In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support ve...In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly, the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During this process, a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted, which can not only reduce computational complexity but also enhance generalization performance. Secondly, with the input variables determined by the PS algorithm, a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accuracy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/ turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope. Under the condition of single or multiple engine components being degraded, many simulation experiments are carried out, and the simulation results show the effectiveness and validity of the proposed adaptive modeling method.展开更多
Nowadays,there has been an increasing focus on integrated flight propulsion control and the inlet-exhaust design for the aero-propulsion system.Traditional component-level models are inadequate due to installed perfor...Nowadays,there has been an increasing focus on integrated flight propulsion control and the inlet-exhaust design for the aero-propulsion system.Traditional component-level models are inadequate due to installed performance deviations and mismatches between the real engine and the model,failing to meet the accuracy requirements of supersonic conditions.This paper establishes a quasi-one-dimensional model for the inlet-exhaust system and conducts experimental calibration.Additionally,a mechanism-data fusion adaptive modeling scheme using an Extreme Learning Machine based on the Salp Swarm Algorithm(SSA-ELM)is proposed.The study reveals the inlet model’s efficacy in reflecting installed performance,flow matching,and mitigating pressure distortion,while the nozzle model accurately predicts flow coefficients and thrust coefficients,and identifies various operational states.The model’s output closely aligns with typical experimental parameters.By combining offline optimization and online adaptive correction,the mechanismdata fusion adaptive model substantially reduces output errors during regular flights and varying levels of degradation,and effectively handles gradual degradation within a single flight cycle.Notably,the mechanism-data fusion adaptive model holistically addresses total pressure errors within the inlet-exhaust system and normal shock location correction.This approach significantly curbs performance deviations in supersonic conditions.For example,at Ma=2.0,the system error impressively drops from 34.17%to merely 6.54%,while errors for other flight conditions consistently stay below the 2.95%threshold.These findings underscore the clear superiority of the proposed method.展开更多
Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction me...Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.展开更多
Crowd evacuation in different situations is an important topic in the research field of safety. This paper presents a hybrid model for heterogeneous pedestrian evacuation simulation. Our adaptive agent-based model (AB...Crowd evacuation in different situations is an important topic in the research field of safety. This paper presents a hybrid model for heterogeneous pedestrian evacuation simulation. Our adaptive agent-based model (ABM) combines the strength of human crowd behavior description from classical social force models with discrete dynamics expression from cellular automaton models by extending the conception of floor field. Several important factors which may influence the results of decision-making of pedestrians are taken into consideration, such as the location of sign, the attraction of exit, and the interaction among pedestrians. To compare the effect of information on the pedestrians, we construct three decision-making mechanisms with different assumptions. To validate these three simulation models, we compare the numerical results from different perspectives with rational range in the case study where the Tampere Theater evacuation was carried out. The ABM framework is open for rules modification and could be applied to different building plans and has implication for architectural design of gates and signs in order to increase the evacuation efficiency.展开更多
Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccu...Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.展开更多
The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to re...The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to regular structures,due to their relatively easy parameterization and controllability.Efficiently predicting the mechanical properties of 3D spinodal membrane structure remains a challenge,given that the features of the membrane necessitate adaptive mesh through the modelling process.This paper proposes an integrated approach for morphological design with customized mechanical properties,incorporating the spinodal decomposition method and adaptive coarse-grained modeling,which can produce various morphologies such as lamellar,columnar,and cubic structures.Pseudo-periodic parameterβand orientational parameterΘ(θ_(1),θ_(2),θ_(3))are identified to achieve the optimal goal of anisotropic mechanical properties.Parametric analysis is conducted to reveal the correlation between the customized spinodal structure and mechanical performance.Our work provides an integrated approach for morphological variation and tuning mechanical properties,paving the way for the design and development of customized functional materials similar to 3D spinodal membrane structures.展开更多
In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the ne...In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the neutralization point.The MFAC-SA-PID method also solves the problem that the parameters of the model free adaptive control(MFAC)method are not easy to be adjusted and the effect is not obvious by introducing a fuzzy self-adjusting algorithm to adjust the controller parameters.Then the convergence and stability of the MFAC-SA-PID method are proved in this paper.In the simulation study,the control performance of the MFAC-SA-PID method proposed in this paper is compared with the traditional MFAC method and the improved model free adaptive control(IMFAC)method,respectively.The results show that the proposed MFAC-SA-PID method has better control effect on the pH neutralization process.The MFAC-SA-PID control performance also outperforms the traditional MFAC method and IMFAC method when step input disturbances are added,which indicates that the MFAC-SA-PID method has better robustness and stability.展开更多
