期刊文献+
共找到1,417篇文章
< 1 2 71 >
每页显示 20 50 100
A sparse moving array imaging approach for FMCW radar with dualaperture adaptive azimuth ambiguity suppression and adaptive QR decomposition
1
作者 Yanwen Han Xiaopeng Yan +3 位作者 Jiawei Wang Sheng Zheng Hongrui Yu Jian Dai 《Defence Technology(防务技术)》 2025年第8期254-271,共18页
Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the phy... Range-azimuth imaging of ground targets via frequency-modulated continuous wave(FMCW)radar is crucial for effective target detection.However,when the pitch of the moving array constructed during motion exceeds the physical array aperture,azimuth ambiguity occurs,making range-azimuth imaging on a moving platform challenging.To address this issue,we theoretically analyze azimuth ambiguity generation in sparse motion arrays and propose a dual-aperture adaptive processing(DAAP)method for suppressing azimuth ambiguity.This method combines spatial multiple-input multiple-output(MIMO)arrays with sparse motion arrays to achieve high-resolution range-azimuth imaging.In addition,an adaptive QR decomposition denoising method for sparse array signals based on iterative low-rank matrix approximation(LRMA)and regularized QR is proposed to preprocess sparse motion array signals.Simulations and experiments show that on a two-transmitter-four-receiver array,the signal-to-noise ratio(SNR)of the sparse motion array signal after noise suppression via adaptive QR decomposition can exceed 0 dB,and the azimuth ambiguity signal ratio(AASR)can be reduced to below-20 dB. 展开更多
关键词 Frequency modulated continuous wave (FMCW) Sparse motion array Range-azimuth imaging Azimuth ambiguity suppression DAAP adaptive QR decomposition
在线阅读 下载PDF
Adaptive Fourier Decomposition Based Time-Frequency Analysis 被引量:3
2
作者 Li-Ming Zhang 《Journal of Electronic Science and Technology》 2014年第2期201-205,共5页
The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. Thi... The attempt to represent a signal simultaneously in time and frequency domains is full of challenges. The recently proposed adaptive Fourier decomposition (AFD) offers a practical approach to solve this problem. This paper presents the principles of the AFD based time-frequency analysis in three aspects: instantaneous frequency analysis, frequency spectrum analysis, and the spectrogram analysis. An experiment is conducted and compared with the Fourier transform in convergence rate and short-time Fourier transform in time-frequency distribution. The proposed approach performs better than both the Fourier transform and short-time Fourier transform. 展开更多
关键词 adaptive Fourier decomposition Fourier transform instantaneous frequency time frequency analysis
在线阅读 下载PDF
A novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise,minimum mean square variance criterion and least mean square adaptive filter 被引量:9
3
作者 Yu-xing Li Long Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2020年第3期543-554,共12页
Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity ... Underwater acoustic signal processing is one of the research hotspots in underwater acoustics.Noise reduction of underwater acoustic signals is the key to underwater acoustic signal processing.Owing to the complexity of marine environment and the particularity of underwater acoustic channel,noise reduction of underwater acoustic signals has always been a difficult challenge in the field of underwater acoustic signal processing.In order to solve the dilemma,we proposed a novel noise reduction technique for underwater acoustic signals based on complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN),minimum mean square variance criterion(MMSVC) and least mean square adaptive filter(LMSAF).This noise reduction technique,named CEEMDAN-MMSVC-LMSAF,has three main advantages:(i) as an improved algorithm of empirical mode decomposition(EMD) and ensemble EMD(EEMD),CEEMDAN can better suppress mode mixing,and can avoid selecting the number of decomposition in variational mode decomposition(VMD);(ii) MMSVC can identify noisy intrinsic mode function(IMF),and can avoid selecting thresholds of different permutation entropies;(iii) for noise reduction of noisy IMFs,LMSAF overcomes the selection of deco mposition number and basis function for wavelet noise reduction.Firstly,CEEMDAN decomposes the original signal into IMFs,which can be divided into noisy IMFs and real IMFs.Then,MMSVC and LMSAF are used to detect identify noisy IMFs and remove noise components from noisy IMFs.Finally,both denoised noisy IMFs and real IMFs are reconstructed and the final denoised signal is obtained.Compared with other noise reduction techniques,the validity of CEEMDAN-MMSVC-LMSAF can be proved by the analysis of simulation signals and real underwater acoustic signals,which has the better noise reduction effect and has practical application value.CEEMDAN-MMSVC-LMSAF also provides a reliable basis for the detection,feature extraction,classification and recognition of underwater acoustic signals. 展开更多
