle swarm optimization(Iapso) algorithm minimum makespan
在线阅读 下载PDF
Dynamic Self-Adaptive Double Population Particle Swarm Optimization Algorithm Based on Lorenz Equation
2
作者 Yan Wu Genqin Sun +4 位作者 Keming Su Liang Liu Huaijin Zhang Bingsheng Chen Mengshan Li 《Journal of Computer and Communications》 2017年第13期9-20,共12页
In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based o... In order to improve some shortcomings of the standard particle swarm optimization algorithm, such as premature convergence and slow local search speed, a double population particle swarm optimization algorithm based on Lorenz equation and dynamic self-adaptive strategy is proposed. Chaotic sequences produced by Lorenz equation are used to tune the acceleration coefficients for the balance between exploration and exploitation, the dynamic self-adaptive inertia weight factor is used to accelerate the converging speed, and the double population purposes to enhance convergence accuracy. The experiment was carried out with four multi-objective test functions compared with two classical multi-objective algorithms, non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results show that the proposed algorithm has excellent performance with faster convergence rate and strong ability to jump out of local optimum, could use to solve many optimization problems. 展开更多
关键词 Improved particle swarm Optimization algorithm Double POPULATIONS MULTI-OBJECTIVE adaptive Strategy CHAOTIC SEQUENCE
在线阅读 下载PDF
Particle Swarm Optimization Algorithm vs Genetic Algorithm to Develop Integrated Scheme for Obtaining Optimal Mechanical Structure and Adaptive Controller of a Robot
3
作者 Rega Rajendra Dilip K. Pratihar 《Intelligent Control and Automation》 2011年第4期430-449,共20页
The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipula... The performances of Particle Swarm Optimization and Genetic Algorithm have been compared to develop a methodology for concurrent and integrated design of mechanical structure and controller of a 2-dof robotic manipulator solving tracking problems. The proposed design scheme optimizes various parameters belonging to different domains (that is, link geometry, mass distribution, moment of inertia, control gains) concurrently to design manipulator, which can track some given paths accurately with a minimum power consumption. The main strength of this study lies with the design of an integrated scheme to solve the above problem. Both real-coded Genetic Algorithm and Particle Swarm Optimization are used to solve this complex optimization problem. Four approaches have been developed and their performances are compared. Particle Swarm Optimization is found to perform better than the Genetic Algorithm, as the former carries out both global and local searches simultaneously, whereas the latter concentrates mainly on the global search. Controllers with adaptive gain values have shown better performance compared to the conventional ones, as expected. 展开更多
