Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system u...Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip latch, 6116 store, eight bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.展开更多
In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupli...In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.展开更多
Based on the analysis of the mechanism of wire tension control by using torque motors in the multi-wire saw machining process, some mathematical models of a tension control system are studied, and an adaptive algo- ri...Based on the analysis of the mechanism of wire tension control by using torque motors in the multi-wire saw machining process, some mathematical models of a tension control system are studied, and an adaptive algo- rithm is designed for controlling the wire tension. In this algorithm of tension control, the rotation speeds and waving angle of motors are measured and fed back to the controller, and the NLMS( normalized least mean squares) algorithm is used to calculate the adaptive correction value and control the wire tension accurately. The computer simulation results in Matlab software validate the high accuracy for controlling the system of the wire tension with the NLMS algorithm in the multi-wire saw machining process.展开更多
This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are de...This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are described.The adaptive optimal control law consists of the sum of the optimal control component and the adaptive control component.First,the optimal control law is designed for the model of the suspension system after ignoring the components of uncertain parameters and exogenous disturbance caused by the road surface.The optimal control law expresses the desired dynamic characteristics of the suspension system.Next,the adaptive component is designed with the purpose of compensating for the effects caused by uncertain parameters and exogenous disturbance caused by the road surface;the adaptive component has adaptive parameter rules to estimate uncertain parameters and exogenous disturbance.When exogenous disturbances are eliminated,the system responds with an optimal controller designed.By separating theoretically the dynamic of a semi-active suspension system,this solution allows the design of two separate controllers easily and has reduced the computational burden and the use of too many tools,thus allowing for more convenient hardware implementation.The simulation results also show the effectiveness of damping oscillations of the proposed solution in this article.展开更多
The paper proposes a method for solving the problem of synthesis of an adaptive control system for unstable and deterministic chaotic processes in the class of‘dovetail’catastrophes for objects with m-inputs and n-o...The paper proposes a method for solving the problem of synthesis of an adaptive control system for unstable and deterministic chaotic processes in the class of‘dovetail’catastrophes for objects with m-inputs and n-outputs.The synthesis problem is solved by the gradient-velocity method of Lyapunov vector functions.From the conditions of the aperiodic robust stability of the etalon model with the desired dynamics of the main control loop and the generalised configurable object,the control goal is achieved.One of the most promising ways of solving the problem of managing unstable and deterministic chaotic processes is the synthesis of a control system in the class of‘swallowtail’catastrophes and the use of adaptation methods.Selecting and studying a reference model,and employing the gradient-velocity method for a generalised configurable control object ensure robust stability,utilise current information effectively,and achieve desired system quality and management goals.展开更多
Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significant...Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness.展开更多
In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that globa...In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.展开更多
This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an a...This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an auxiliary system is established.Based on the finite-time stability theory and inverse optimal theory,a fuzzy adaptive inverse finite-time inverse optimal control method is proposed.It is proven that the formulated control approach guarantees the stability of the controlled systems,while ensuring that errors converge to a small neighborhood of zero within finite time.Moreover,the optimized control performance can be achieved.Eventually,the simulation results demonstrate the effectiveness of the proposed fuzzy adaptive finite-time inverse optimal control scheme.展开更多
In the field of flexible polishing,the accuracy of contact force control directly affects processing quality and material removal uniformity.However,the complex dynamic contact model and inherent strong hysteresis of ...In the field of flexible polishing,the accuracy of contact force control directly affects processing quality and material removal uniformity.However,the complex dynamic contact model and inherent strong hysteresis of pneumatic systems can significantly impact the force control accuracy of pneumatic polishing system end-effectors.To enhance responsiveness and control precision during the flexible polishing process,this study proposes an observer-based fuzzy adaptive control(OBFAC)scheme.To ensure control accuracy under an uncertain dynamic contact model,a fuzzy state observer is designed to estimate unmeasured states,while fuzzy logic approximates the uncertain nonlinear functions in the model to improve control performance.Additionally,the integral barrier Lyapunov function is employed to ensure that all states remain within predefined constraints.The stability of the proposed control scheme is analyzed using the Lyapunov function,and a pneumatic polishing experimental platform is constructed to conduct polishing contact force control experiments under multiple scenarios.Experimental results demonstrate that the proposed OBFAC scheme achieves superior tracking control performance compared to existing control schemes.展开更多