关键词 Underwater acoustic signal Noise reduction Empirical mode decomposition(EMD) Ensemble EMD(EEMD) Complete EEMD with adaptive noise(CEEMDAN) Minimum mean square variance criterion(MMSVC) Least mean square adaptive filter(LMSAF) Ship-radiated noise
在线阅读 下载PDF
Quantitative detection of locomotive wheel polygonization under non-stationary conditions by adaptive chirp mode decomposition 被引量:4
4
作者 Shiqian Chen Kaiyun Wang +3 位作者 Ziwei Zhou Yunfan Yang Zaigang Chen Wanming Zhai 《Railway Engineering Science》 2022年第2期129-147,共19页
Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and b... Wheel polygonal wear is a common and severe defect,which seriously threatens the running safety and reliability of a railway vehicle especially a locomotive.Due to non-stationary running conditions(e.g.,traction and braking)of the locomotive,the passing frequencies of a polygonal wheel will exhibit time-varying behaviors,which makes it too difficult to effectively detect the wheel defect.Moreover,most existing methods only achieve qualitative fault diagnosis and they cannot accurately identify defect levels.To address these issues,this paper reports a novel quantitative method for fault detection of wheel polygonization under non-stationary conditions based on a recently proposed adaptive chirp mode decomposition(ACMD)approach.Firstly,a coarse-to-fine method based on the time–frequency ridge detection and ACMD is developed to accurately estimate a time-varying gear meshing frequency and thus obtain a wheel rotating frequency from a vibration acceleration signal of a motor.After the rotating frequency is obtained,signal resampling and order analysis techniques are applied to an acceleration signal of an axle box to identify harmonic orders related to polygonal wear.Finally,the ACMD is combined with an inertial algorithm to estimate polygonal wear amplitudes.Not only a dynamics simulation but a field test was carried out to show that the proposed method can effectively detect both harmonic orders and their amplitudes of the wheel polygonization under non-stationary conditions. 展开更多
关键词 Wheel polygonal wear Fault diagnosis Nonstationary condition adaptive mode decomposition Time–frequency analysis
在线阅读 下载PDF
Study on the Improvement of the Application of Complete Ensemble Empirical Mode Decomposition with Adaptive Noise in Hydrology Based on RBFNN Data Extension Technology 被引量:3
5
作者 Jinping Zhang Youlai Jin +2 位作者 Bin Sun Yuping Han Yang Hong 《Computer Modeling in Engineering & Sciences》 SCIE EI 2021年第2期755-770,共16页
The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decompos... The complex nonlinear and non-stationary features exhibited in hydrologic sequences make hydrological analysis and forecasting difficult.Currently,some hydrologists employ the complete ensemble empirical mode decomposition with adaptive noise(CEEMDAN)method,a new time-frequency analysis method based on the empirical mode decomposition(EMD)algorithm,to decompose non-stationary raw data in order to obtain relatively stationary components for further study.However,the endpoint effect in CEEMDAN is often neglected,which can lead to decomposition errors that reduce the accuracy of the research results.In this study,we processed an original runoff sequence using the radial basis function neural network(RBFNN)technique to obtain the extension sequence before utilizing CEEMDAN decomposition.Then,we compared the decomposition results of the original sequence,RBFNN extension sequence,and standard sequence to investigate the influence of the endpoint effect and RBFNN extension on the CEEMDAN method.The results indicated that the RBFNN extension technique effectively reduced the error of medium and low frequency components caused by the endpoint effect.At both ends of the components,the extension sequence more accurately reflected the true fluctuation characteristics and variation trends.These advances are of great significance to the subsequent study of hydrology.Therefore,the CEEMDAN method,combined with an appropriate extension of the original runoff series,can more precisely determine multi-time scale characteristics,and provide a credible basis for the analysis of hydrologic time series and hydrological forecasting. 展开更多