关键词 MANIPULATOR OPTIMAL Structure adaptive CONTROLLER GENETIC algorithm NEURAL Networks particle swarm Optimization
在线阅读 下载PDF
Particle Swarm Optimization Algorithm Based on Chaotic Sequences and Dynamic Self-Adaptive Strategy
4
作者 Mengshan Li Liang Liu +4 位作者 Genqin Sun Keming Su Huaijin Zhang Bingsheng Chen Yan Wu 《Journal of Computer and Communications》 2017年第12期13-23,共11页
To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The se... To deal with the problems of premature convergence and tending to jump into the local optimum in the traditional particle swarm optimization, a novel improved particle swarm optimization algorithm was proposed. The self-adaptive inertia weight factor was used to accelerate the converging speed, and chaotic sequences were used to tune the acceleration coefficients for the balance between exploration and exploitation. The performance of the proposed algorithm was tested on four classical multi-objective optimization functions by comparing with the non-dominated sorting genetic algorithm and multi-objective particle swarm optimization algorithm. The results verified the effectiveness of the algorithm, which improved the premature convergence problem with faster convergence rate and strong ability to jump out of local optimum. 展开更多
关键词 particle swarm algorithm CHAOTIC SEQUENCES SELF-adaptive STRATEGY MULTI-OBJECTIVE Optimization
在线阅读 下载PDF
基于ASAPSO混合算法的双脉冲变轨拦截轨迹优化
5
作者 杨慧婷 王庆辉 《空间控制技术与应用》 北大核心 2025年第1期75-84,共10页
针对航天器Lambert双脉冲变轨拦截问题,引入一种自适应模拟退火粒子群(ASAPSO)算法,旨在通过优化两次脉冲的速度增量总和,以实现航天器变轨所需的最小燃料消耗.首先,基于Lambert固定时间飞行定理构建了变轨拦截的数学模型,假设航天器在... 针对航天器Lambert双脉冲变轨拦截问题,引入一种自适应模拟退火粒子群(ASAPSO)算法,旨在通过优化两次脉冲的速度增量总和,以实现航天器变轨所需的最小燃料消耗.首先,基于Lambert固定时间飞行定理构建了变轨拦截的数学模型,假设航天器在沿初始轨道飞行一周内机动追逐目标,将两次脉冲变轨的时刻设为决策变量,将燃料消耗量作为适应度函数,并采用ASAPSO混合算法作为优化策略.其次,为了验证ASAPSO算法的有效性,针对同一模型分别采用了传统粒子群算法(PSO)、模拟退火粒子群算法(SAPSO)以及强化学习粒子群算法(RLPSO)进行优化,对比发现ASAPSO算法在较少的迭代次数内就能快速收敛至全局最优解,极大地减少了处理轨道拦截问题的计算量和时间.该算法结合了PSO的全局搜索能力和SA的局部优化特性,为航天器Lambert双脉冲变轨拦截问题提供了一种更为高效、精确的解决方案. 展开更多
关键词 Lambert变轨拦截 粒子群算法 模拟退火算法 参数自适应
在线阅读 下载PDF
A Hybrid Differential Evolution Algorithm Integrated with Particle Swarm Optimization
6
作者 范勤勤 颜学峰 《Journal of Donghua University(English Edition)》 EI CAS 2014年第2期197-200,共4页
To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbioti... To implement self-adaptive control parameters, a hybrid differential evolution algorithm integrated with particle swarm optimization (PSODE) is proposed. In the PSODE, control parameters are encoded to be a symbiotic individual of original individual, and each original individual has its own symbiotic individual. Differential evolution ( DE) operators are used to evolve the original population. And, particle swarm optimization (PSO) is applied to co-evolving the symbiotic population. Thus, with the evolution of the original population in PSODE, the symbiotic population is dynamically and self-adaptively adjusted and the realtime optimum control parameters are obtained. The proposed algorithm is compared with some DE variants on nine functious. The results show that the average performance of PSODE is the best. 展开更多