This paper considers adaptive event-triggered stabilization for a class of uncertain time-varying nonlinear systems.Remarkably,the systems contain intrinsic time-varying unknown parameters which are allowed to be non-...This paper considers adaptive event-triggered stabilization for a class of uncertain time-varying nonlinear systems.Remarkably,the systems contain intrinsic time-varying unknown parameters which are allowed to be non-differentiable and in turn can be fast-varying.Moreover,the systems admit unknown control directions.To counteract the different uncertainties,more than one compensation mechanism has to be incorporated.However,in the context of event-triggered control,ensuring the effectiveness of these compensation mechanisms under reduced execution necessitates delicate design and analysis.This paper proposes a tight and powerful strategy for adaptive event-triggered control(ETC)by integrating the state-of-the-art adaptive techniques.In particular,the strategy substantially mitigates the conservatism caused by repetitive inequality-based treatments of uncertainties.Specifically,by leveraging the congelation-of-variables method and tuning functions,the conservatism in the treatment of the fast-varying parameters is significantly reduced.With multiple Nussbaum functions employed to handle unknown control directions,a set of dynamic compensations is designed to counteract unknown amplitudes of control coefficients without relying on inequality-based treatments.Moreover,a dedicated dynamic compensation is introduced to deal with the control coefficient coupled with the execution error,based on which a relativethreshold event-triggering mechanism(ETM)is rigorously validated.It turns out that the adaptive event-triggered controller achieves the closed-loop convergence while guaranteeing a uniform lower bound for inter-execution times.Simulation results verify the effectiveness and superiority of the proposed strategy.展开更多
In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is co...In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network(NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control,respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle.The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.展开更多
The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain deg...The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.展开更多
This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challen...This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challenges inherent in conventional neural network training,an improved self-organizing radial basis function neural network(SRBFNN)with an input-dependent variable structure is developed.Furthermore,a novel selforganizing RBFNN-based observer is introduced to estimate system states across all dimensions.Leveraging the reconstructed states,the proposed adaptive controller effectively compensates for all uncertainties,including estimation errors in the observer,ensuring accurate state tracking with reduced control effort.The uniform ultimate boundedness of all closed-loop signals and tracking errors is rigorously established via Lyapunov stability analysis.Finally,simulations on two different nonlinear systems comprehensively validate the effectiveness and superiority of the proposed control approach.展开更多
In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to t...In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.展开更多
The adaptive H_(∞) finite-time boundedness control problem is studied for a set of nonlinear singular Hamiltonian system(NSHS)in this article.Under an appropriate adaptive state feedback,the NSHS can be equivalently ...The adaptive H_(∞) finite-time boundedness control problem is studied for a set of nonlinear singular Hamiltonian system(NSHS)in this article.Under an appropriate adaptive state feedback,the NSHS can be equivalently transformed into a differential-algebraic system.Next,it is proved that the state feedback can be used as an adaptive H_(∞) finite-time boundedness controller of NSHS.Finally,the effectiveness of the controller designed is verified by an illustrative example of a nonlinear singular circuit system.展开更多
On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in t...On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system.展开更多
We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditio...We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.展开更多
The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for cancelin...The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.展开更多
The problem of decreasing stability margins in L1 adaptive control systems is discussed and an out-of-loop L1 adaptive control scheme based on Lyapunov’s stability theorem is proposed.This scheme enhances the effecti...The problem of decreasing stability margins in L1 adaptive control systems is discussed and an out-of-loop L1 adaptive control scheme based on Lyapunov’s stability theorem is proposed.This scheme enhances the effectiveness of the adaptation,which ensures that the system has suffi-cient stability margins to achieve the desired performance under parametric uncertainty,additional delays,and actuator faults.The stability of the developed control system is demonstrated through a series of simulations.Compared with an existing control scheme,the constant adjustment of the sta-bility margins by the proposed adaptive scheme allows their range to be extended by a factor of 4–5,bringing the stability margin close to that of variable gain PD control with adaptively scheduled gains.The engineered practicability of adaptive technology is verified.A series of flight tests verify the practicability of the designed adaptive technology.The results of these tests demonstrate the enhanced performance of the proposed control scheme with nonlinear parameter estimations under insufficient stability margins and validate its robustness in the event of actuator failures.展开更多
文摘Presents a one grade adaptive controller with one reference model which is built according to δ MRACS adaptive control theory and used to control an actual high order hydraulic system, and the whole hardware system used, which includes a AT89C51 single chip microcomputer, 74Ls373 flip latch, 6116 store, eight bit ADC0809, and so on, and the satisfactory results obtained in study on hydraulic control system.