The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compe...The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.展开更多
A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the...A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach.展开更多
The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector...The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.展开更多
A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve ...A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions.展开更多
To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses ve...To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses verify the robot's structural reliability and driving feasibility.Based on the leader-follower model,a triangular collaborative tracking model is developed,and a linear time-varying model predictive controll(LTV-MPC)is designed to achieve smooth and precise collaborative control.For obstacle crossing,an acceleration reference model and a gradient-based adaptive law are proposed,leading to a model reference adaptive controll(MRAC)that effectively suppresses vibrations and ensures synchronous control.Simulation results show that the MPC achieves a 0.415%overshoot and a 0.344 m steady-state accuracy,while also reducing the intensity of speed fluctuations by 35%.The MRAC ensures smooth obstacle-crossing speeds and adaptive strategy switching,validating the reliability and practicality of the rail-mounted robot under complex working conditions.展开更多
Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the ...Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the traits of the anti tank missile. Results Simulation results demonstrated this control system satisfied the requirement of anti tank missile of dive overhead attack. Conclusion It is successful to use MRAC in missile control system design, the quality is better than that designed by classical control theory.展开更多
The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot poli...The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness.展开更多
As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately...As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.展开更多
Natural Laminar Flow(NLF)technology is very effective for reducing the skin friction drag of aircraft engine nacelle,but the aerodynamic performance of NLF nacelle is highly sensitive to uncertain working conditions.T...Natural Laminar Flow(NLF)technology is very effective for reducing the skin friction drag of aircraft engine nacelle,but the aerodynamic performance of NLF nacelle is highly sensitive to uncertain working conditions.Therefore,it’s imperative to incorporate uncertainties into the design of NLF nacelle.In this study,for a robust optimization of NLF nacelle and for improving its efficiency,an adaptive-surrogate-based robust optimization strategy is established,which is an iterative optimization process where the surrogate model is updated to obtain the real Pareto front of multi-objective optimization problem.A case study is carried out to validate its feasibility and effectiveness.The results show that the optimization increases the favorable pressure gradient region and the volume ratio of the nacelle by increasing its lip radius and reducing its maximum diameter.And the aerodynamic robustness of the NLF nacelle is mainly determined by the lip radius,maximum diameter of nacelle and location of the maximum diameter.Compared to the initial nacelle,the optimized nacelle maintains a wide range of low drag and high laminar flow ratio in the disturbance space,which extends the average laminar flow region to 21.6%and facilitates a decrease of 1.98 counts in the average drag coefficient.展开更多
To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a sec...To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.展开更多
A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performan...A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications.展开更多
Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adap...Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adaptive methods can effectively face nonlinearities that are common to many automotive electromechanical devices. We consider here, as a representative case study, the control of a strongly nonlinear automotive actuator. The experimental results confirm the effectiveness of the method to cope with unmodeled nonlinear terms and unknown parameters. In addition, the engineering performance indexes computed on experimental data clearly show that the robust adaptive strategy provides better performance compared with those given by a classical model-based control solution with fixed gains.展开更多
To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structur...To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does.展开更多
基金co-supported by Aeronautical Science Foundation of China (No. 2010ZB52011)Funding of Jiangsu Innovation Program for Graduate Education (No.CXLX11_0213)
文摘In order to establish an adaptive turbo-shaft engine model with high accuracy, a new modeling method based on parameter selection (PS) algorithm and multi-input multi-output recursive reduced least square support vector regression (MRR-LSSVR) machine is proposed. Firstly, the PS algorithm is designed to choose the most reasonable inputs of the adaptive module. During this process, a wrapper criterion based on least square support vector regression (LSSVR) machine is adopted, which can not only reduce computational complexity but also enhance generalization performance. Secondly, with the input variables determined by the PS algorithm, a mapping model of engine parameter estimation is trained off-line using MRR-LSSVR, which has a satisfying accuracy within 5&. Finally, based on a numerical simulation platform of an integrated helicopter/ turbo-shaft engine system, an adaptive turbo-shaft engine model is developed and tested in a certain flight envelope. Under the condition of single or multiple engine components being degraded, many simulation experiments are carried out, and the simulation results show the effectiveness and validity of the proposed adaptive modeling method.
基金co-supported by the National Natural Science Foundation of China(Nos.61890921,61890924)the National Science and Technology Major Project,China(No.J2019-1-0019-0018).
