期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
A new adaptive nonuniformity correction algorithm for infrared line scanner based on neural networks 被引量:14
1
作者 隋婧 董立泉 +1 位作者 金伟其 张雅元 《Chinese Optics Letters》 SCIE EI CAS CSCD 2007年第2期74-76,共3页
The striping pattern nonuniformity of the infrared line scanner (IRLS) severely limits the system performance. An adaptive nonuniformity correction (NUC) algorithm for IRLS using neural network is proposed. It use... The striping pattern nonuniformity of the infrared line scanner (IRLS) severely limits the system performance. An adaptive nonuniformity correction (NUC) algorithm for IRLS using neural network is proposed. It uses a one-dimensional median filter to generate ideal output of network and can complete NUC by a single frame with a high correction level. Applications to both simulated and real infrared images show that the algorithm can obtain a satisfactory result with low complexity, no need of scene diversity or global motion between consecutive frames. It has the potential to realize real-time hardware-based applications. 展开更多
关键词 PSNR LINE A new adaptive nonuniformity correction algorithm for infrared line scanner based on neural networks
原文传递
Multi-scale traffic vehicle detection based on faster ReCNN with NAS optimization and feature enrichment
2
作者 Ji-qing Luo Hu-sheng Fang +2 位作者 Fa-ming Shao Yue Zhong Xia Hua 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2021年第4期1542-1554,共13页
It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively dif... It well known that vehicle detection is an important component of the field of object detection.However,the environment of vehicle detection is particularly sophisticated in practical processes.It is comparatively difficult to detect vehicles of various scales in traffic scene images,because the vehicles partially obscured by green belts,roadblocks or other vehicles,as well as influence of some low illumination weather.In this paper,we present a model based on Faster ReCNN with NAS optimization and feature enrichment to realize the effective detection of multi-scale vehicle targets in traffic scenes.First,we proposed a Retinex-based image adaptive correction algorithm(RIAC)to enhance the traffic images in the dataset to reduce the influence of shadow and illumination,and improve the image quality.Second,in order to improve the feature expression of the backbone network,we conducted Neural Architecture Search(NAS)on the backbone network used for feature extraction of Faster ReCNN to generate the optimal cross-layer connection to extract multi-layer features more effectively.Third,we used the object Feature Enrichment that combines the multi-layer feature information and the context information of the last layer after cross-layer connection to enrich the information of vehicle targets,and improve the robustness of the model for challenging targets such as small scale and severe occlusion.In the implementation of the model,K-means clustering algorithm was used to select the suitable anchor size for our dataset to improve the convergence speed of the model.Our model has been trained and tested on the UN-DETRAC dataset,and the obtained results indicate that our method has art-of-state detection performance. 展开更多
关键词 Neural architecture search Feature enrichment Faster R-CNN Retinex-based image adaptive correction algorithm K-means UN-DETRAC
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部