文摘In this paper, we conduct research on the unmanned aerial vehicle adaptive control system based on fuzzy control and chaosmechanics. Four rotor aircraft is a kind of nonlinear systems with underactuated, strong coupling characteristic. Although in existing research,through the design of the control algorithm effectively inhibits both for fl ight control effect, but not fundamentally eliminate the effect of aircraft.Dynamic model of unmanned helicopter fl ight control system design is very approximate, need to gradually improve the modeling accuracy, soas to get the exact autonomous fl ight control, so you need to practice constantly required to modeling in the fl ight information, so the unmannedhelicopter fl ight control system to have the ability to retrieve information modeling. This paper proposes the new idea on the issues that will bemeaningful.
基金supported by the National Natural Science Fundproject (50775207)Key Laboratory of E & M (Zhejiang University of Technology) Open Fund project (2009EP017)
文摘Based on the analysis of the mechanism of wire tension control by using torque motors in the multi-wire saw machining process, some mathematical models of a tension control system are studied, and an adaptive algo- rithm is designed for controlling the wire tension. In this algorithm of tension control, the rotation speeds and waving angle of motors are measured and fed back to the controller, and the NLMS( normalized least mean squares) algorithm is used to calculate the adaptive correction value and control the wire tension accurately. The computer simulation results in Matlab software validate the high accuracy for controlling the system of the wire tension with the NLMS algorithm in the multi-wire saw machining process.
基金supported in part by the Thai Nguyen University of Technology,Vietnam.
文摘This article presents an adaptive optimal control method for a semi-active suspension system.The model of the suspension system is built,in which the components of uncertain parameters and exogenous disturbance are described.The adaptive optimal control law consists of the sum of the optimal control component and the adaptive control component.First,the optimal control law is designed for the model of the suspension system after ignoring the components of uncertain parameters and exogenous disturbance caused by the road surface.The optimal control law expresses the desired dynamic characteristics of the suspension system.Next,the adaptive component is designed with the purpose of compensating for the effects caused by uncertain parameters and exogenous disturbance caused by the road surface;the adaptive component has adaptive parameter rules to estimate uncertain parameters and exogenous disturbance.When exogenous disturbances are eliminated,the system responds with an optimal controller designed.By separating theoretically the dynamic of a semi-active suspension system,this solution allows the design of two separate controllers easily and has reduced the computational burden and the use of too many tools,thus allowing for more convenient hardware implementation.The simulation results also show the effectiveness of damping oscillations of the proposed solution in this article.
文摘The paper proposes a method for solving the problem of synthesis of an adaptive control system for unstable and deterministic chaotic processes in the class of‘dovetail’catastrophes for objects with m-inputs and n-outputs.The synthesis problem is solved by the gradient-velocity method of Lyapunov vector functions.From the conditions of the aperiodic robust stability of the etalon model with the desired dynamics of the main control loop and the generalised configurable object,the control goal is achieved.One of the most promising ways of solving the problem of managing unstable and deterministic chaotic processes is the synthesis of a control system in the class of‘swallowtail’catastrophes and the use of adaptation methods.Selecting and studying a reference model,and employing the gradient-velocity method for a generalised configurable control object ensure robust stability,utilise current information effectively,and achieve desired system quality and management goals.
基金supported by the“Shuimu Tsinghua Scholar”Project,China(No.2024SM223)the National Science and Technology Major Project,China(No.Y2022-V-0002-0028).
文摘Aeropropulsion System Test Facility (ASTF) is required to accurately control the pressure and temperature of the airflow to test the performance of the aero-engine. However, the control accuracy of ASTF is significantly affected by the flow disturbance caused by aero-engine acceleration and deceleration. This would reduce the credibility of ASTF’s test results for the aero-engine. Therefore, first, this paper proposes a feedforward compensation-based L1 adaptive control method for ASTF to address this problem. The baseline controller is first designed based on ideal uncoupled closed-loop dynamics to achieve dynamic decoupling. Then, L1 adaptive control is adopted to deal with various uncertainties and ensure good control performance. To further enhance the anti-disturbance performance, a feedforward strategy based on disturbance prediction is designed in the L1 adaptive control framework to compensate for the unmatched flow disturbance, which cannot be measured directly. In addition, this strategy takes into account the effects of actuator dynamics. With this method, the feedforward term can be determined from the nominal model parameters despite uncertainties. Finally, to demonstrate the effectiveness of the proposed method, various comparative experiments are performed on a hardware-in-the-loop system of ASTF. The experimental results show that the proposed method possesses excellent tracking performance, anti-disturbance performance and robustness.