关键词 differential evolution algorithm particle swann optimization SELF-adaptive CO-EVOLUTION
在线阅读 下载PDF
基于APSO-SSD-SVD的特高压换流站OLTC振动信号降噪方法 被引量:2
7
作者 骆钊 张涛 +3 位作者 阮彦俊 石延辉 林铭良 张杨 《电力系统保护与控制》 EI CSCD 北大核心 2024年第21期13-23,共11页
随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇... 随着中国特高压交直流换流站的大规模投运,有载分接开关(on-load tap changer, OLTC)已成为特高压换流站中发生故障较多的设备之一。针对强背景噪声环境下特高压换流站OLTC故障特征难以提取的问题,提出一种基于自适应粒子群算法优化奇异谱分解和奇异值分解的方法。首先,利用自适应粒子群优化(adaptive particle swarm optimization, APSO)算法对奇异谱分解算法中的模态参数进行优化,选取最优分解模态数。其次,基于最大峭度准则选取最佳奇异谱分量。然后,确定最佳重构阶数,通过奇异值分解重构信号,从而达到信号降噪的目的。将所提方法应用于仿真信号和实验信号,结果表明所提方法的信噪比达到23.302,均方根误差仅为0.004,并且波形相似参数高达0.998,优于其他降噪方法。所提方法能够更有效地实现对特高压换流站OLTC振动信号的降噪,为辅助运维人员诊断OLTC状态提供参考。 展开更多
关键词 有载分接开关 自适应粒子群优化算法 奇异谱分解 奇异值分解 精细复合多尺度散布熵 信号降噪
在线阅读 下载PDF
1D regularization inversion combining particle swarm optimization and least squares method 被引量:1
8
作者 Su Peng Yang Jin Xu LiuYang 《Applied Geophysics》 SCIE CSCD 2023年第1期77-87,131,132,共13页
For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These proble... For geophysical inversion problems,deterministic inversion methods can easily fall into local optimal solutions,while stochastic optimization methods can theoretically converge to global optimal solutions.These problems have always been a concern for researchers.Among many stochastic optimization methods,particle swarm optimization(PSO)has been applied to solve geophysical inversion problems due to its simple principle and the fact that only a few parameters require adjustment.To overcome the nonuniqueness of inversion,model constraints can be added to PSO optimization.However,using fixed regularization parameters in PSO iteration is equivalent to keeping the default model constraint at a certain level,yielding an inversion result that is considerably affected by the model constraint.This study proposes a hybrid method that combines the regularized least squares method(RLSM)with the PSO method.The RLSM is used to improve the global optimal particle and accelerate convergence,while the adaptive regularization strategy is used to update the regularization parameters to avoid the influence of model constraints on the inversion results.Further,the inversion results of the RLSM and hybrid algorithm are compared and analyzed by considering the audio magnetotelluric synthesis and field data as examples.Experiments show that the proposed hybrid method is superior to the RLSM.Furthermore,compared with the standard PSO algorithm,the hybrid algorithm needs a broader model space but a smaller particle swarm and fewer iteration steps,thus reducing the prior conditions and the computational cost used in the inversion. 展开更多