关键词 Complete ensemble empirical mode decomposition with adaptive noise data extension radial basis function neural network multi-time scales RUNOFF
在线阅读 下载PDF
Adaptive image decomposition method based on credible data fitting with local total variation 被引量:1
6
作者 CHEN Ya GUO Qiang +2 位作者 ZHOU Yuanfeng LI Xuemei ZHANG Caiming 《Computer Aided Drafting,Design and Manufacturing》 2012年第4期11-15,共5页
In this paper we present a novel image decomposition method via credible data fitting with local total variation filter. The oscillation rate is used to measure the image complexity and characteristics. The filter par... In this paper we present a novel image decomposition method via credible data fitting with local total variation filter. The oscillation rate is used to measure the image complexity and characteristics. The filter parameter can be determined by a fitting curve which is reconstructed by oscillation rate. In addition, the approximate Gaussian algorithm and integral image are used to reduce the algorithm computation and the sensitivity of the filter window selection. Experiments show the new method is better than the exist- ing methods. 展开更多
关键词 image decomposition adaptive filter integral image Gaussian filter
在线阅读 下载PDF
A Remark on Adaptive Decomposition for Nonlinear Time-frequency Analysis
7
作者 LIU XU WANG HAI-NA Ma Fu-ming 《Communications in Mathematical Research》 CSCD 2016年第4期319-324,共6页
In recent study the bank of real square integrable functions that have nonlinear phases and admit a well-behaved Hilbert transform has been constructed for adaptive representation of nonlinear signals. We first s... In recent study the bank of real square integrable functions that have nonlinear phases and admit a well-behaved Hilbert transform has been constructed for adaptive representation of nonlinear signals. We first show in this paper that the available basic functions are adequate for establishing an ideal adaptive decomposition algorithm. However, we also point out that the best approximation algorithm, which is a common strategy in decomposing a function into a sum of functions in a prescribed class of basis functions, should not be considered as a candidate for the ideal algorithm. 展开更多
关键词 Hilbert transform empirical mode decomposition adaptive decompo-sition algorithm best approximation
在线阅读 下载PDF
Adaptive Lossy Image Compression Based on Singular Value Decomposition
8
作者 Marcos Roberto e Souza Helio Pedrini 《Journal of Signal and Information Processing》 2019年第3期59-72,共14页
Image compression techniques aim to reduce redundant information in order to allow data storage and transmission in an efficient way. In this work, we propose and analyze a lossy image compression method based on the ... Image compression techniques aim to reduce redundant information in order to allow data storage and transmission in an efficient way. In this work, we propose and analyze a lossy image compression method based on the singular value decomposition using an optimal choice of eigenvalues and an adaptive mechanism for block partitioning. Experiments are conducted on several images to demonstrate the effectiveness of the proposed compression method in comparison with the direct application of the singular value decomposition. 展开更多
关键词 IMAGE Compression adaptive decomposition LOSSY Compression
在线阅读 下载PDF
Adaptive Multi-Step Evaluation Design With Stability Guarantee for Discrete-Time Optimal Learning Control 被引量:7
9
作者 Ding Wang Jiangyu Wang +2 位作者 Mingming Zhao Peng Xin Junfei Qiao 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2023年第9期1797-1809,共13页
This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge t... This paper is concerned with a novel integrated multi-step heuristic dynamic programming(MsHDP)algorithm for solving optimal control problems.It is shown that,initialized by the zero cost function,MsHDP can converge to the optimal solution of the Hamilton-Jacobi-Bellman(HJB)equation.Then,the stability of the system is analyzed using control policies generated by MsHDP.Also,a general stability criterion is designed to determine the admissibility of the current control policy.That is,the criterion is applicable not only to traditional value iteration and policy iteration but also to MsHDP.Further,based on the convergence and the stability criterion,the integrated MsHDP algorithm using immature control policies is developed to accelerate learning efficiency greatly.Besides,actor-critic is utilized to implement the integrated MsHDP scheme,where neural networks are used to evaluate and improve the iterative policy as the parameter architecture.Finally,two simulation examples are given to demonstrate that the learning effectiveness of the integrated MsHDP scheme surpasses those of other fixed or integrated methods. 展开更多
