期刊文献+
共找到52篇文章
< 1 2 3 >
每页显示 20 50 100
Advances in Manta Ray Foraging Optimization:A Comprehensive Survey 被引量:1
1
作者 Farhad Soleimanian Gharehchopogh Shafi Ghafouri +1 位作者 Mohammad Namazi Bahman Arasteh 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期953-990,共38页
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic fields.Introduced in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing ins... This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic fields.Introduced in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault foraging.These biologically inspired strategies allow for effective solutions to intricate physical challenges.With its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization problems.Its utility and benefits have found traction in numerous academic sectors.Since its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference proceedings.This paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization challenges.Research trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively. 展开更多
关键词 manta ray foraging optimization Metaheuristic algorithms HYBRIDIZATION Improved optimization
在线阅读 下载PDF
Slice-Based 6G Network with Enhanced Manta Ray Deep Reinforcement Learning-Driven Proactive and Robust Resource Management
2
作者 Venkata Satya Suresh kumar Kondeti Raghavendra Kulkarni +1 位作者 Binu Sudhakaran Pillai Surendran Rajendran 《Computers, Materials & Continua》 2025年第9期4973-4995,共23页
Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resou... Next-generation 6G networks seek to provide ultra-reliable and low-latency communications,necessitating network designs that are intelligent and adaptable.Network slicing has developed as an effective option for resource separation and service-level differentiation inside virtualized infrastructures.Nonetheless,sustaining elevated Quality of Service(QoS)in dynamic,resource-limited systems poses significant hurdles.This study introduces an innovative packet-based proactive end-to-end(ETE)resource management system that facilitates network slicing with improved resilience and proactivity.To get around the drawbacks of conventional reactive systems,we develop a cost-efficient slice provisioning architecture that takes into account limits on radio,processing,and transmission resources.The optimization issue is non-convex,NP-hard,and requires online resolution in a dynamic setting.We offer a hybrid solution that integrates an advanced Deep Reinforcement Learning(DRL)methodology with an Improved Manta-Ray Foraging Optimization(ImpMRFO)algorithm.The ImpMRFO utilizes Chebyshev chaotic mapping for the formation of a varied starting population and incorporates Lévy flight-based stochastic movement to avert premature convergence,hence facilitating improved exploration-exploitation trade-offs.The DRL model perpetually acquires optimum provisioning strategies via agent-environment interactions,whereas