文摘Nowadays,there has been an increasing focus on integrated flight propulsion control and the inlet-exhaust design for the aero-propulsion system.Traditional component-level models are inadequate due to installed performance deviations and mismatches between the real engine and the model,failing to meet the accuracy requirements of supersonic conditions.This paper establishes a quasi-one-dimensional model for the inlet-exhaust system and conducts experimental calibration.Additionally,a mechanism-data fusion adaptive modeling scheme using an Extreme Learning Machine based on the Salp Swarm Algorithm(SSA-ELM)is proposed.The study reveals the inlet model’s efficacy in reflecting installed performance,flow matching,and mitigating pressure distortion,while the nozzle model accurately predicts flow coefficients and thrust coefficients,and identifies various operational states.The model’s output closely aligns with typical experimental parameters.By combining offline optimization and online adaptive correction,the mechanismdata fusion adaptive model substantially reduces output errors during regular flights and varying levels of degradation,and effectively handles gradual degradation within a single flight cycle.Notably,the mechanism-data fusion adaptive model holistically addresses total pressure errors within the inlet-exhaust system and normal shock location correction.This approach significantly curbs performance deviations in supersonic conditions.For example,at Ma=2.0,the system error impressively drops from 34.17%to merely 6.54%,while errors for other flight conditions consistently stay below the 2.95%threshold.These findings underscore the clear superiority of the proposed method.
基金Project supported by the National Natural Science Foundation of China(Nos.12272211,12072181,12121002)。
文摘Interval model updating(IMU)methods have been widely used in uncertain model updating due to their low requirements for sample data.However,the surrogate model in IMU methods mostly adopts the one-time construction method.This makes the accuracy of the surrogate model highly dependent on the experience of users and affects the accuracy of IMU methods.Therefore,an improved IMU method via the adaptive Kriging models is proposed.This method transforms the objective function of the IMU problem into two deterministic global optimization problems about the upper bound and the interval diameter through universal grey numbers.These optimization problems are addressed through the adaptive Kriging models and the particle swarm optimization(PSO)method to quantify the uncertain parameters,and the IMU is accomplished.During the construction of these adaptive Kriging models,the sample space is gridded according to sensitivity information.Local sampling is then performed in key subspaces based on the maximum mean square error(MMSE)criterion.The interval division coefficient and random sampling coefficient are adaptively adjusted without human interference until the model meets accuracy requirements.The effectiveness of the proposed method is demonstrated by a numerical example of a three-degree-of-freedom mass-spring system and an experimental example of a butted cylindrical shell.The results show that the updated results of the interval model are in good agreement with the experimental results.
基金the Natural Science Foundation of Shanghai (No. 18ZR1420200)the National Natural Science Foundation of China (No. 61603253)the China Postdoctoral Science Foundation Funded Project (No. 2016M601598)。
文摘Crowd evacuation in different situations is an important topic in the research field of safety. This paper presents a hybrid model for heterogeneous pedestrian evacuation simulation. Our adaptive agent-based model (ABM) combines the strength of human crowd behavior description from classical social force models with discrete dynamics expression from cellular automaton models by extending the conception of floor field. Several important factors which may influence the results of decision-making of pedestrians are taken into consideration, such as the location of sign, the attraction of exit, and the interaction among pedestrians. To compare the effect of information on the pedestrians, we construct three decision-making mechanisms with different assumptions. To validate these three simulation models, we compare the numerical results from different perspectives with rational range in the case study where the Tampere Theater evacuation was carried out. The ABM framework is open for rules modification and could be applied to different building plans and has implication for architectural design of gates and signs in order to increase the evacuation efficiency.
基金supported by the National Key Research and the Development Program of China(2022YFC3803700)the National Natural Science Foundation of China(52202391 and U20A20155).