基金supported by the Zhejiang Provincial Natural Science Foundation(LY24F030011,LY23F030005)the National Natural Science Foundation of China(62373131).
文摘In this paper,a pair of dynamic high-gain observer and output feedback controller is proposed for nonlinear systems with multiple unknown time delays.By constructing Lyapunov-Krasovskii functionals,it shows that global state asymptotic regulation can be ensured by introducing a single dynamic gain;furthermore,global asymptotic stabilization can be achieved by choosing a sufficiently large static scaling gain when the upper bounds of all system parameters are known.Especially,the output coefficient is allowed to be non-differentiable with unknown upper bound.This paper proposes a generalized Lyapunov matrix inequality based dynamic-gain scaling method,which significantly simplifies the design computational complexity by comparing with the classic backstepping method.
基金supported by the National Natural Science Foundation of China under 62173172。
文摘This paper investigates the problem of fuzzy adaptive finite-time inverse optimal control for active suspension systems(ASSs).The fuzzy logic systems(FLSs)are utilized to learn the unknown non-linear dynamics and an auxiliary system is established.Based on the finite-time stability theory and inverse optimal theory,a fuzzy adaptive inverse finite-time inverse optimal control method is proposed.It is proven that the formulated control approach guarantees the stability of the controlled systems,while ensuring that errors converge to a small neighborhood of zero within finite time.Moreover,the optimized control performance can be achieved.Eventually,the simulation results demonstrate the effectiveness of the proposed fuzzy adaptive finite-time inverse optimal control scheme.
基金Supported by National Key Research and Development Program of China(Grant No.2022YFB3403402)National Natural Science Foundation of China Basic Research Programme for PhD Students(Grant No.524B2049)。
文摘In the field of flexible polishing,the accuracy of contact force control directly affects processing quality and material removal uniformity.However,the complex dynamic contact model and inherent strong hysteresis of pneumatic systems can significantly impact the force control accuracy of pneumatic polishing system end-effectors.To enhance responsiveness and control precision during the flexible polishing process,this study proposes an observer-based fuzzy adaptive control(OBFAC)scheme.To ensure control accuracy under an uncertain dynamic contact model,a fuzzy state observer is designed to estimate unmeasured states,while fuzzy logic approximates the uncertain nonlinear functions in the model to improve control performance.Additionally,the integral barrier Lyapunov function is employed to ensure that all states remain within predefined constraints.The stability of the proposed control scheme is analyzed using the Lyapunov function,and a pneumatic polishing experimental platform is constructed to conduct polishing contact force control experiments under multiple scenarios.Experimental results demonstrate that the proposed OBFAC scheme achieves superior tracking control performance compared to existing control schemes.
基金supported in part by the National Natural Science Foundation of China(62033007)the Fundamental Research Program of Shandong Province(ZR2023ZD37).
文摘This paper considers adaptive event-triggered stabilization for a class of uncertain time-varying nonlinear systems.Remarkably,the systems contain intrinsic time-varying unknown parameters which are allowed to be non-differentiable and in turn can be fast-varying.Moreover,the systems admit unknown control directions.To counteract the different uncertainties,more than one compensation mechanism has to be incorporated.However,in the context of event-triggered control,ensuring the effectiveness of these compensation mechanisms under reduced execution necessitates delicate design and analysis.This paper proposes a tight and powerful strategy for adaptive event-triggered control(ETC)by integrating the state-of-the-art adaptive techniques.In particular,the strategy substantially mitigates the conservatism caused by repetitive inequality-based treatments of uncertainties.Specifically,by leveraging the congelation-of-variables method and tuning functions,the conservatism in the treatment of the fast-varying parameters is significantly reduced.With multiple Nussbaum functions employed to handle unknown control directions,a set of dynamic compensations is designed to counteract unknown amplitudes of control coefficients without relying on inequality-based treatments.Moreover,a dedicated dynamic compensation is introduced to deal with the control coefficient coupled with the execution error,based on which a relativethreshold event-triggering mechanism(ETM)is rigorously validated.It turns out that the adaptive event-triggered controller achieves the closed-loop convergence while guaranteeing a uniform lower bound for inter-execution times.Simulation results verify the effectiveness and superiority of the proposed strategy.