the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.The DRL model perpetually acquires optimum provisioning methods via agent-environment interactions,while the ImpMRFO enhances policy performance for effective slice provisioning.The solution,developed in Python,is evaluated across several 6G slicing scenarios that include varied QoS profiles and traffic requirements.Experimental findings reveal that the proactive ETE system outperforms DRL models and non-resilient provisioning techniques.Our technique increases PSSRr,decreases average latency,and optimizes resource use.These results demonstrate that the hybrid architecture for robust,real-time,and scalable slice management in future 6G networks is feasible. 展开更多
关键词 Sliced network manta ray foraging optimization Chebyshev chaotic map levy flight
在线阅读 下载PDF
Improved Manta Ray Foraging Optimizer-based SVM for Feature Selection Problems:A Medical Case Study
3
作者 Adel Got Djaafar Zouache +2 位作者 Abdelouahab Moussaoui Laith Abualigah Ahmed Alsayat 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期409-425,共17页
Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning thes... Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning these parameters a sensitive step to maintain a good performance.On the other hand,and as any other classifier,the performance of SVM is also affected by the input set of features used to build the learning model,which makes the selection of relevant features an important task not only to preserve a good classification accuracy but also to reduce the dimensionality of datasets.In this paper,the MRFO+SVM algorithm is introduced by investigating the recent manta ray foraging optimizer to fine-tune the SVM parameters and identify the optimal feature subset simultaneously.The proposed approach is validated and compared with four SVM-based algorithms over eight benchmarking datasets.Additionally,it is applied to a disease Covid-19 dataset.The experimental results show the high ability of the proposed algorithm to find the appropriate SVM’s parameters,and its acceptable performance to deal with feature selection problem. 展开更多
关键词 Support vector machine Parameters tuning Feature selection Bioinspired algorithms manta ray foraging optimizer
在线阅读 下载PDF
Fractional-Order Control of a Wind Turbine Using Manta Ray Foraging Optimization 被引量:2
4
作者 Hegazy Rezk Mohammed Mazen Alhato +1 位作者 Mohemmed Alhaider Soufiene Bouallègue 《Computers, Materials & Continua》 SCIE EI 2021年第7期185-199,共15页
In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy u... In this research paper,an improved strategy to enhance the performance of the DC-link voltage loop regulation in a Doubly Fed Induction Generator(DFIG)based wind energy system has been proposed.The proposed strategy used the robust Fractional-Order(FO)Proportional-Integral(PI)control technique.The FOPI control contains a non-integer order which is preferred over the integer-order control owing to