文摘Obstacle detection and platoon control for mixed traffic flows,comprising human-driven vehicles(HDVs)and connected and autonomous vehicles(CAVs),face challenges from uncertain disturbances,such as sensor faults,inaccurate driver operations,and mismatched model errors.Furthermore,misleading sensing information or malicious attacks in vehicular wireless networks can jeopardize CAVs’perception and platoon safety.In this paper,we develop a two-dimensional robust control method for a mixed platoon,including a single leading CAV and multiple following HDVs that incorpo-rate robust information sensing and platoon control.To effectively detect and locate unknown obstacles ahead of the leading CAV,we propose a cooperative vehicle-infrastructure sensing scheme and integrate it with an adaptive model predictive control scheme for the leading CAV.This sensing scheme fuses information from multiple nodes while suppressing malicious data from attackers to enhance robustness and attack resilience in a distributed and adaptive manner.Additionally,we propose a distributed car-following control scheme with robustness to guarantee the following HDVs,considering uncertain disturbances.We also provide theoretical proof of the string stability under this control framework.Finally,extensive simulations are conducted to validate our approach.The simulation results demonstrate that our method can effectively filter out misleading sensing information from malicious attackers,significantly reduce the mean-square deviation in obstacle sensing,and approach the theoretical error lower bound.Moreover,the proposed control method successfully achieves obstacle avoidance for the mixed platoon while ensuring stability and robustness in the face of external attacks and uncertain disturbances.
基金supported by the National Natural Science Foundation of China(Grant No.11872278)the Science and Technology Commission of Shanghai Municipality(Grant No.21ZR1467200)the Fundamental Research Funds for the Central Universities.
文摘The spinodal decomposition method emerges as a promising methodology,showcasing its potential in exploring the design space for metamaterial structures.However,spinodal structures design is still largely limited to regular structures,due to their relatively easy parameterization and controllability.Efficiently predicting the mechanical properties of 3D spinodal membrane structure remains a challenge,given that the features of the membrane necessitate adaptive mesh through the modelling process.This paper proposes an integrated approach for morphological design with customized mechanical properties,incorporating the spinodal decomposition method and adaptive coarse-grained modeling,which can produce various morphologies such as lamellar,columnar,and cubic structures.Pseudo-periodic parameterβand orientational parameterΘ(θ_(1),θ_(2),θ_(3))are identified to achieve the optimal goal of anisotropic mechanical properties.Parametric analysis is conducted to reveal the correlation between the customized spinodal structure and mechanical performance.Our work provides an integrated approach for morphological variation and tuning mechanical properties,paving the way for the design and development of customized functional materials similar to 3D spinodal membrane structures.
基金supported by the National Natural Science Foundation of China(61771034).
文摘In this paper,a new model free adaptive control method based on self-adjusting PID algorithm(MFACSA-PID)is proposed to solve the problem that the pH process with strong nonlinearity is difficult to control near the neutralization point.The MFAC-SA-PID method also solves the problem that the parameters of the model free adaptive control(MFAC)method are not easy to be adjusted and the effect is not obvious by introducing a fuzzy self-adjusting algorithm to adjust the controller parameters.Then the convergence and stability of the MFAC-SA-PID method are proved in this paper.In the simulation study,the control performance of the MFAC-SA-PID method proposed in this paper is compared with the traditional MFAC method and the improved model free adaptive control(IMFAC)method,respectively.The results show that the proposed MFAC-SA-PID method has better control effect on the pH neutralization process.The MFAC-SA-PID control performance also outperforms the traditional MFAC method and IMFAC method when step input disturbances are added,which indicates that the MFAC-SA-PID method has better robustness and stability.
文摘The design of a turbofan rotor speed control system, using model reference adaptive control(MRAC) method with input and output measurements, is discussed for the purpose of practical application. The nonlinear compensator based on functional link neural network is used to deal with the engine nonlinearity and the hardware-in-loop simulation is also developed. The results show that the nonlinear MRAC controller has the adequate performance of compensating and adapting nonlinearity arising from the change of engine state or working environment. Such feature demonstrates potential practical applications of MRAC for aeroengine control system.
基金Supported by the National Natural Science Foundation of China(61074080)the Innovation Foundation for Aeronautical Science and Technology(08C52001)~~
文摘A direct self-repairing control approach is proposed for helicopter via quantum control techniques and adaptive compensator when some complex faults occur. For a linear varying-parameter helicopter control system, the model reference adaptive control law is designed and an adaptive compensator is used for improving its self-re- pairing capability. To enhance anti-interference capability of helicopter, quantum control feedforward is added be- tween fault and disturbance. Simulation results illustrate the effectiveness and feasibility of the approach.
文摘The application of a simplifed model reference adaptive control(SMRAC) on a typical Pump controlled motor electrohydraulic servo system is studied here. The algorithm of first-order scalar SMRAC ac second-order vector SMRAC are derived. Computer simulations of the algorithms are presented. Experimental results prove that the method of control adopted here perform satisfactorily over a wide range of operating conditions.