基金supported in part by the National Natural Science Foundation of China(62222301,62373012,62473012,62021003)the National Science and Technology Major Project(2021ZD0112302,2021ZD0112301)the Beijing Natural Science Foundation(JQ19013)
文摘In this paper, a fault-tolerant-based online critic learning algorithm is developed to solve the optimal tracking control issue for nonaffine nonlinear systems with actuator faults.First, a novel augmented plant is constructed by fusing the system state and the reference trajectory, which aims to transform the optimal fault-tolerant tracking control design with actuator faults into the optimal regulation problem of the conventional nonlinear error system. Subsequently, in order to ensure the normal execution of the online learning algorithm, a stability criterion condition is created to obtain an initial admissible tracking policy. Then, the constructed model neural network(NN) is pretrained to recognize the system dynamics and calculate trajectory control. The critic and action NNs are constructed to output the approximate cost function and approximate tracking control,respectively. The Hamilton-Jacobi-Bellman equation of the error system is solved online through the action-critic framework. In theoretical analysis, it is proved that all concerned signals are uniformly ultimately bounded according to the Lyapunov principle.The tracking control law can approach the optimal tracking control within a finite approximation error. Finally, two experimental examples are conducted to indicate the effectiveness and superiority of the developed fault-tolerant tracking control scheme.
基金Financial support was provided by the State Grid Sichuan Electric Power Company Science and Technology Project“Key Research on Development Path Planning and Key Operation Technologies of New Rural Electrification Construction”under Grant No.52199623000G.
文摘The increasing penetration of second-life battery energy storage systems(SLBESS)in power grids presents substantial challenges to system operation and control due to the heterogeneous characteristics and uncertain degradation patterns of repurposed batteries.This paper presents a novel model-free adaptive voltage controlembedded dung beetle-inspired heuristic optimization algorithmfor optimal SLBESS capacity configuration and power dispatch.To simultaneously address the computational complexity and ensure system stability,this paper develops a comprehensive bilevel optimization framework.At the upper level,a dung beetle optimization algorithmdetermines the optimal SLBESS capacity configuration byminimizing total lifecycle costswhile incorporating the charging/discharging power trajectories derived from the model-free adaptive voltage control strategy.At the lower level,a health-priority power dispatch optimization model intelligently allocates power demands among heterogeneous battery groups based on their real-time operational states,state-of-health variations,and degradation constraints.The proposed model-free approach circumvents the need for complex battery charging/discharging power controlmodels and extensive historical data requirements whilemaintaining system stability through adaptive controlmechanisms.A novel cycle life degradation model is developed to quantify the relationship between remaining useful life,depth of discharge,and operational patterns.The integrated framework enables simultaneous strategic planning and operational control,ensuring both economic efficiency and extended battery lifespan.The effectiveness of the proposed method is validated through comprehensive case studies on hybrid energy storage systems,demonstrating superior computational efficiency,robust performance across different network configurations,and significant improvements in battery utilization compared to conventional approaches.
基金supported in part by the National Natural Science Foundation of China(62033008,62188101,62173343,62073339)the Natural Science Foundation of Shandong Province of China(ZR2024MF072,ZR2022ZD34)the Research Fund for the Taishan Scholar Project of Shandong Province of China.
文摘This article presents an adaptive fault-tolerant tracking control strategy for unknown affine nonlinear systems subject to actuator faults and external disturbances.To address the hyperparameter initialization challenges inherent in conventional neural network training,an improved self-organizing radial basis function neural network(SRBFNN)with an input-dependent variable structure is developed.Furthermore,a novel selforganizing RBFNN-based observer is introduced to estimate system states across all dimensions.Leveraging the reconstructed states,the proposed adaptive controller effectively compensates for all uncertainties,including estimation errors in the observer,ensuring accurate state tracking with reduced control effort.The uniform ultimate boundedness of all closed-loop signals and tracking errors is rigorously established via Lyapunov stability analysis.Finally,simulations on two different nonlinear systems comprehensively validate the effectiveness and superiority of the proposed control approach.