关键词 adaptive critic artificial neural networks Hamilton-Jacobi-Bellman(HJB)equation multi-step heuristic dynamic programming multi-step reinforcement learning optimal control
在线阅读 下载PDF
A hybrid decomposition-boosting model for short-term multi-step solar radiation forecasting with NARX neural network 被引量:4
10
作者 HUANG Jia-hao LIU Hui 《Journal of Central South University》 SCIE EI CAS CSCD 2021年第2期507-526,共20页
Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation c... Due to global energy depletion,solar energy technology has been widely used in the world.The output power of the solar energy systems is affected by solar radiation.Accurate short-term forecasting of solar radiation can ensure the safety of photovoltaic grids and improve the utilization efficiency of the solar energy systems.In the study,a new decomposition-boosting model using artificial intelligence is proposed to realize the solar radiation multi-step prediction.The proposed model includes four parts:signal decomposition(EWT),neural network(NARX),Adaboost and ARIMA.Three real solar radiation datasets from Changde,China were used to validate the efficiency of the proposed model.To verify the robustness of the multi-step prediction model,this experiment compared nine models and made 1,3,and 5 steps ahead predictions for the time series.It is verified that the proposed model has the best performance among all models. 展开更多
关键词 solar radiation forecasting multi-step forecasting smart hybrid model signal decomposition
在线阅读 下载PDF
Morphological design and tunable mechanical properties of 3D spinodal membrane structures:adaptive coarse-grained modelling
11
作者 Yujie Xiang Jie Tian +2 位作者 Keke Tang Xianqiao Wang Zheng Zhong 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2024年第8期166-178,共13页
The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to re... The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to regular structures,due to their relatively easy parameterization and controllability.Efficiently predicting the mechanical properties of 3D spinodal membrane structure remains a challenge,given that the features of the membrane necessitate adaptive mesh through the modelling process.This paper proposes an integrated approach for morphological design with customized mechanical properties,incorporating the spinodal decomposition method and adaptive coarse-grained modeling,which can produce various morphologies such as lamellar,columnar,and cubic structures.Pseudo-periodic parameterβand orientational parameterΘ(θ_(1),θ_(2),θ_(3))are identified to achieve the optimal goal of anisotropic mechanical properties.Parametric analysis is conducted to reveal the correlation between the customized spinodal structure and mechanical performance.Our work provides an integrated approach for morphological variation and tuning mechanical properties,paving the way for the design and development of customized functional materials similar to 3D spinodal membrane structures. 展开更多
关键词 Morphological design Spinodal decomposition adaptive coarse-grained modeling Mechanical properties Parametric design
原文传递
Adaptation of microbial communities to multiple stressors associated with litter decomposition of Pterocarya stenoptera 被引量:1
12
作者 Gaozhong Pu Jingjing Tong +4 位作者 Aimeng Su Xu Ma Jingjing Du Yanna Lv Xingjun Tian 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2014年第5期1001-1013,共13页
To understand the further impacts of multiple stressors in freshwater, we investigated the effects of heavy metal (HM, Cu and Zn) and nutrient enrichments (nitrogen and phosphorus, NP) on microbial decomposition o... To understand the further impacts of multiple stressors in freshwater, we investigated the effects of heavy metal (HM, Cu and Zn) and nutrient enrichments (nitrogen and phosphorus, NP) on microbial decomposition of Pterocarya stenoptera litter and the associated extracellular enzyme activities and microbial biomass with microcosms. Results showed that the decomposition rates were slower in the polluted stream waters than those in the unpolluted ones, which corresponded to lower microbial biomass and integrated enzyme