Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,lead...Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy.展开更多
Dear Editor,This letter investigates global stabilization of uncertain nonlinear systems via adaptive event-triggered output feedback.Uncertainties lie in both system nonlinearities and measurement sensitivity.To this...Dear Editor,This letter investigates global stabilization of uncertain nonlinear systems via adaptive event-triggered output feedback.Uncertainties lie in both system nonlinearities and measurement sensitivity.To this end,a dynamic high gain is introduced to cope with the influence of large uncertainties,the unknown measurement sensitivity and the execution error,while a time-varying threshold event-triggering mechanism is constructed to effectively exclude the Zeno phenomenon.As such,the adaptive event-triggered control ensures globally bounded and convergent of system states.The design method is demonstrated using a controlled pendulum example.展开更多
基金funded by the Natural Science Foundation of Shaanxi Province,Grant No.2021GY-135the Scientific Research Project of Yan’an University,Grant No.YDQ2018-07.
文摘Distributed collaborative control strategies for microgrids often use periodic time to trigger communication,which is likely to enhance the burden of communication and increase the frequency of controller updates,leading to greater waste of communication resources.In response to this problem,a distributed cooperative control strategy triggered by an adaptive event is proposed.By introducing an adaptive event triggering mechanism in the distributed controller,the triggering parameters are dynamically adjusted so that the distributed controller can communicate only at a certain time,the communication pressure is reduced,and the DC bus voltage deviation is effectively reduced,at the same time,the accuracy of power distribution is improved.The MATLAB/Simulink modeling and simulation results prove the correctness and effectiveness of the proposed control strategy.
基金supported by the National Natural Science Foundation of China(62203283)Shandong Provincial Natural Science Foundation(ZR2022QF009,ZR2023QA063)the China Postdoctoral Science Foundation(2022M711981).
文摘Dear Editor,This letter investigates global stabilization of uncertain nonlinear systems via adaptive event-triggered output feedback.Uncertainties lie in both system nonlinearities and measurement sensitivity.To this end,a dynamic high gain is introduced to cope with the influence of large uncertainties,the unknown measurement sensitivity and the execution error,while a time-varying threshold event-triggering mechanism is constructed to effectively exclude the Zeno phenomenon.As such,the adaptive event-triggered control ensures globally bounded and convergent of system states.The design method is demonstrated using a controlled pendulum example.