关键词 particle swarm optimization least squares method hybrid algorithm adaptive regularization 1D inversion
在线阅读 下载PDF
APSO-BPNN模型在滨海环境中铁质材料腐蚀速率预测中的应用
9
作者 杨彪 肖佳 +2 位作者 欧阳晨 朱金晨 闫莹 《腐蚀与防护》 CAS CSCD 北大核心 2024年第12期72-79,共8页
针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了... 针对滨海复杂环境中铁质材料腐蚀速率预测的问题,利用自适应粒子群优化(APSO)算法对反向传播神经网络(BPNN)中的权重和阈值进行优化,构建了一种APSO-BPNN模型,以提高铁质材料在滨海环境中腐蚀速率预测的准确性。基于暴露试验数据,对比了APSO-BPNN模型与传统BPNN模型的预测效果。结果表明:APSO-BPNN模型在训练集上的决定系数R_(2)提高了23.65%,其在测试集上的R2达到0.9258,平均绝对误差(MAE)、平均绝对百分比误差(MAPE)和均方根误差(RMSE)分别下降至11.55、22.26%和14.43。 展开更多
关键词 铁质材料 自适应粒子群优化(apso)算法 反向传播神经网络(BPNN) 腐蚀速率 预测模型
在线阅读 下载PDF
Optimization of Adaptive Fuzzy Controller for Maximum Power Point Tracking Using Whale Algorithm
10
作者 Mehrdad Ahmadi Kamarposhti Hassan Shokouhandeh +1 位作者 Ilhami Colak Kei Eguchi 《Computers, Materials & Continua》 SCIE EI 2022年第12期5041-5061,共21页
The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point d... The advantage of fuzzy controllers in working with inaccurate and nonlinear inputs is that there is no need for an accurate mathematical model and fast convergence and minimal fluctuations in the maximum power point detector.The capability of online fuzzy tracking systems is maximum power,resistance to radiation and temperature changes,and no need for external sensors to measure radiation intensity and temperature.However,the most important issue is the constant changes in the amount of sunlight that cause the maximum power point to be constantly changing.The controller used in the maximum power point tracking(MPPT)circuit must be able to adapt to the new radiation conditions.Therefore,in this paper,to more accurately track the maximumpower point of the solar system and receive more electrical power at its output,an adaptive fuzzy control was proposed,the parameters of which are optimized by the whale algorithm.The studies have repeated under different irradiation conditions and the proposed controller performance has been compared with perturb and observe algorithm(P&O)method,which is a practical and high-performance method.To evaluate the performance of the proposed algorithm,the particle swarm algorithm optimized the adaptive fuzzy controller.The simulation results show that the adaptive fuzzy control system performs better than the P&O tracking system.Higher accuracy and consequently more production power at the output of the solar panel is one of the salient features of the proposed control method,which distinguishes it from other methods.On the other hand,the adaptive fuzzy controller optimized by the whale algorithm has been able to perform relatively better than the controller designed by the particle swarm algorithm,which confirms the higher accuracy of the proposed algorithm. 展开更多
关键词 Maximum power tracking photovoltaic system adaptive fuzzy control whale optimization algorithm particle swarm optimization
在线阅读 下载PDF
基于LASSO-ASAPSO-LSTM的双曲拱坝缺失位移数据恢复
11
