Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical ...Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.展开更多
针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗...针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗函数有效窗长及频谱,避免为提高时频分辨率频繁切换窗口参数,降低算法复杂度。以增强信号能量集中度为参数调优目标选取窗口参数,确保对各类扰动的精确时频定位。采用自动阈值法确定实际扰动信号的主频点,并对主频点进行时频变换,进一步提高算法执行效率。仿真和实测结果表明,相比于现有复合电能质量扰动检测算法,该检测方法实时性好、时频分辨能力强、计算复杂度低,适用于复杂电能质量扰动实时准确检测。展开更多
With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electro...With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electronic devices causes power quality problem in microgrid, especially in islanding mode. An accurate and fast disturbance detection method which is the premise of power quality control is necessary. Aiming at the end effect and the mode mixing of original Hilbert-Huang transform(HHT), an improved HHT with adaptive waveform matching extension is proposed in this paper. The innovative waveform matching extension method considers not only the depth of waveform, but also the rise time and fall time. Both simulations and field experiments have verified the correctness and validity of the improved HHT for power quality disturbance detection in microgrid.展开更多
基金funded by the National Natural Science Foundation of China,grant number 61302188.
文摘Multimodal medical image fusion can help physicians provide more accurate treatment plans for patients, as unimodal images provide limited valid information. To address the insufficient ability of traditional medical image fusion solutions to protect image details and significant information, a new multimodality medical image fusion method(NSST-PAPCNNLatLRR) is proposed in this paper. Firstly, the high and low-frequency sub-band coefficients are obtained by decomposing the source image using NSST. Then, the latent low-rank representation algorithm is used to process the low-frequency sub-band coefficients;An improved PAPCNN algorithm is also proposed for the fusion of high-frequency sub-band coefficients. The improved PAPCNN model was based on the automatic setting of the parameters, and the optimal method was configured for the time decay factor αe. The experimental results show that, in comparison with the five mainstream fusion algorithms, the new algorithm has significantly improved the visual effect over the comparison algorithm,enhanced the ability to characterize important information in images, and further improved the ability to protect the detailed information;the new algorithm has achieved at least four firsts in six objective indexes.
文摘针对复合电能质量扰动检测算法实时性差、时频分辨率低的问题,提出了一种基于改进自适应S变换(improved adaptive S transform, IAST)的电能质量扰动实时检测方法。构建全局自适应高斯窗作为IAST的核函数,可随检测频率变化自适应调整窗函数有效窗长及频谱,避免为提高时频分辨率频繁切换窗口参数,降低算法复杂度。以增强信号能量集中度为参数调优目标选取窗口参数,确保对各类扰动的精确时频定位。采用自动阈值法确定实际扰动信号的主频点,并对主频点进行时频变换,进一步提高算法执行效率。仿真和实测结果表明,相比于现有复合电能质量扰动检测算法,该检测方法实时性好、时频分辨能力强、计算复杂度低,适用于复杂电能质量扰动实时准确检测。
基金supported by National High Technology Research and Development Program of China(863 Program)(No.2015AA050104)National Natural Science Foundation of China(No.51577068)
文摘With the significant improvement of microgrid technology, microgrid has gained large-scale application.However, the existence of intermittent distributed generations, nonlinear loads and various electrical and electronic devices causes power quality problem in microgrid, especially in islanding mode. An accurate and fast disturbance detection method which is the premise of power quality control is necessary. Aiming at the end effect and the mode mixing of original Hilbert-Huang transform(HHT), an improved HHT with adaptive waveform matching extension is proposed in this paper. The innovative waveform matching extension method considers not only the depth of waveform, but also the rise time and fall time. Both simulations and field experiments have verified the correctness and validity of the improved HHT for power quality disturbance detection in microgrid.