文摘A new decentralized adaptive control scheme is presented for linear time invariant systems with first order interconnections. The proposed control scheme with “proportional plus integral” terms is used to improve the convergence rate and the ultimate bound of the tracking error. It is important to note that the adaptive scheme uses lower adaptive gains and smaller control inputs to avoid input saturation and oscillatory behavior. Simulation results are illustrated for controlling a dual inverted pendulum and a multivariable turbofan engine using the proposed adaptive scheme. These simulations validate out conclusions.
基金Supported by the Shaanxi Provincial Key Research and Development Program(2024GX-YBXM-288)the Science and Technology Project of Shaanxi Provincial Transportation Department(21-20K)the National Natural Science Foundation of China(52172324)。
文摘To address the limitations of traditional manual highway guardrail inspections,this paper proposes an obstacle-crossing and collaborative tracking control method for a rail-mounted robot.Static and dynamic analyses verify the robot's structural reliability and driving feasibility.Based on the leader-follower model,a triangular collaborative tracking model is developed,and a linear time-varying model predictive controll(LTV-MPC)is designed to achieve smooth and precise collaborative control.For obstacle crossing,an acceleration reference model and a gradient-based adaptive law are proposed,leading to a model reference adaptive controll(MRAC)that effectively suppresses vibrations and ensures synchronous control.Simulation results show that the MPC achieves a 0.415%overshoot and a 0.344 m steady-state accuracy,while also reducing the intensity of speed fluctuations by 35%.The MRAC ensures smooth obstacle-crossing speeds and adaptive strategy switching,validating the reliability and practicality of the rail-mounted robot under complex working conditions.
文摘Aim To present an adaptive missile control system adaped to the external disturbance and the mobility of target movement. Methods Model reference adaptive control (MRAC) was applied and modified in the light of the traits of the anti tank missile. Results Simulation results demonstrated this control system satisfied the requirement of anti tank missile of dive overhead attack. Conclusion It is successful to use MRAC in missile control system design, the quality is better than that designed by classical control theory.
基金supported by National Natural Science Foundation of China(Grant No.51005184)National Science and Technology Major Project of Ministry of Science and Technology of China(Grant No.2009ZX04014-053)
文摘The existing methods for blade polishing mainly focus on robot polishing and manual grinding.Due to the difficulty in high-precision control of the polishing force,the blade surface precision is very low in robot polishing,in particular,quality of the inlet and exhaust edges can not satisfy the processing requirements.Manual grinding has low efficiency,high labor intensity and unstable processing quality,moreover,the polished surface is vulnerable to burn,and the surface precision and integrity are difficult to ensure.In order to further improve the profile accuracy and surface quality,a pneumatic flexible polishing force-exerting mechanism is designed and a dual-mode switching composite adaptive control(DSCAC) strategy is proposed,which combines Bang-Bang control and model reference adaptive control based on fuzzy neural network(MRACFNN) together.By the mode decision-making mechanism,Bang-Bang control is used to track the control command signal quickly when the actual polishing force is far away from the target value,and MRACFNN is utilized in smaller error ranges to improve the system robustness and control precision.Based on the mathematical model of the force-exerting mechanism,simulation analysis is implemented on DSCAC.Simulation results show that the output polishing force can better track the given signal.Finally,the blade polishing experiments are carried out on the designed polishing equipment.Experimental results show that DSCAC can effectively mitigate the influence of gas compressibility,valve dead-time effect,valve nonlinear flow,cylinder friction,measurement noise and other interference on the control precision of polishing force,which has high control precision,strong robustness,strong anti-interference ability and other advantages compared with MRACFNN.The proposed research achieves high-precision control of the polishing force,effectively improves the blade machining precision and surface consistency,and significantly reduces the surface roughness.
基金supported by State Key Laboratory of Robotics and System of China (Grant No. SKLR-2010 -MS - 14)State Key Lab of Embedded System and Service Computing of China(Grant No. 2010-11)
文摘As one of the core issues of the mobile robot motion control, trajectory tracking has received extensive attention. At present, the solution of the problem only takes kinematic or dynamic model into account separately, so that the presented strategy is difficult to realize satisfactory tracking quality in practical application. Considering the unknown parameters of two models, this paper presents an adaptive controller for solving the trajectory tracking problem of a mobile robot. Firstly, an adaptive kinematic controller utilized to generate the command of velocity is designed based on Backstepping method. Then, in order to make the real velocity of mobile robot reach the desired velocity asymptotically, a dynamic adaptive controller is proposed adopting reference model and Lyapunov stability theory. Finally, through simulating typical trajectories including circular trajectory, fold line and parabola trajectory in normal and perturbed cases, the results illustrate that the control scheme can solve the tracking problem effectively. The proposed control law, which can tune the kinematic and dynamic model parameters online and overcome external disturbances, provides a novel method for improving trajectory tracking performance of the mobile robot.