作者 黄民水 邓志航 张健蔚 《水电能源科学》 北大核心 2024年第12期128-132,共5页
由于设备故障或无线传输过程中的数据包丢失等原因,存在数据缺失现象,导致大坝的安全评估无法得到保障。为此,提出了一种基于深度学习的双曲拱坝缺失位移数据恢复模型,采用最小绝对值收缩和选择算子法(LASSO回归算法)从建立的18个大坝... 由于设备故障或无线传输过程中的数据包丢失等原因,存在数据缺失现象,导致大坝的安全评估无法得到保障。为此,提出了一种基于深度学习的双曲拱坝缺失位移数据恢复模型,采用最小绝对值收缩和选择算子法(LASSO回归算法)从建立的18个大坝位移影响因子中筛选出影响较为显著的环境因子;基于长短期记忆神经网络(LSTM)搭建了大坝缺失数据恢复模型;采用自适应模拟退火粒子群算法(ASAPSO)对LSTM的3个超参数进行了优化;最后,依托湖南省资兴市东江大坝累计14年(2000~2014年)的监测数据,对所提方法的计算精度和计算效率进行了验证。结果表明,ASAPSO的引入使该模型的恢复精度和效率优于常规的机器学习算法,为大坝安全监测缺失数据的准确恢复提供了有力工具。 展开更多
关键词 混凝土双曲拱坝 缺失位移恢复 长短期记忆神经网络 结构健康监测 LASSO回归 自适应模拟退火粒子群算法
原文传递
基于APSO-BP神经网络的末敏弹作战效能评估方法
12
作者 唐永果 《兵器装备工程学报》 CAS CSCD 北大核心 2024年第10期100-106,共7页
针对末敏弹结构复杂、影响因素多、作战效能分析困难等问题,以末敏弹命中概率作为目标函数,建立了作战效能评估指标体系,提出了一种基于APSO-BP神经网络的作战效能评估模型,并构建了BP神经网络和PSO-BP神经网络2种对比模型,利用MATLAB... 针对末敏弹结构复杂、影响因素多、作战效能分析困难等问题,以末敏弹命中概率作为目标函数,建立了作战效能评估指标体系,提出了一种基于APSO-BP神经网络的作战效能评估模型,并构建了BP神经网络和PSO-BP神经网络2种对比模型,利用MATLAB工具对3种模型进行了仿真分析。结果显示,APSO-BP神经网络的运行耗时为0.6513 s,均方误差为0.0032,相关系数为0.9789;PSO-BP神经网络的运行耗时为2.0154 s,均方误差为0.0075,相关系数为0.9688;BP神经网络的运行耗时为14.1375 s,均方误差为0.0159,相关系数为0.8900。APSO-BP神经网络评估模型运行耗时更短,预测精度更高,对于末敏弹的作战运用具有重要的理论意义和现实价值。 展开更多
关键词 末敏弹 命中概率 效能评估 BP神经网络 粒子群算法 apso-BP算法
在线阅读 下载PDF
基于自适应等效能耗最小的燃料电池船舶能量管理策略 被引量:1
13
作者 许晓彦 曹伟 韩冰 《太阳能学报》 北大核心 2025年第3期108-115,共8页
为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储... 为实现等效能耗最小策略中等效因子的实时调整,提出一种基于自适应等效能耗最小的能量管理策略。首先,设计一种基于多种群自适应协同粒子群优化算法的最优等效因子提取方法,该方法为双层优化的结构。在上层优化中,以船舶的运行成本、储能系统最终电量和初始电量误差最小为目标函数,求解燃料电池系统和储能系统的最优运行轨迹;在下层优化中,建立等效因子的优化模型,提取最优等效因子的分布。然后,建立以系统状态参数为输入、等效因子为输出的神经网络模型。利用最优的等效因子作为训练样本,对神经网络模型进行训练。最后,将神经网络模型与等效能耗最小策略相结合,可实现等效因子的实时调整。在Matlab/Simulink中搭建船舶混合能源系统的仿真模型,对基于自适应等效能耗最小的能量管理策略进行验证。仿真结果表明,与基于恒定等效因子的等效能耗最小策略相比,储能系统的最终电量更接近初始值,氢气的总消耗量降低1.98%。 展开更多
关键词 燃料电池船 能量管理策略 神经网络 等效因子 多种群自适应协同的粒子群优化算法
原文传递
自适应混合粒子群优化DMC及其在脱硫系统中的应用
14
作者 王惠杰 李绍鑫 +1 位作者 许小刚 秦志明 《华北电力大学学报(自然科学版)》 北大核心 2025年第4期125-133,142,共10页
为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子... 为提高脱硫系统动态矩阵算法(DMC)的控制精度,使控制器参数能够自动寻优,提出采用自适应混合粒子群算法优化DMC中的参数。首先以粒子群算法为基础,加入自适应权重和局部因子构建自适应混合粒子群,并通过Griewank函数验证自适应混合粒子群的寻优性能;接着搭建DMC模型,使用自适应混合粒子群算法对DMC的控制时域、优化时域等参数进行迭代寻优,最后以浆液密度和机组负荷作为干扰因素对脱硫系统进行控制仿真及抗干扰测试。以某电厂600 MW机组配置脱硫塔浆液pH值为研究对象,将电厂实际运行数据作为输入检验控制系统特性。仿真结果表明:与传统PID控制以及Smith预估控制相比,自适应混合粒子群优化DMC控制下浆液pH值上升时间更短,控制更集中,波动范围小,在设定值±0.02范围内覆盖率达到99.41%。 展开更多
关键词 自适应混合粒子群算法 动态矩阵 PH值 控制优化
在线阅读 下载PDF
基于敏感度分析的球面磁悬浮飞轮电机多目标分层优化设计
15
作者 朱志莹 焦金帅 +2 位作者 徐政 孟凡浩 安聪 《电气工程学报》 北大核心 2025年第2期130-139,共10页
针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参... 针对球面磁悬浮飞轮电机的参数优化设计问题,提出一种基于参数敏感度分析的多目标分层优化设计方案。在介绍电机运行机理及电磁分析的基础上,以转矩、悬浮力为优化目标,通过对电机结构参数进行敏感度分析,利用构建敏感度方程,将电机参数划分为主敏感度参数和次敏感度参数,针对主敏感度参数和次敏感度参数,依次分别采用支持向量机进行非参数建模,并通过惯性权重自适应改变的混沌粒子群算法进行寻优;最后,通过有限元仿真验证了所提算法的有效性,结果表明优化后电机转矩提高6%,悬浮力提高27.99%。 展开更多
关键词 球面磁悬浮飞轮电机 参数敏感度分析 分层优化 支持向量机 惯性权重自适应改变的混沌粒子群算法
在线阅读 下载PDF
矿用自卸车座椅空气弹簧悬架参数辨识与优化
16
作者 刘红华 阳洁颖 刘翠雅 《机械设计与制造》 北大核心 2025年第5期217-222,228,共7页
矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子... 矿用自卸车的座椅空气弹簧悬架系统缓震效果直接影响乘坐舒适性。这里提出一种运用自适应混沌粒子群优化算法来解决针对矿用自卸车座椅空气弹簧悬挂系统的非线性刚度和阻尼参数的识别处理。借助将混沌引入粒子的运动过程中,与标准粒子群算法相比表现出不同,使粒子群在稳定状态与混沌状态之间交替向着最优点收敛,同时根据粒子运行状态动态调整惯性权重。提高了算法的适应性,明显提升收敛速度并提高了精度,有效避免了局部最优得出,进行整车试验验证了该方法的有效性。结果表明,导致乘坐舒适性下降的主要原因是由于原系统中的刚度和阻尼数值不匹配,因此将垂直方向加速度均方根值设为目标,对空气弹簧悬架的阻尼参数和非线性刚度通过遗传算法来进行优化。在优化后,目标值下降了30.4%,显著提高了乘坐舒适性。 展开更多
关键词 非线性 空气弹簧悬架 自适应混沌粒子群优化算法 辨识 优化
在线阅读 下载PDF
基于改进粒子群优化算法的柔性车间作业调度研究
17
作者 屈新怀 万之栩 +1 位作者 丁必荣 孟冠军 《机电工程技术》 2025年第10期17-21,99,共6页
针对柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),以最小化最大完工时间为最终目标,基于标准粒子群优化算法,提出了一个改进的粒子群优化算法,为了解决FJSP问题中的收敛性缓慢、稳定性低、易陷入局部最优等问题,... 针对柔性作业车间调度问题(Flexible Job Shop Scheduling Problem,FJSP),以最小化最大完工时间为最终目标,基于标准粒子群优化算法,提出了一个改进的粒子群优化算法,为了解决FJSP问题中的收敛性缓慢、稳定性低、易陷入局部最优等问题,引入了自适应惯性权重的方法,使粒子在迭代过程中更好地搜索最优解。此外,还加入了交叉搜索步骤,以增加算法的多样性和全局搜索能力,促使粒子跳出局部最优解,探索全局最优解。通过与标准粒子群优化算法和自适应遗传算法,改进PSO算法在不同实例上展现出优越的性能,特别是在处理小规模问题实例时,性能优势更为明显。实验结果表明,改进的粒子群优化算法在最小化最大完工时间方面表现更优,且在算法的收敛速度和寻优能力上也具有明显优势。证明了改进PSO算法是解决FJSP问题的一个有效和可靠的方法。该研究对于提高柔性作业车间调度问题的解决质量和加工调度效率具有重要意义,对智能制造业具有实际应用价值。 展开更多
关键词 车间作业调度 柔性车间 粒子群优化算法 自适应惯性权重 交叉搜索
在线阅读 下载PDF
SA-APSO算法及其在变压器油中局部放电超声定位中的应用 被引量:11
18
作者 徐艳春 王泉 +2 位作者 李振兴 李振华 吕密 《高压电器》 CAS CSCD 北大核心 2018年第12期143-149,共7页
针对基本粒子群算法(particle swarm optimization algorithm,PSO)局部寻优能力差及易早熟收敛的情况,提出一种融入模拟退火思路的自适应粒子群混合算法(simulated annealing-adaptive particle swarmoptimization algorithm,SA-APSO),... 针对基本粒子群算法(particle swarm optimization algorithm,PSO)局部寻优能力差及易早熟收敛的情况,提出一种融入模拟退火思路的自适应粒子群混合算法(simulated annealing-adaptive particle swarmoptimization algorithm,SA-APSO),在惯性权重变化-自适应粒子群基础上融入退火思想,以一定的随机概率接收最优值,能有效提升全局寻优能力并克服早熟收敛现象。利用测试函数进行的仿真结果表明SA-APSO算法在结果精度及稳定度上明显优于基本PSO。并将其应用于变压器油中局部放电的定位计算,将结果与基本PSO及自适应粒子群进行比较,结果表明基于SA-APSO的变压器油中局部放电超声定位方法能够实现全局精确定位,且结果稳定,综合误差小于3.7 mm。 展开更多
关键词 粒子群算法 SA—apso算法 变压器 局部放电 超声波 定位
在线阅读 下载PDF
基于相似日和CAPSO-SNN的光伏发电功率预测 被引量:33
19
作者 陈通 孙国强 +4 位作者 卫志农 臧海祥 孙永辉 Kwok W Cheung 李慧杰 《电力自动化设备》 EI CSCD 北大核心 2017年第3期66-71,共6页
针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强... 针对光伏发电功率预测精度不高的问题,提出一种基于相似日和云自适应粒子群优化(CAPSO)算法优化Spiking神经网络(SNN)的发电功率预测模型。考虑到季节类型、天气类型和气象等主要影响因素,提出以综合相似度指标进行相似日选取;以SNN强大的计算能力和其善于处理时间序列问题的特点为基础,结合CAPSO算法搜索的随机性和稳定性优化SNN的多突触连接权值,减少对权值的约束,提高算法的收敛精度。根据某光伏电站的实测功率数据对所提模型进行测试和评估,结果表明,该模型比传统预测模型具有更高的预测精度和更好的适用性。 展开更多
关键词 光伏发电 功率预测 SPIKING神经网络 云自适应粒子群优化算法 相似日选取
在线阅读 下载PDF
考虑充电负荷时空分布特性的EV充电站规划 被引量:1
20
作者 左逸凡 李伟豪 杨伟 《电测与仪表》 北大核心 2025年第3期1-9,共9页
针对电动汽车(electric vehicle,EV)充电站选址定容问题,提出了一种考虑充电负荷时空分布特性的EV充电站规划模型。首先,通过动态Floyd算法结合拉丁超立方抽样法(latin hypercube sampling,LHS)建立了EV的时空充电负荷预测模型。其次,... 针对电动汽车(electric vehicle,EV)充电站选址定容问题,提出了一种考虑充电负荷时空分布特性的EV充电站规划模型。首先,通过动态Floyd算法结合拉丁超立方抽样法(latin hypercube sampling,LHS)建立了EV的时空充电负荷预测模型。其次,从用户满意度的角度出发,以EV充电站和用户双方的成本最小为目标,采用Voronoi图与自适应模拟退火粒子群优化(adaptive simulated annealing particle swarm optimiza-tion,ASAPSO)算法确定充电站的服务范围、最优数量/位置以及各站点快充/慢充充电桩配置数目,建立了EV充电站选址定容模型。最后,通过对北方某市的部分城区进行规划,验证了模型的有效性。 展开更多
关键词 EV充电站 时空充电负荷预测 选址定容 自适应模拟退火粒子群优化算法
在线阅读 下载PDF
上一页 1 2 36 下一页 到第
使用帮助 返回顶部