its benefits.It offers extra flexibility in design and demonstrates superior outcomes such as high robustness and effectiveness.The optimal gains of the FOPI controller have been determined using a recent Manta Ray Foraging Optimization(MRFO)algorithm.During the optimization process,the FOPI controller’s parameters are assigned to be the decision variables whereas the objective function is the error racking that to be minimized.To prove the superiority of the MRFO algorithm,an empirical comparison study with the homologous particle swarm optimization and genetic algorithm is achieved.The obtained results proved the superiority of the introduced strategy in tracking and control performances against various conditions such as voltage dips and wind speed variation. 展开更多
关键词 Renewable energy MODELING wind turbine doubly fed induction generator fractional order control manta ray foraging optimization
在线阅读 下载PDF
Manta Ray Foraging Optimization with Machine Learning Based Biomedical Data Classification
5
作者 Amal Al-Rasheed Jaber S.Alzahrani +5 位作者 Majdy M.Eltahir Abdullah Mohamed Anwer Mustafa Hilal Abdelwahed Motwakel Abu Sarwar Zamani Mohamed I.Eldesouki 《Computers, Materials & Continua》 SCIE EI 2022年第11期3275-3290,共16页
The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources.The developments of artificial intellig... The biomedical data classification process has received significant attention in recent times due to a massive increase in the generation of healthcare data from various sources.The developments of artificial intelligence(AI)and machine learning(ML)models assist in the effectual design of medical data classification models.Therefore,this article concentrates on the development of optimal Stacked Long Short Term Memory Sequence-toSequence Autoencoder(OSAE-LSTM)model for biomedical data classification.The presented OSAE-LSTM model intends to classify the biomedical data for the existence of diseases.Primarily,the OSAE-LSTM model involves min-max normalization based pre-processing to scale the data into uniform format.Followed by,the SAE-LSTM model is utilized for the detection and classification of diseases in biomedical data.At last,manta ray foraging optimization(MRFO)algorithm has been employed for hyperparameter optimization process.The utilization of MRFO algorithm assists in optimal selection of hypermeters involved in the SAE-LSTM model.The simulation analysis of the OSAE-LSTM model has been tested using a set of benchmark medical datasets and the results reported the improvements of the OSAELSTM model over the other approaches under several dimensions. 展开更多
关键词 Biomedical data classification deep learning manta ray foraging optimization healthcare machine learning artificial intelligence
在线阅读 下载PDF
基于改进蝠鲼觅食优化算法的配电网储能选址定容研究 被引量:3
6
作者 李亚飞 俞易涵 +4 位作者 李展 邹启衡 黄颖 陈嘉栋 孟高军 《可再生能源》 北大核心 2025年第4期542-551,共10页