基金supported in part by the National Natural Science Foundation of China(62403396,62433018,62373113)the Guangdong Basic and Applied Basic Research Foundation(2023A1515011527,2023B1515120010)the Postdoctoral Fellowship Program of CPSF(GZB20240621)
文摘In this paper, the containment control problem in nonlinear multi-agent systems(NMASs) under denial-of-service(DoS) attacks is addressed. Firstly, a prediction model is obtained using the broad learning technique to train historical data generated by the system offline without DoS attacks. Secondly, the dynamic linearization method is used to obtain the equivalent linearization model of NMASs. Then, a novel model-free adaptive predictive control(MFAPC) framework based on historical and online data generated by the system is proposed, which combines the trained prediction model with the model-free adaptive control method. The development of the MFAPC method motivates a much simpler robust predictive control solution that is convenient to use in the case of DoS attacks. Meanwhile, the MFAPC algorithm provides a unified predictive framework for solving consensus tracking and containment control problems. The boundedness of the containment error can be proven by using the contraction mapping principle and the mathematical induction method. Finally, the proposed MFAPC is assessed through comparative experiments.
基金supported by the National Nature Science Foundation of China (61877028, 61773015).
文摘The adaptive H_(∞) finite-time boundedness control problem is studied for a set of nonlinear singular Hamiltonian system(NSHS)in this article.Under an appropriate adaptive state feedback,the NSHS can be equivalently transformed into a differential-algebraic system.Next,it is proved that the state feedback can be used as an adaptive H_(∞) finite-time boundedness controller of NSHS.Finally,the effectiveness of the controller designed is verified by an illustrative example of a nonlinear singular circuit system.
文摘On the basis of the theory of adaptive active noise control(AANC) in a duct, this article discusses the algorithms of the adaptive control, compares the algorithm characteristics using LMS, RLS and LSL algorithms in the adaptive filter in the AANC system, derives the recursive formulas of LMS algorithm. and obtains the LMS algorithm in computer simulation using FIR and IIR filters in AANC system. By means of simulation, we compare the attenuation levels with various input signals in AANC system and discuss the effects of step factor, order of filters and sound delay on the algorithm's convergence rate and attenuation level.We also discuss the attenuation levels with sound feedback using are and IIR filters in AANC system.
文摘We propose a new method for robust adaptive backstepping control of nonlinear systems with parametric uncertainties and disturbances in the strict feedback form. The method is called dynamic surface control. Traditional backstepping algorithms require repeated differentiations of the modelled nonlinearities. The addition of n first order low pass filters allows the algorithm to be implemented without differentiating any model nonlinearities, thus ending the complexity arising due to the 'explosion of terms' that makes other methods difficult to implement in practice. The combined robust adaptive backstepping/first order filter system is proved to be semiglobally asymptotically stable for sufficiently fast filters by a singular perturbation approach. The simulation results demonstrate the feasibility and effectiveness of the controller designed by the method.
文摘The control of dynamic nonlinear systems with unknown backlash was considered. By using an efficient approach to estimate the unknown backlash parameters, a rule? based backlash compensator was presented for canceling the effect of backlash. Adaptive nonlinear PID controller together with rule? based backlash compensator was developed and a satisfactory tracking performance was achieved. Simulation results demonstrated the effectiveness of the proposed method.
基金supported by the National Natural Science Foundation of China(No.U21B6003)the China Scholarship Council(CSC,No.202006310096).
文摘The problem of decreasing stability margins in L1 adaptive control systems is discussed and an out-of-loop L1 adaptive control scheme based on Lyapunov’s stability theorem is proposed.This scheme enhances the effectiveness of the adaptation,which ensures that the system has suffi-cient stability margins to achieve the desired performance under parametric uncertainty,additional delays,and actuator faults.The stability of the developed control system is demonstrated through a series of simulations.Compared with an existing control scheme,the constant adjustment of the sta-bility margins by the proposed adaptive scheme allows their range to be extended by a factor of 4–5,bringing the stability margin close to that of variable gain PD control with adaptively scheduled gains.The engineered practicability of adaptive technology is verified.A series of flight tests verify the practicability of the designed adaptive technology.The results of these tests demonstrate the enhanced performance of the proposed control scheme with nonlinear parameter estimations under insufficient stability margins and validate its robustness in the event of actuator failures.
基金supported in part by National Natural Science Foundation of China(61573108,61273192,61333013)the Ministry of Education of New Century Excellent Talent(NCET-12-0637)+1 种基金Natural Science Foundation of Guangdong Province through the Science Fund for Distinguished Young Scholars(S20120011437)Doctoral Fund of Ministry of Education of China(20124420130001)