期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Advances in Manta Ray Foraging Optimization:A Comprehensive Survey 被引量:1
1
作者 Farhad Soleimanian Gharehchopogh Shafi Ghafouri +1 位作者 Mohammad Namazi Bahman Arasteh 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第2期953-990,共38页
This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic fields.Introduced in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing ins... This paper comprehensively analyzes the Manta Ray Foraging Optimization(MRFO)algorithm and its integration into diverse academic fields.Introduced in 2020,the MRFO stands as a novel metaheuristic algorithm,drawing inspiration from manta rays’unique foraging behaviors—specifically cyclone,chain,and somersault foraging.These biologically inspired strategies allow for effective solutions to intricate physical challenges.With its potent exploitation and exploration capabilities,MRFO has emerged as a promising solution for complex optimization problems.Its utility and benefits have found traction in numerous academic sectors.Since its inception in 2020,a plethora of MRFO-based research has been featured in esteemed international journals such as IEEE,Wiley,Elsevier,Springer,MDPI,Hindawi,and Taylor&Francis,as well as at international conference proceedings.This paper consolidates the available literature on MRFO applications,covering various adaptations like hybridized,improved,and other MRFO variants,alongside optimization challenges.Research trends indicate that 12%,31%,8%,and 49%of MRFO studies are distributed across these four categories respectively. 展开更多
关键词 manta ray foraging optimization Metaheuristic algorithms HYBRIDIZATION Improved optimization
在线阅读 下载PDF
Improved Manta Ray Foraging Optimizer-based SVM for Feature Selection Problems:A Medical Case Study
2
作者 Adel Got Djaafar Zouache +2 位作者 Abdelouahab Moussaoui Laith Abualigah Ahmed Alsayat 《Journal of Bionic Engineering》 SCIE EI CSCD 2024年第1期409-425,共17页
Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning thes... Support Vector Machine(SVM)has become one of the traditional machine learning algorithms the most used in prediction and classification tasks.However,its behavior strongly depends on some parameters,making tuning these parameters a sensitive step to maintain a good performance.On the other hand,and as any other classifier,the performance of SVM is also affected by the input set of features used to build the learning model,which makes the selection of relevant features an important task not only to preserve a good classification accuracy but also to reduce the dimensionality of datasets.In this paper,the MRFO+SVM algorithm is introduced by investigating the recent manta ray foraging optimizer to fine-tune the SVM parameters and identify the optimal feature subset simultaneously.The proposed approach is validated and compared with four SVM-based algorithms over eight benchmarking datasets.Additionally,it is applied to a disease Covid-19 dataset.The experimental results show the high ability of the proposed algorithm to find the appropriate SVM’s parameters,and its acceptable performance to deal with feature selection problem. 展开更多
关键词 Support vector machine Parameters tuning Feature selection Bioinspired algorithms manta ray foraging optimizer
在线阅读 下载PDF
Satellite Image Classification Using a Hybrid Manta Ray Foraging Optimization Neural Network
3
作者 Amit Kumar Rai Nirupama Mandal +1 位作者 Krishna Kant Singh Ivan Izonin 《Big Data Mining and Analytics》 EI CSCD 2023年第1期44-54,共11页