储能具有灵活性强、响应速度快等特点,可有效缓解新能源接入带来的负荷波动、电压失稳等问题。文章提出了一种基于改进蝠鲼觅食优化算法的双层配电网储能选址定容策略,以储能投资成本、日均电压波动和日均负荷波动最小为目标,建立双层... 储能具有灵活性强、响应速度快等特点,可有效缓解新能源接入带来的负荷波动、电压失稳等问题。文章提出了一种基于改进蝠鲼觅食优化算法的双层配电网储能选址定容策略,以储能投资成本、日均电压波动和日均负荷波动最小为目标,建立双层选址定容模型。引入采用精英反向学习策略和自适应翻滚因子改进的蝠鲼觅食优化算法求解模型,并以接入的新能源IEEE33节点配电网为例,对所提策略进行仿真验证。结果表明,所提选址定容优化方案可显著降低系统电压和负荷波动,有效减少系统投资成本。 展开更多
关键词 新能源 蝠鲼觅食优化算法 双层优化 精英反向学习策略
在线阅读 下载PDF
基于AGSMD和TSVD的工业机器人柔性薄壁轴承故障诊断 被引量:1
7
作者 张昌杰 马桂林 李超 《机械设计与制造工程》 2025年第3期77-83,共7页
由于柔性薄壁轴承结构特殊,振动信号复杂,因此为准确判断柔性薄壁轴承故障类别,提出一种基于自适应群稀疏模式分解和截断奇异值分解的故障诊断方法。首先采用功率谱密度方法得到预估信噪比参数,并利用电鳗觅食优化算法对自适应群稀疏模... 由于柔性薄壁轴承结构特殊,振动信号复杂,因此为准确判断柔性薄壁轴承故障类别,提出一种基于自适应群稀疏模式分解和截断奇异值分解的故障诊断方法。首先采用功率谱密度方法得到预估信噪比参数,并利用电鳗觅食优化算法对自适应群稀疏模式分解方法中的惩罚因子参数及信号分量选取过程进行寻优,寻找出有效信号分量中的有效成分。然后利用截断奇异值分解方法对所得信号分量进行降噪处理,并提出一种新的奇异值能量比差分谱方法用来选取合适的重构阶数,从而准确地寻找出柔性薄壁轴承的故障特征信息。实验数据分析结果表明,所提方法能够有效地提取出柔性薄壁轴承的故障特征,实现对柔性薄壁轴承故障的准确诊断。 展开更多
关键词 柔性薄壁轴承 自适应群稀疏模式分解 电鳗觅食优化算法 截断奇异值分解
在线阅读 下载PDF
基于误差加权和堆叠集成的PEMFC剩余使用寿命预测
8
作者 张楚 陶孜菡 +2 位作者 李茜 王政 彭甜 《中国电机工程学报》 北大核心 2025年第20期8102-8115,I0021,共15页
为提升质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFC)剩余使用寿命(remaining useful life,RUL)预测的准确性与鲁棒性,该文提出一种基于误差加权的堆叠集成深度预测模型。首先,采用Savitzky-Golay(SG)滤波和e Xtreme ... 为提升质子交换膜燃料电池(proton exchange membrane fuel cells,PEMFC)剩余使用寿命(remaining useful life,RUL)预测的准确性与鲁棒性,该文提出一种基于误差加权的堆叠集成深度预测模型。首先,采用Savitzky-Golay(SG)滤波和e Xtreme Gradient Boosting(XGBoost)特征选择技术对数据进行预处理,以优化数据质量。接着,构建一个融合深度置信网络(deep belief network,DBN)、门控循环单元(gated recurrent unit,GRU)和时间卷积网络(temporal convolutional network,TCN)的集成模型,该方法根据每个子模型的预测误差分配权重,并使用随机森林(random forest,RF)模型对加权结果做进一步预测,以求得最优预测效果。通过实验对比分析证明,该集成模型在预测PEMFC未来的退化趋势及剩余寿命方面展现出色的性能,预测结果更加精确。 展开更多
关键词 质子交换膜燃料电池 XGBoost特征选择 蝠鲼觅食优化算法 集成模型 剩余使用寿命
原文传递
融合多策略改进的侏儒猫鼬算法
9
作者 于明洋 李婷 许静 《北京航空航天大学学报》 北大核心 2025年第11期3991-4002,共12页
针对侏儒猫鼬优化算法(DMO)易陷入局部最优和收敛效率低的问题,提出一种多策略融合的增强型侏儒猫鼬算法(EDMO)。该算法引入随机反向学习策略增强猫鼬种群的多样性和质量,以增强其全局搜索能力和提高收敛速度。同时,采用自适应的方式更... 针对侏儒猫鼬优化算法(DMO)易陷入局部最优和收敛效率低的问题,提出一种多策略融合的增强型侏儒猫鼬算法(EDMO)。该算法引入随机反向学习策略增强猫鼬种群的多样性和质量,以增强其全局搜索能力和提高收敛速度。同时,采用自适应的方式更新保姆交换系数,以平衡全局探索与局部开发的需求。在迭代的后期,算法利用黏菌觅食行为,在局部与全局最优解之间进行优化。通过对CEC2017测试函数集的求解,对不同的算法进行比较。结果表明:融合3种策略的EDMO在寻优精度、寻优速度和鲁棒性方面均优于对比的先进算法。通过对无人机三维路径规划的实验验证,EDMO在局部搜索方面表现优于原始DMO算法,同时生成的飞行路径也更为稳定。 展开更多
关键词 侏儒猫鼬优化算法 多策略融合 随机反向学习 自适应 黏菌觅食行为 三维路径规划
原文传递
优化算法提高LS-SVM模型预测爆破振动峰值速度的性能研究
10
作者 邓长庆 郑皓文 张国鹏 《河南科学》 2025年第6期831-837,共7页
为了提高爆破振动峰值速度的预测效果,采用最小二乘支持向量机(LS-SVM)模型预测爆破振动峰值速度,利用细菌觅食(BFO)、人工鱼群(AFSA)和自适应粒子群(APSO)三种优化算法确定LS-SVM模型控制参数。在构建的BFO-LSSVM、AFSA-LSSVM和APSO-LS... 为了提高爆破振动峰值速度的预测效果,采用最小二乘支持向量机(LS-SVM)模型预测爆破振动峰值速度,利用细菌觅食(BFO)、人工鱼群(AFSA)和自适应粒子群(APSO)三种优化算法确定LS-SVM模型控制参数。在构建的BFO-LSSVM、AFSA-LSSVM和APSO-LSSVM预测模型中,以水平距离、高程、总药量、最大单响药量、炮孔进深作为输入参数,以爆破振动峰值速度作为输出参数。同时采用LS-SVM模型作为对照组,与优化后的模型进行比较。并基于滇中引水工程引水隧洞现场测试采集的30组数据集对上述模型进行训练和测试。对比分析预测结果,三种优化方法均能提高LS-SVM模型的预测效果,其中,AFSA-LSSVM模型(R2=0.9874,AARD=2.9562)的综合表现最优。 展开更多
关键词 爆破振动峰值速度 LS-SVM 细菌觅食算法 人工鱼群算法 自适应粒子群算法
在线阅读 下载PDF
Satellite Image Classification Using a Hybrid Manta Ray Foraging Optimization Neural Network
11