activities of cellulose and ^-glucosidase. The decomposition rates were accelerated at low HM level, which was associated with the stimulated enzyme activities of hydrolytic enzymes or was stimulated by both NP levels in polluted stream waters. In particular, the hydrolase enzyme activities of microbial communities in polluted stream waters were stimulated by low HM level, suggesting that low HM level-stimulated litter decomposition may be due to the increased enzymatic activities. When microbial communities were exposed to HM and NP simultaneously, the inhibitory effect (in unpolluted stream waters) or the stimulated effect (in polluted stream waters) of low HM concentration was enhanced and attenuated, respectively, which suggests that the NP antagonistic effect against HM toxicity on litter decomposition may contribute to the litter- associated extracellular enzyme activities. These results suggest that the may have antagonistic effects on stream ecosystem functioning. of HM and NP 展开更多
关键词 leaf decomposition heavy metal and nutrient mixture extracellular enzyme activity community adaptation microbial community
原文传递
Adaptive multi-step piecewise interpolation reproducing kernel method for solving the nonlinear time-fractional partial differential equation arising from financial economics 被引量:1
13
作者 杜明婧 孙宝军 凯歌 《Chinese Physics B》 SCIE EI CAS CSCD 2023年第3期53-57,共5页
This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)metho... This paper is aimed at solving the nonlinear time-fractional partial differential equation with two small parameters arising from option pricing model in financial economics.The traditional reproducing kernel(RK)method which deals with this problem is very troublesome.This paper proposes a new method by adaptive multi-step piecewise interpolation reproducing kernel(AMPIRK)method for the first time.This method has three obvious advantages which are as follows.Firstly,the piecewise number is reduced.Secondly,the calculation accuracy is improved.Finally,the waste time caused by too many fragments is avoided.Then four numerical examples show that this new method has a higher precision and it is a more timesaving numerical method than the others.The research in this paper provides a powerful mathematical tool for solving time-fractional option pricing model which will play an important role in financial economics. 展开更多
关键词 time-fractional partial differential equation adaptive multi-step reproducing kernel method method numerical solution
原文传递
Research on Modulation Signal Denoising Method Based on Improved Variational Mode Decomposition
14
作者 Canyu Mo Qianqiang Lin +1 位作者 Yuanduo Niu Haoran Du 《Journal of Electronic Research and Application》 2024年第1期7-15,共9页
In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decompositi... In order to further analyze the micro-motion modulation signals generated by rotating components and extract micro-motion features,a modulation signal denoising algorithm based on improved variational mode decomposition(VMD)is proposed.To improve the time-frequency performance,this method decomposes the data into narrowband signals and analyzes the internal energy and frequency variations within the signal.Genetic algorithms are used to adaptively optimize the mode number and bandwidth control parameters in the process of VMD.This approach aims to obtain the optimal parameter combination and perform mode decomposition on the micro-motion modulation signal.The optimal mode number and quadratic penalty factor for VMD are determined.Based on the optimal values of the mode number and quadratic penalty factor,the original signal is decomposed using VMD,resulting in optimal mode number intrinsic mode function(IMF)components.The effective modes are then reconstructed with the denoised modes,achieving signal denoising.Through experimental data verification,the proposed algorithm demonstrates effective denoising of modulation signals.In simulation data validation,the algorithm achieves the highest signal-to-noise ratio(SNR)and exhibits the best performance. 展开更多
关键词 Micro-motion modulation signal Variational mode decomposition Genetic algorithm adaptive optimization
在线阅读 下载PDF
A Novel Matching Pursuit Modeling Strategy Based on Adaptive Fourier Decomposition Theory for Predicting Antigenic Variation of Influenza A (H1N1)
15
作者 Wei Qu Ruihan Chen +6 位作者 Yang Wang Zhiqi Zeng Cheng Gao Weiqi Pan Tao Qian Chitin Hon Zifeng Yang 《China CDC weekly》 2025年第14期473-481,I0004,I0005,共11页