基金financially supported by the Commercial Aircraft Corporation of China Ltd.
文摘Natural Laminar Flow(NLF)technology is very effective for reducing the skin friction drag of aircraft engine nacelle,but the aerodynamic performance of NLF nacelle is highly sensitive to uncertain working conditions.Therefore,it’s imperative to incorporate uncertainties into the design of NLF nacelle.In this study,for a robust optimization of NLF nacelle and for improving its efficiency,an adaptive-surrogate-based robust optimization strategy is established,which is an iterative optimization process where the surrogate model is updated to obtain the real Pareto front of multi-objective optimization problem.A case study is carried out to validate its feasibility and effectiveness.The results show that the optimization increases the favorable pressure gradient region and the volume ratio of the nacelle by increasing its lip radius and reducing its maximum diameter.And the aerodynamic robustness of the NLF nacelle is mainly determined by the lip radius,maximum diameter of nacelle and location of the maximum diameter.Compared to the initial nacelle,the optimized nacelle maintains a wide range of low drag and high laminar flow ratio in the disturbance space,which extends the average laminar flow region to 21.6%and facilitates a decrease of 1.98 counts in the average drag coefficient.
基金Project (61174203) supported by the National Natural Science Foundation of China
文摘To achieve excellent tracking accuracy,a coarse-fine dual-stage control system is chosen for inertially stabilized platform.The coarse stage is a conventional inertially stabilized platform,and the fine stage is a secondary servo mechanism to control lens motion in the imaging optical path.Firstly,the dual-stage dynamics is mathematically modeled as a coupling multi-input multi-output(MIMO)control system.Then,by incorporating compensation of adaptive model to deal with parameter variations and nonlinearity,a systematic robust H∞control scheme is designed,which can achieve good tracking performance,as well as improve system robustness against model uncertainties.Lyapunov stability analysis confirmed the stability of the overall control system.Finally,simulation and experiment results are provided to demonstrate the feasibility and effectiveness of the proposed control design method.
文摘A decentralized model reference adaptive control (MRAC) scheme is proposed and applied to design a multivariable control system of a dual-spool turbofan engine.Simulation studies show good static and dynamic performance of the system over the fullflight envelope. Simulation results also show the good effectiveness of reducing interactionin the multivariable system with significant coupling. The control system developed has awide frequency band to satisfy the strict engineering requirement and is practical for engineering applications.
文摘Model reference adaptive control is a viable control method to impose the demanded dynamics on plants whose parameters are affected by large uncertainty. In this paper, we show by means of experiments that robust adaptive methods can effectively face nonlinearities that are common to many automotive electromechanical devices. We consider here, as a representative case study, the control of a strongly nonlinear automotive actuator. The experimental results confirm the effectiveness of the method to cope with unmodeled nonlinear terms and unknown parameters. In addition, the engineering performance indexes computed on experimental data clearly show that the robust adaptive strategy provides better performance compared with those given by a classical model-based control solution with fixed gains.
基金funded by China Scholarship Council (CSC)and National Science and Technology Major Project,China(No. 2017-V-0015-0067)。
文摘To solve the rapid transient control problem of Flight Environment Simulation System(FESS) of Altitude Ground Test Facilities(AGTF) with large heat transfer uncertainty and disturbance, a new adaptive control structure of modified robust optimal adaptive control is presented.The mathematic modeling of FESS is given and the influence of heat transfer is analyzed through energy view. To consider the influence of heat transfer in controller design, we introduce a matched uncertainty that represents heat transfer influence in the linearized system of FESS. Based on this linear system, we deduce the design of modified robust optimal adaptive control law in a general way. Meanwhile, the robust stability of the modified robust optimal adaptive control law is proved through using Lyapunov stability theory. Then, a typical aero-engine test condition with Mach Dash and Zoom-Climb is used to verify the effectiveness of the devised adaptive controller. The simulation results show that the designed controller has servo tracking and disturbance rejection performance under heat transfer uncertainty and disturbance;the relative steady-state and dynamic errors of pressure and temperature are both smaller than 1% and 0.2% respectively. Furthermore,the influence of the modification parameter c is analyzed through simulation. Finally, comparing with the standard ideal model reference adaptive controller, the modified robust optimal adaptive controller obviously provides better control performance than the ideal model reference adaptive controller does.