作者 Amit Kumar Rai Nirupama Mandal +1 位作者 Krishna Kant Singh Ivan Izonin 《Big Data Mining and Analytics》 EI CSCD 2023年第1期44-54,共11页
A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious ta... A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious task due to the amount of data and the heterogeneity of the data.Thus,in this paper,a Radial Basis Function Neural Network(RBFNN)trained using Manta Ray Foraging Optimization algorithm(MRFO)is proposed.RBFNN is a three-layer network comprising of input,output,and hidden layers that can process large amounts.The trained network can discover hidden data patterns in unseen data.The learning algorithm and seed selection play a vital role in the performance of the network.The seed selection is done using the spectral indices to further improve the performance of the network.The manta ray foraging optimization algorithm is inspired by the intelligent behaviour of manta rays.It emulates three unique foraging behaviours namelys chain,cyclone,and somersault foraging.The satellite images contain enormous amount of data and thus require exploration in large search space.The spiral movement of the MRFO algorithm enables it to explore large search spaces effectively.The proposed method is applied on pre and post flooding Landsat 8 Operational Land Imager(OLI)images of New Brunswick area.The method was applied to identify and classify the land cover changes in the area induced by flooding.The images are classified using the proposed method and a change map is developed using post classification comparison.The change map shows that a large amount of agricultural area was washed away due to flooding.The measurement of the affected area in square kilometres is also performed for mitigation activities.The results show that post flooding the area covered by water is increased whereas the vegetated area is decreased.The performance of the proposed method is done with existing state-of-the-art methods. 展开更多
关键词 Radial Basis Function Neural Network(RBFNN) manta ray foraging optimization algorithm(MRFO) Landsat 8 classification change detection disaster mitigation PLANNING
原文传递
Dispersed Wind Power Planning Method Considering Network Loss Correction with Cold Weather
12
作者 Hanpeng Kou Tianlong Bu +2 位作者 Leer Mao Yihong Jiao Chunming Liu 《Energy Engineering》 EI 2024年第4期1027-1048,共22页
In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is... In order to play a positive role of decentralised wind power on-grid for voltage stability improvement and loss reduction of distribution network,a multi-objective two-stage decentralised wind power planning method is proposed in the paper,which takes into account the network loss correction for the extreme cold region.Firstly,an electro-thermal model is introduced to reflect the effect of temperature on conductor resistance and to correct the results of active network loss calculation;secondly,a two-stage multi-objective two-stage decentralised wind power siting and