A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious ta... A semi supervised image classification method for satellite images is proposed in this paper.The satellite images contain enormous data that can be used in various applications.The analysis of the data is a tedious task due to the amount of data and the heterogeneity of the data.Thus,in this paper,a Radial Basis Function Neural Network(RBFNN)trained using Manta Ray Foraging Optimization algorithm(MRFO)is proposed.RBFNN is a three-layer network comprising of input,output,and hidden layers that can process large amounts.The trained network can discover hidden data patterns in unseen data.The learning algorithm and seed selection play a vital role in the performance of the network.The seed selection is done using the spectral indices to further improve the performance of the network.The manta ray foraging optimization algorithm is inspired by the intelligent behaviour of manta rays.It emulates three unique foraging behaviours namelys chain,cyclone,and somersault foraging.The satellite images contain enormous amount of data and thus require exploration in large search space.The spiral movement of the MRFO algorithm enables it to explore large search spaces effectively.The proposed method is applied on pre and post flooding Landsat 8 Operational Land Imager(OLI)images of New Brunswick area.The method was applied to identify and classify the land cover changes in the area induced by flooding.The images are classified using the proposed method and a change map is developed using post classification comparison.The change map shows that a large amount of agricultural area was washed away due to flooding.The measurement of the affected area in square kilometres is also performed for mitigation activities.The results show that post flooding the area covered by water is increased whereas the vegetated area is decreased.The performance of the proposed method is done with existing state-of-the-art methods. 展开更多
关键词 Radial Basis Function Neural Network(RBFNN) manta ray foraging optimization algorithm(MRFO) Landsat 8 classification change detection disaster mitigation PLANNING
原文传递
基于自适应蝠鲼觅食优化算法的分布式电源选址定容 被引量:25
4
作者 杨博 俞磊 +3 位作者 王俊婷 束洪春 曹璞璘 余涛 《上海交通大学学报》 EI CAS CSCD 北大核心 2021年第12期1673-1688,共16页
建立了考虑有功功率损耗、电压分布、污染排放、分布式电源(DG)成本以及气象条件的DG选址定容规划模型,其中选址、定容工作分别是一个离散、连续变量,是一个高度非线性、含离散优化变量的复杂模型.因此,应用自适应蝠鲼觅食优化(AMRFO)... 建立了考虑有功功率损耗、电压分布、污染排放、分布式电源(DG)成本以及气象条件的DG选址定容规划模型,其中选址、定容工作分别是一个离散、连续变量,是一个高度非线性、含离散优化变量的复杂模型.因此,应用自适应蝠鲼觅食优化(AMRFO)算法获取最优Pareto解集,其具有丰富多样的搜索机制,个体更新机制以及先进的Pareto解筛选机制,针对该模型能够获得更加优异的高质量解.为回避权重系数人为设置主观性带来的影响,采用基于马氏距离的理想决策点法进行Pareto最优解集决策.最后,基于IEEE 33, 69节点配电网和孤网运行的IEEE 33, 69节点配电网进行仿真分析.研究结果表明:与传统的多目标智能优化算法相比,AMRFO算法能够获得分布更加广泛、均匀的Pareto前沿,在兼顾经济性的同时,配电网的电压分布、有功功率损耗的改善效果显著优于其他算法. 展开更多
关键词 配电网 分布式电源 选址定容 自适应蝠鲼觅食优化算法
在线阅读 下载PDF
竞争环境下考虑环境友好的冷链物流LRP研究
5
作者 魏志铭 张步阔 《物流科技》 2022年第19期145-149,共5页
随着冷链物流的重要性不断提升,为得出对冷链设施选址实践有帮助的优秀方案,应在制定选址方案时充分考虑市场竞争、环境友好等对企业有较大影响的因素。因此,文章构建了同时考虑竞争、低碳与冷链的多目标选址模型,并进行深入研究。在竞... 随着冷链物流的重要性不断提升,为得出对冷链设施选址实践有帮助的优秀方案,应在制定选址方案时充分考虑市场竞争、环境友好等对企业有较大影响的因素。因此,文章构建了同时考虑竞争、低碳与冷链的多目标选址模型,并进行深入研究。在竞争选址方面,通过冷链物流特有的时间窗满意度对市场份额的计算公式进行了创新,并综合了两种主流的消费者行为来估算市场份额。在低碳方面,引入了碳税的概念,分别建立两种不同车队构成的数学模型,并通过改进的自适应蝠鲼优化算法对两种模型进行求解。最后,对求得的解进行对比分析得出:配备燃油运载车进行运输能获得更高的市场份额,但在获取相似市场份额情况下,配备电动汽车的冷链中心耗费成本更少,且随着市场规模的扩大,这一差距也不断扩大。 展开更多
关键词 冷链物流 竞争选址 低碳 自适应蝠鲼觅食优化算法 非支配排序
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部