Introduction:Seasonal influenza poses a significant public health burden,causing substantial morbidity and mortality worldwide each year.In this context,timely and accurate vaccine strain selection is critical to miti... Introduction:Seasonal influenza poses a significant public health burden,causing substantial morbidity and mortality worldwide each year.In this context,timely and accurate vaccine strain selection is critical to mitigating the impact of influenza outbreaks.This article aims to develop an adaptive,universal,and convenient method for predicting antigenic variation in influenza A(H1N1),thereby providing a scientific basis to enhance the biannual influenza vaccine selection process.Methods:The study integrates adaptive Fourier decomposition(AFD)theory with multiple techniques—including matching pursuit,the maximum selection principle,and bootstrapping—to investigate the complex nonlinear interactions between amino acid substitutions in hemagglutinin(HA)proteins(the primary antigenic protein of influenza virus)and their impact on antigenic changes.Results:Through comparative analysis with classical methods such as Lasso,Ridge,and random forest,we demonstrate that the AFD-type method offers superior accuracy and computational efficiency in identifying antigenic change-associated amino acid substitutions,thus eliminating the need for timeconsuming and expensive experimental procedures.AAW Conclusion:In summary,AFD-based methods represent effective mathematical models for predicting antigenic variations based on HA sequences and serological data,functioning as ensemble algorithms with guaranteed convergence.Following the sequence of indicators specified in I,we perform a series of operations on A_(1),including feature extension,extraction,and rearrangement,to generate a new input dataset for the prediction step.With this newly prepared input,we can compute the predicted results as. 展开更多
关键词 predicting antigenic variation adaptive Fourier decomposition public health burden amino acid substitution vaccine strain selection influenza H N antigenic variation matching pursuit
原文传递
The optimal fractional Gabor transform based on the adaptive window function and its application 被引量:4
16
作者 陈颖频 彭真明 +2 位作者 贺振华 田琳 张洞君 《Applied Geophysics》 SCIE CSCD 2013年第3期305-313,358,共10页
We designed the window function of the optimal Gabor transform based on the time-frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractiona... We designed the window function of the optimal Gabor transform based on the time-frequency rotation property of the fractional Fourier transform. Thus, we obtained the adaptive optimal Gabor transform in the fractional domain and improved the time-frequency concentration of the Gabor transform. The algorithm first searches for the optimal rotation factor, then performs the p-th FrFT of the signal and, finally, performs time and frequency analysis of the FrFT result. Finally, the algorithm rotates the plane in the fractional domain back to the normal time-frequency plane. This promotes the application of FrFT in the field of high-resolution reservoir prediction. Additionally, we proposed an adaptive search method for the optimal rotation factor using the Parseval principle in the fractional domain, which simplifies the algorithm. We carried out spectrum decomposition of the seismic signal, which showed that the instantaneous frequency slices obtained by the proposed algorithm are superior to the ones obtained by the traditional Gabor transform. The adaptive time frequency analysis is of great significance to seismic signal processing. 展开更多
关键词 FrFT generalized time bandwidth product optimal rotation factor search adaptive optimal Gabor transform spectral decomposition seismic signals
在线阅读 下载PDF
指数跟踪投资组合与多信息下指数可预测性——基于Adaptive LASSO和ARIMA-ANN方法 被引量:9
17
作者 刘睿智 周勇 《系统工程》 CSSCI CSCD 北大核心 2015年第4期1-7,共7页
我国证券市场的可预测性与有效性一直是学术界和业界关注的问题。本文使用自适应套索(adaptive LASSO)方法构造稀疏的投资组合,即选择部分股票构造组合,使得该组合对指数的复制效果良好。此外,在组合具有相当代表性的前提下,其应对指数... 我国证券市场的可预测性与有效性一直是学术界和业界关注的问题。本文使用自适应套索(adaptive LASSO)方法构造稀疏的投资组合,即选择部分股票构造组合,使得该组合对指数的复制效果良好。此外,在组合具有相当代表性的前提下,其应对指数的未来趋势具有一定的预测性。考虑包含开盘价、收盘价、最高价、最低价在内多信息ARIMA-ANN预测,并对沪深300指数进行实证分析,结果表明,该组合的历史信息包含相当意义上的指数收益率的信息,即股票指数在一定程度上可预测,同时对我国股票市场有效性产生质疑。 展开更多
关键词 可预测性 自适应套索方法 指数分解预测 人工神经网络 有效市场
原文传递
Rolling Bearing Feature Frequency Extraction using Extreme Average Envelope Decomposition 被引量:4
18
作者 SHI Kunju LIU Shulin +1 位作者 JIANG Chao ZHANG Hongli 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期1029-1036,共8页