capacity allocation and reactive voltage optimisation control model is constructed to take account of the network loss correction,and the multi-objective multi-planning model is established in the first stage to consider the whole-life cycle investment cost of WTGs,the system operating cost and the voltage quality of power supply,and the multi-objective planning model is established in the second stage.planning model,and the second stage further develops the reactive voltage control strategy of WTGs on this basis,and obtains the distribution network loss reduction method based on WTG siting and capacity allocation and reactive power control strategy.Finally,the optimal configuration scheme is solved by the manta ray foraging optimisation(MRFO)algorithm,and the loss of each branch line and bus loss of the distribution network before and after the adoption of this loss reduction method is calculated by taking the IEEE33 distribution system as an example,which verifies the practicability and validity of the proposed method,and provides a reference introduction for decision-making for the distributed energy planning of the distribution network. 展开更多
关键词 Decentralised wind power network loss correction siting and capacity determination reactive voltage control two-stage model manta ray foraging optimisation algorithm
在线阅读 下载PDF
作战力量前推部署光缆网延伸保障问题
13
作者 张煜 王磊 +1 位作者 姚昌华 林春盛 《计算机仿真》 2024年第1期17-24,共8页
为解决作战力量前推部署阶段光缆网延伸保障问题,对机动通信方舱预设节点选址与通信拓扑优化开展研究。基于控制战场建设费用与缩短部队接入耗时的双目标要求,建立包含拓扑优化的多点连续选址问题模型。采用交替选址-拓扑优化的思路,构... 为解决作战力量前推部署阶段光缆网延伸保障问题,对机动通信方舱预设节点选址与通信拓扑优化开展研究。基于控制战场建设费用与缩短部队接入耗时的双目标要求,建立包含拓扑优化的多点连续选址问题模型。采用交替选址-拓扑优化的思路,构建蝠鲼觅食与遗传算法结合的双层优化算法。为适用问题求解并提升算法性能,引入初始种群设计、蒙特卡罗准则、分流竞争优化、双标共检终止等改进措施。仿真与分析表明,所提模型方法性能良好能实现择优选址与拓扑优化。 展开更多
关键词 光缆延伸 多点选址 拓扑优化 蝠鲼优化 遗传算法
在线阅读 下载PDF
基于自适应蝠鲼觅食优化算法的分布式电源选址定容 被引量:25
14
作者 杨博 俞磊 +3 位作者 王俊婷 束洪春 曹璞璘 余涛 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第12期1673-1688,共16页
建立了考虑有功功率损耗、电压分布、污染排放、分布式电源(DG)成本以及气象条件的DG选址定容规划模型,其中选址、定容工作分别是一个离散、连续变量,是一个高度非线性、含离散优化变量的复杂模型.因此,应用自适应蝠鲼觅食优化(AMRFO)... 建立了考虑有功功率损耗、电压分布、污染排放、分布式电源(DG)成本以及气象条件的DG选址定容规划模型,其中选址、定容工作分别是一个离散、连续变量,是一个高度非线性、含离散优化变量的复杂模型.因此,应用自适应蝠鲼觅食优化(AMRFO)算法获取最优Pareto解集,其具有丰富多样的搜索机制,个体更新机制以及先进的Pareto解筛选机制,针对该模型能够获得更加优异的高质量解.为回避权重系数人为设置主观性带来的影响,采用基于马氏距离的理想决策点法进行Pareto最优解集决策.最后,基于IEEE 33, 69节点配电网和孤网运行的IEEE 33, 69节点配电网进行仿真分析.研究结果表明:与传统的多目标智能优化算法相比,AMRFO算法能够获得分布更加广泛、均匀的Pareto前沿,在兼顾经济性的同时,配电网的电压分布、有功功率损耗的改善效果显著优于其他算法. 展开更多
关键词 配电网 分布式电源 选址定容 自适应蝠鲼觅食优化算法
在线阅读 下载PDF
引入改进蝠鲼觅食优化算法的水下无人航行器三维路径规划 被引量:27
15
作者 黄鹤 李潇磊 +2 位作者 杨澜 王会峰 茹锋 《西安交通大学学报》 EI CAS CSCD 北大核心 2022年第7期9-18,共10页
针对复杂环境下传统群体智能优化算法在求解水下无人航行器(UUV)路径规划的过程中存在路径搜索能力不足、易陷入局部最优等问题,提出了一种引入改进蝠鲼觅食优化算法的UUV三维路径规划方法。首先,根据UUV在水下航行时的实际环境,建立相... 针对复杂环境下传统群体智能优化算法在求解水下无人航行器(UUV)路径规划的过程中存在路径搜索能力不足、易陷入局部最优等问题,提出了一种引入改进蝠鲼觅食优化算法的UUV三维路径规划方法。首先,根据UUV在水下航行时的实际环境,建立相关地形模型和威胁源模型;其次,对传统的蝠鲼觅食优化算法进行改进,相关改进包括在初始化过程中加入局部反向学习机制优化种群的位置,提高了种群的多样性;根据每次迭代后种群个体适应度的不同,改进蝠鲼翻滚觅食的翻滚因子S,由此实现一种自适应翻滚,有利于跳出局部最优;同时,在蝠鲼螺旋觅食过程中融合莱维飞行-柯西变异策略,扩大了搜索路径和种群搜索范围,提升了算法寻找全局最优的能力;最后,将改进的蝠鲼觅食优化算法引入到UUV的路径规划中,进行相应的实验模拟。实验结果表明:在地形1中采用改进的蝠鲼觅食优化算法所规划的路径相比于灰狼算法和蝠鲼觅食优化算法分别降低了32.49 km和23.88 km,航迹代价分别降低了9.68和4.04;在地形2中采用改进的蝠鲼觅食优化算法所规划的路径相较于灰狼算法和蝠鲼觅食优化算法分别降低了20.83 km和29.95 km,航迹代价分别降低了10.14和3.18;同时,所提路径规划方法能够使UUV有效地避开障碍物、威胁物等,较大地降低了风险成本,安全性更高。 展开更多
关键词 水下无人航行器 路径规划 蝠鲼觅食优化算法 全局最优
在线阅读 下载PDF
基于社会学习自适应细菌觅食算法的互联电网AGC最优PI/PID控制器设计 被引量:36
16
作者 谢平平 李银红 +2 位作者 刘晓娟 石东源 段献忠 《中国电机工程学报》 EI CSCD 北大核心 2016年第20期5440-5448,5720,共9页
AGC控制器的参数对电网频率控制的动态性能具有重要影响。不合适的控制器参数将可能使得电网在遭遇较大的负荷扰动时失去频率稳定。针对互联电网AGC控制器参数优化整定问题,提出了一种基于社会学习自适应细菌觅食算法的最优PI/PID控制... AGC控制器的参数对电网频率控制的动态性能具有重要影响。不合适的控制器参数将可能使得电网在遭遇较大的负荷扰动时失去频率稳定。针对互联电网AGC控制器参数优化整定问题,提出了一种基于社会学习自适应细菌觅食算法的最优PI/PID控制器设计方法。该方法将社会学习机制及自适应步长策略引入到标准细菌觅食算法中,通过改进细菌寻优过程中的趋化、群聚及繁殖等操作,提高算法的收敛速度及寻优精度。建立两区域互联电网AGC系统仿真模型,采用所提算法优化整定其PI/PID控制器参数。仿真结果验证了所提方法的有效性。 展开更多
关键词 细菌觅食算法 社会学习 自适应步长策略 自动发电控制 最优控制器设计
原文传递
离散蝠鲼觅食优化算法及在频谱分配中的应用 被引量:7
17
作者 王大为 刘新浩 +3 位作者 李竹 芦宾 郭爱心 柴国强 《计算机应用》 CSCD 北大核心 2022年第1期215-222,共8页
针对认知无线电中以最大化网络效益为准则的频谱分配难题以及蝠鲼觅食优化(MRFO)算法难以解决频谱分配问题的不足,提出一种离散蝠鲼觅食优化(DMRFO)算法。根据工程中频谱分配问题具有亲1性的特点,首先,基于Sigmoid函数(SF)离散法对MRFO... 针对认知无线电中以最大化网络效益为准则的频谱分配难题以及蝠鲼觅食优化(MRFO)算法难以解决频谱分配问题的不足,提出一种离散蝠鲼觅食优化(DMRFO)算法。根据工程中频谱分配问题具有亲1性的特点,首先,基于Sigmoid函数(SF)离散法对MRFO算法进行离散二进制化;然后,通过异或算子和速度调节因子引导蝠鲼根据当前速度大小自适应向最优解调整下一时刻的位置;同时,通过在全局最优解附近进行二进制螺旋觅食避免算法陷入局部最优;最后,将提出的DMRFO算法应用于解决频谱分配问题。仿真实验结果表明,采用DMRFO算法分配频谱时的网络效益的收敛均值和标准差分别为362.60和4.14,该结果显著优于离散人工蜂群(DABC)算法、二进制粒子群优化(BPSO)算法以及改进的二进制粒子群优化(IBPSO)算法。 展开更多
关键词 认知无线电 频谱分配 智能计算 蝠鲼觅食优化算法 网络效益
在线阅读 下载PDF
改进细菌觅食算法求解车间作业调度问题 被引量:16
18
作者 崔静静 孙延明 车兰秀 《计算机应用研究》 CSCD 北大核心 2011年第9期3324-3326,共3页
针对细菌觅食算法(BFOA)求解高维优化问题时容易陷入局部最优和早熟的问题,引入自适应步长及差分进化算子,并将改进算法用于车间作业调度问题(JSP)中。求解时,设计了一种编码转换方案,从而无须修改BFOA运算规则即可实现对JSP的寻优;同时... 针对细菌觅食算法(BFOA)求解高维优化问题时容易陷入局部最优和早熟的问题,引入自适应步长及差分进化算子,并将改进算法用于车间作业调度问题(JSP)中。求解时,设计了一种编码转换方案,从而无须修改BFOA运算规则即可实现对JSP的寻优;同时,采用空闲时间片段优化策略降低了调度问题的复杂性。仿真实验表明,该算法能够跳出局部最优,避免了早熟的问题,调度结果优于原始细菌觅食算法和离散粒子群算法。 展开更多
关键词 细菌觅食算法 自适应步长 车间作业调度问题 编码转换 空闲时间片段优化
在线阅读 下载PDF
一种自适应细菌觅食优化算法 被引量:17
19
作者 姜建国 周佳薇 +1 位作者 郑迎春 王涛 《西安电子科技大学学报》 EI CAS CSCD 北大核心 2015年第1期75-81,共7页
针对在优化高维函数时,细菌觅食优化算法性能不佳的情况,提出了一种自适应细菌觅食优化算法.将固定的趋化步长改进为非线性递减的自适应游动步长,提高了算法的局部搜索能力;引入维度自适应学习算法,对每个趋化周期内得到的当前最优细菌... 针对在优化高维函数时,细菌觅食优化算法性能不佳的情况,提出了一种自适应细菌觅食优化算法.将固定的趋化步长改进为非线性递减的自适应游动步长,提高了算法的局部搜索能力;引入维度自适应学习算法,对每个趋化周期内得到的当前最优细菌进行维度自适应学习一次,提高了解的精度和搜索效率;将精英细菌作为Tent混沌映射的初始点对符合迁徙条件的细菌进行位置初始化,加快了算法的收敛速度.仿真结果表明,文中提出的算法在解的精度和收敛速度等方面均表现更优,具有更高的效率. 展开更多
关键词 细菌觅食 算法优化 自适应学习 TENT映射 高维函数优化 局部搜索
在线阅读 下载PDF
基于细菌迁徙的自适应果蝇优化算法 被引量:17
20
作者 刘成忠 韩俊英 《计算机工程与科学》 CSCD 北大核心 2014年第4期690-696,共7页
针对果蝇优化算法的早熟收敛问题,提出了一种新的基于细菌迁徙的自适应果蝇优化算法。该算法在运行过程中根据进化停滞步数的大小自适应地引入细菌迁徙操作,提高算法跳出局部极值的能力;并且对每个个体根据适应值大小赋予不同的自适应... 针对果蝇优化算法的早熟收敛问题,提出了一种新的基于细菌迁徙的自适应果蝇优化算法。该算法在运行过程中根据进化停滞步数的大小自适应地引入细菌迁徙操作,提高算法跳出局部极值的能力;并且对每个个体根据适应值大小赋予不同的自适应迁徙概率,避免了迁徙可能带来的解退化的问题。对几种经典函数的测试结果表明,新算法具有更好的全局搜索能力,在收敛速度、收敛可靠性及收敛精度上比果蝇优化算法有较大的提高。 展开更多
关键词 细菌觅食 迁徙算子 果蝇优化 自适应
在线阅读 下载PDF
上一页 1 2 3 下一页 到第
使用帮助 返回顶部