The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the ... The vibration signal contains a wealth of sensitive information which reflects the running status of the equipment. It is one of the most important steps for precise diagnosis to decompose the signal and extracts the effective information properly. The traditional classical adaptive signal decomposition method, such as EMD, exists the problems of mode mixing, low decomposition accuracy etc. Aiming at those problems, EAED(extreme average envelope decomposition) method is presented based on EMD. EAED method has three advantages. Firstly, it is completed through midpoint envelopment method rather than using maximum and minimum envelopment respectively as used in EMD. Therefore, the average variability of the signal can be described accurately. Secondly, in order to reduce the envelope errors during the signal decomposition, replacing two envelopes with one envelope strategy is presented. Thirdly, the similar triangle principle is utilized to calculate the time of extreme average points accurately. Thus, the influence of sampling frequency on the calculation results can be significantly reduced. Experimental results show that EAED could separate out single frequency components from a complex signal gradually. EAED could not only isolate three kinds of typical bearing fault characteristic of vibration frequency components but also has fewer decomposition layers. EAED replaces quadratic enveloping to an envelope which ensuring to isolate the fault characteristic frequency under the condition of less decomposition layers. Therefore, the precision of signal decomposition is improved. 展开更多
关键词 adaptive signal decomposition extreme average envelope decomposition EMD fault diagnosis
在线阅读 下载PDF
Double adaptive selection strategy for MOEA/D 被引量:2
19
作者 GAO Jiale XING Qinghua +1 位作者 FAN Chengli LIANG Zhibing 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2019年第1期132-143,共12页
Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named... Since most parameter control methods are based on prior knowledge, it is difficult for them to solve various problems.In this paper, an adaptive selection method used for operators and parameters is proposed and named double adaptive selection(DAS) strategy. Firstly, some experiments about the operator search ability are given and the performance of operators with different donate vectors is analyzed. Then, DAS is presented by inducing the upper confidence bound strategy, which chooses suitable combination of operators and donates sets to optimize solutions without prior knowledge. Finally, the DAS is used under the framework of the multi-objective evolutionary algorithm based on decomposition, and the multi-objective evolutionary algorithm based on DAS(MOEA/D-DAS) is compared to state-of-the-art MOEAs. Simulation results validate that the MOEA/D-DAS could select the suitable combination of operators and donate sets to optimize problems and the proposed algorithm has better convergence and distribution. 展开更多
关键词 MULTI-OBJECTIVE optimization adaptive OPERATOR SELECTION adaptive NEIGHBOR SELECTION decomposition.
在线阅读 下载PDF
Parametric adaptive time-frequency representation based on time-sheared Gabor atoms 被引量:2
20
作者 Ma Shiwei Zhu Xiaojin Chen Guanghua Wang Jian Cao Jialin 《Journal of Systems Engineering and Electronics》 SCIE EI CSCD 2007年第1期1-7,共7页
A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization ... A localized parametric time-sheared Gabor atom is derived by convolving a linear frequency modulated factor, modulating in frequency and translating in time to a dilated Gaussian function, which is the generalization of Gabor atom and is more delicate for matching most of the signals encountered in practice, especially for those having frequency dispersion characteristics. The time-frequency distribution of this atom concentrates in its time center and frequency center along energy curve, with the curve being oblique to a certain extent along the time axis. A novel parametric adaptive time-frequency distribution based on a set of the derived atoms is then proposed using a adaptive signal subspace decomposition method in frequency domain, which is non-negative time-frequency energy distribution and free of cross-term interference for multicomponent signals. The results of numerical simulation manifest the effectiveness of the approach in time-frequency representation and signal de-noising processing. 展开更多
关键词 Time-frequency analysis Gabor atom Time-shear adaptive signal decomposition Time-frequency distribution.
在线阅读 下载PDF
上一页 1 2 71 下一页 到第
使用帮助 返回顶部